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Abstract. A fast computation of the hypervolume has become a crucial
component for the quality assessment and the performance of modern
multi-objective evolutionary optimization algorithms. Albeit recent im-
provements, exact computation becomes quickly infeasible if the optimiza-
tion problems scale in their number of objectives or size. To overcome this
issue, we investigate the potential of using approximation instead of exact
computation by benchmarking the state of the art hypervolumealgorithms
for different geometries, dimensionality and number of points. Our exper-
iments outline the threshold at which exact computation starts to become
infeasible, but approximation still applies, highlighting the major factors
that influence its performance.
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1 Introduction

The hypervolume indicator (also known as Lebesgue measure [1] or S-metric [2])
is a popular quality measure for multi-objective optimization [3]. It was first sug-
gested by Zitzler and Thiele [4] as the size of the objective space covered by the
non-dominated solutions. It has the property of being strictly Pareto-compliant,
i.e., the Pareto-optimal front guarantees the maximum possible hypervolume
while any dominated set will assign a lower hypervolume [5]. Besides its appli-
cation as a performance indicator, the exclusive contribution of one individual
to the total hypervolume is used by Multi-Objective Optimization Algorithms
(MOEA) for selection, diversification and archiving. Because well-established
Pareto dominance-based MOEA like NSGA-II [6] and SPEA2 [7] deteriorate in
performance as the number of objectives increases, indicator-based algorithms [8]
such as SMS-EMOA [9], HypE [10] and MO-CMAES [11] provide an alternative
optimization design. A fast computation of the hypervolume indicator and the
contributions has thus become important for multi-objective optimization.

Bringmann and Friedrich [12] show that computing the hypervolume indicator
is #P-complete, which implies that there exists no polynomial-time algorithm
unless P = NP . Similar hardness results hold for computing hypervolume contri-
butions. However, the same authors also show that computing the hypervolume
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is fixed parameter tractable in the average case which gives hope that exact al-
gorithms might be useful in practice [13]. Given this opportunity, we investigate
and compare the state of the art approaches for determining the least contribu-
tor: exact algorithms approaching the problem from a computational geometry
standpoint and the approximation algorithm by Bringmann and Friedrich [12]
which can offer a better runtime at the cost of the precision.

2 Related Work

For dimensions d ≤ 4, hypervolume computation is in general tractable, as there
exist algorithms tailored for d = 2, 3 and 4 [14–16]. For arbitrary dimensions,
the best currently known algorithms in terms of asymptotical runtime all rely
on the Klee measure problem, of which the computation of the hypervolume in-
dicator is a special case. For d ≥ 7 Bringmann [17] gives an algorithm that runs

in O(n
d+2
3 ) whereas Yildiz and Suri [18] are asymptotically better for d = 4, 5, 6

with O(n
d−1
2 logn). The HOY [19] algorithm uses a space partitioning based on

the divide and conquer paradigm and runs in O(n
d
2 n logn). The drawback of

these methods are the large data structures that need to be maintained during
the run. The fastest algorithm based on dimension-sweeping is the FPL algo-
rithm by Fonseca et al. [20] that has an asymptotic complexity of O(nd−2 logn)
while using only linear space. The WFG [21] is based on using bounding boxes
to determine the exclusive contributions of points, which are then used to com-
pute the total hypervolume. Despite its asymptotic run-time of O(nd), there is
experimental [22] and theoretical evidence [13] that it is currently the fastest
exact algorithm for higher dimensions in practice. Although a good average
case complexity was proven, hypervolume computations are still tremendously
time-consuming for todays computers already starting with d = 10. Approxi-
mation algorithms and heuristics make it possible to explore problem domains
of d ≥ 10, which often needed to be scaled down (i.e. by aggregation) before
to become tractable. There exists a fully polynomial randomized approximation
scheme (FPRAS) for the hypervolume indicator [23], which allows for its ap-
proximation with given precision and probability in polynomial time. Ishibuchi
et al. [24] give a heuristic that uses achievement scalarizing functions to approx-
imate the hypervolume indicator, however, no approximation ratio is known.
Essential topic of our research is the algorithm of Bringmann and Friedrich [12]
which combines a Monte Carlo-like sampling method with a racing approach to
directly approximate the least hypervolume contributor. It is the only algorithm
we are aware of that gives a guarantee that for any given δ, ε ≥ 0 the obtained
solution is with a probability of (1− δ) larger by at most a factor of (1+ ε) than
the least contributor.

