
Travelling Salesman Problem Solved ‘in materio’
by Evolved Carbon Nanotube Device

Kester Dean Clegg1, Julian Francis Miller1, Kieran Massey2, and Mike Petty2

1 The University of York, UK
{kester.clegg,julian.miller}@york.ac.uk

2 Durham University, UK
{m.k.massey,m.c.petty}@durham.ac.uk

Abstract. We report for the first time on finding shortest path solutions for the
travelling salesman problem (TSP) using hybrid “in materio” computation: a
technique that uses search algorithms to configure materials for computation.
A single-walled carbon nanotube (SWCNT) / polymer composite material de-
posited on a micro-electrode array is configured using static voltages so that volt-
age output readings determine the path order in which to visit cities in a TSP. Our
initial results suggest that the hybrid computation with the SWCNT material is
able to solve small instances of the TSP as efficiently as a comparable evolution-
ary search algorithm performing the same computation in software. Interestingly
the results indicate that the hybrid system’s search performance on TSPs scales
linearly rather than exponentially on these smaller instances. This exploratory
work represents the first step towards building SWCNT-based electrode arrays in
parallel so that they can solve much larger problems.