Closely related to this work is the one of Bringmann et. al [25] where the
empirical performance of MO-CMAES is evaluated when using the approxi-
mation algorithm as a subroutine. While it was shown that the runtime of
MO-CMAES could be reduced, it is unclear which sort of geometries during evo-
lution had to be processed by the approximation algorithm and how fast it did so.
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Also, the problem with highest dimensionality chosen was d = 8, for which ar-
guably an exact computation might still be feasible. As we will analyze the
runtime of the approximation algorithm unbiased by any MOEA from 2 to 100
dimensions, our approach is more direct and comprehensive, extending the pre-
liminary results from the original work. In particular, we follow the suggestion
made by the authors at the end of the original work [12] to create a broader
experimental setup, in which we can observe the occurrence and influence of
hard cases along other factors that impact the runtime by orders of magnitude,
but were never addressed in previous works before.

3 Experimental Setup

In this section we describe the datasets we used for our experiments1. Since
the hypervolume indicator computation is inherently connected with a reference
point, we propose a robust selection procedure. Finally, we assess the set of
the best-performing exact algorithms to provide a reliable comparison with the
approximation algorithm in the next section.

3.1 Datasets

We assume minimization in our setup and that each point in the dataset is con-
strained to a unit box [0, 1]d. We generate the datasets with three analytically-
defined geometries (Convex, Concave and Planar). In order to show the perfor-
mance of the algorithms on the maximization problems of the same geometries
(and also to close the gap between the publications that assume it), we provide
their inverted variants: InvertedConvex, InvertedConcave and InvertedPlanar.

Datasets were generated by sampling a multivariate normal distribution, sim-
ilarly to how it was outlined in [12]. Let q = (q1, q2, . . . , qd) be a vector of d
normal deviates, and p ∈ R

+ a parameter of the norm in Lp space. We sample
n non-dominated points using S:

S(q, p) =
(|q1|, |q2|, . . . , |qd|)

(qp1 + qp2 + . . .+ qpd)
1
p

. (1)

For p = 2, p = 1 and p = 0.5 we obtain the Convex, Planar and Concave
shapes respectively. Inverted variants of the shapes above involve the extra step
of multiplication of each obtained vector by a scalar of −1 and translation by
the vector (1, 1, . . . , 1):

SInverted(q, p) = (1, 1, . . . , 1)− S(q, p). (2)

Figure 1 visualizes the shapes for d = 3.
Additionally, we generate a group of Random datasets. Random dataset A

(initially empty) is obtained by a repeated sampling of a point inside the box
[0, 1]d and performing a test for the pairwise non-dominance with all of the
previously sampled points in A. This process continues until |A| = n.

1 Source code available: https://github.com/esa/pagmo/wiki/Hypervolume.

https://github.com/esa/pagmo/wiki/Hypervolume
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Fig. 1. Regular (green) and inverted (blue) dataset shapes, possible reference point
(red) at (1, 1, 1)

Dataset size ranges from 10 to 100 points by a step of 10 and then from 100 to
a 1000 points by a step of 100. Dimension ranges from 2 to 20 by a step of one,
and then from 20 to 100 by a step of 10. We generate a sample of 10 datasets
in each shape and for each combination of dimension and number of points.
Although current state of the art in multi-objective optimization does not deal
with problems of such extreme dimensionality, we are interested in presenting
the empirical scaling capabilities of the algorithm itself.

3.2 Reference Point

Every hypervolume computation requires a reference point. One way of obtaining
it, is simply assuming a fixed point which is guaranteed to be strongly dominated
by all of the points in the set.When the hypervolume is employed for the optimiza-
tion scenarios, this information might not be known upfront. In such cases, the
reference point is chosen dynamically, i.e. dependent on the point set. A common
approach is constructing a point out of the maxima in each coordinate (known
as the nadir point), and offsetting it by a small constant. This assures that the
points on the boundaries of the space have non-zero contribution to the total hy-
pervolume, as it was explained in the work of Beume et al. [9]. However, a constant
offset for the reference point may lead to problems, as any fixed value may be rela-
tively large in comparison to the space boundary. In such case, border points may
be influencing the hypervolume too strongly. In order to avoid that, we will shift
the nadir point relatively to the boundary of the point set, as it was proposed by
Knowles [26]. With N as the nadir point, and I as the ideal point (minima among
all coordinates), we compute the reference point as follows:

R = N + α · (N − I). (3)

For our experiment we assume α = 0.01, resulting in a reference point shifted
by 1% in each of the dimensions of the bounding box.

3.3 Selecting the Exact Algorithms and Experiment Design

We test selected exact hypervolume algorithms in order to determine a robust
and efficient candidate, which we will use for the comparison with the approxi-
mation algorithm. We consider three dimension-specific algorithms: Dimension-
sweep algorithm for d = 2 (HV2D), algorithm by Beume for d = 3 (HV3D)
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Fig. 2. Distribution of 10 hypervolume indicator computation times (Random dataset)

and algorithm by Guerreiro for d = 4 (HV4D). Besides these, we test three
dimension-independent algorithms: WFG, FPL and HOY. All of the implemen-
tations of algorithms used for this research, can be found in the PaGMO library2.

Figure 2 shows the median times of 10 hypervolume indicator computations
for algorithms WFG, FPL, and the family of dimension-specific algorithms:
HV2D, HV3D and HV4D, with whiskers describing the middle 8 runtimes (out-
liers are denoted with a “plus” mark). On each figure only the best and the second
best performing algorithms are displayed per dimension. All of the dimension-
specific algorithms tend to perform no worse in their domain than the dimension-
independent ones. Out of the dimension-independent algorithms, WFG performs
better than FPL and HOY on every test instance with more than 5 dimensions.
For 5 dimensions, FPL performs better than WFG for 80 points or less.

Least contributor is obtained through n+1 computations of the hypervolume:

LeastContributor(S) = argmin
p∈S

(Hypervolume(S)−Hypervolume(S \ {p})). (4)

We improve on that by employing the algorithm by Emmerich et al. [16] for 3
dimensions, and a version of WFG optimized for the least contributor compu-
tation. Figure 3 presents the results for the least contributor computation. For
d ≥ 4 WFG outperformed all other algorithms.

We propose a group of best performing algorithms for the computation of the
least contributor, which we will compare with the PaGMO implementation of the
approximation algorithm by Bringmann and Friedrich [12] (to which we will refer
as BFA). For that task we select all dimension-specific algorithms for d ≤ 3 and
WFG in every other case. Because BFA employs a mechanism in which difficult
subproblems can be solved using the computation of the hypervolume indicator,
we define a set of the best performing algorithms for the hypervolume indicator
as well. For d ≤ 4 we will use all of the dimension-specific algorithms, for d = 5
and n < 80 we will employ FPL, while the remaining cases will be handled by
the WFG algorithm. We run the approximation algorithm with the parameters
recommended by the authors, namely δ = 10−6 and ε = 10−2. All experiments

2 Available online at https://github.com/esa/pagmo

https://github.com/esa/pagmo
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Fig. 3. Distribution of 10 least hypervolume contributor computation times (Random
dataset)

were conducted on an Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz with 20480 KB
of cache.

4 Results

This sections covers the results obtained by our comparison experiment. As exact
computation of the least contributor is intractable for the majority of our test
cases – rendering the measurement of empirical accuracy of BFA infeasible – we
have to restrict our analysis to the runtime only.

Runtime patterns derived for the exact algorithms and the BFA algorithm can
be seen in Figure 4. Given the extent of the data, we terminate each computation
after 30 seconds to make the experiment feasible and to show the general out-
look of the runtime patterns. First, we observe that Planar, Concave and Convex
shapes were similar in the runtime patterns they produced, thus we used Convex
as a representative of this group of shapes. For the same reason InvertedConvex
was chosen as the representative of the inverted variants of the shapes above.
The runtime pattern of the exact algorithm was similar across all shapes, while
BFA performed worse for the first group (Planar, Concave and Convex ) when
compared with their corresponding inverted variants. Figures 4(c), 4(d) and
Figures 4(e), 4(f) show a significant difference in the performance of the approx-
imation algorithm. Due to space limitation we do not provide the corresponding
plots for the BFA’s performance on the Random shape, which was similar to the
Convex shape. Figure 4(b) shows that using the fastest known exact algorithms
can still be efficient when the dimension is no larger than 7 or when the front
consists of 20 points or fewer.

To better understand the runtime pattern of BFA in Figures 4(c) and 4(d), we
drop the 30 second termination criterion and rerun the experiment for 200 points
until completion. Figure 5 presents the interdependence of BFAs runtime (left
plot) to the total number of Monte Carlo samplings performed by the algorithm
(middle plot). We observe that for a fixed number of points, variance of the
runtime increases at d = 10, while the average runtime slowly declines as the
dimension increases (Figures 4(c) and 4(d)). Taking the exact computation usage
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(a) Exact algorithm, Convex dataset (b) Exact algorithm, Convex dataset

(c) BFA, Convex dataset (d) BFA, Convex dataset

(e) BFA, InvertedConvex dataset (f) BFA, InvertedConvex dataset

Fig. 4. Runtime of the exact algorithm – figures (a) and (b) – on Convex dataset, and
the BFA algorithm – figures (c) to (f) – on Convex and InvertedConvex datasets

into account (rightmost plot in Figure 5) it is evident that the usage of exact
computations for d ≤ 7 amortizes the runtime in lower dimensions for BFA.

To investigate further, we pick the case with the highest runtime for each
dimension and present the distribution of the number of samples over 200 points
in Figure 6. We observe a dependence of the number of samples to the dimen-
sion. It is most of the time the (true) least contributor and one or two of other
candidates which constitute for the majority of total number of samples, sug-
gesting that these points remained in the race for a long time. This happens
when two or more points differ very little in their contribution, which supports
the impact of the hardness of approximation, as is was described in the original
work by Bringmann and Friedrich. Surprisingly, this effect seems to be inversely
proportional to the dimension (given a fixed number of points). We believe that
this can be attributed to relatively sparse distribution of points as the dimension
increases, leading to fewer occurrences of hard cases.
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Fig. 5. Runtime of BFA algorithm (left), total number of performed sampling rounds
(middle) and the number of exact computations performed by the algorithm (right)
Distribution over 10 runs per dimension on Convex dataset of 200 points

Fig. 6. Runtime of BFA algo-
rithm (dashed line) and the distri-
bution of the number of performed
sampling rounds over 200 points
(least contributors marked with a
green square, red line shows the
total number of samples). Maxi-
mal runtimes for each dimension
picked from Convex datasets of
200 points.

While the high runtime has already been tied to the shape of the data, we have
observed the reference point to also influence the empirical runtime performance
of BFA. Figure 7 shows a runtime comparison of an exact computation using
WFG and the approximation using BFA, with varying offsets applied to the
nadir point. Altering the reference point influences the relative contributions
of the border points, thus the least contributor can change. While the runtime
of WFG seems to be indifferent to the reference point, the observed runtime of
BFA spans over two orders of magnitude, in favor of smaller offsets. We suggest
using a reference point relative to the size of the objective space and with a small
offset (1% per objective), as we have done in our previous experiments.

Fig. 7. Impact of the reference
point offset on the runtime of
WFG and BFA algorithms and the
number of Monte Carlo sampling
rounds. Change of the least con-
tributor marked by a dashed line.
Concave dataset with 100 points
in 10 dimensions.
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5 Conclusions

Since the currently best available exact computation algorithms quickly reach
their limits for problems with 10 or more dimensions, BFA provides a superior
performance as it scales much better in that regard. However, easy to overlook
factors such as the geometry of the dataset or the choice of the reference point
can degrade the runtime of the approximation algorithm up to two orders of
magnitude, even though their observed impact on the exact methods was mini-
mal. Although our test data was not explicitly designed to create hard cases for
BFA, we observed their frequent occurrence, indicating that its runtime, while
still much faster than those of exact algorithms, could be nevertheless unexpect-
edly high in ill-conditioned cases. By outlining the relation between the runtime
of BFA and the behaviour of the underlying Monte Carlo sampling scheme, we
highlight easy to overlook factors that need to be considered before employing
the algorithm in practice. Taking these points into account, hypervolume ap-
proximation has a great potential for opening up previously intractable problem
domains for optimization and research.

Acknowledgement. We thank Tobias Friedrich for his encouragement and
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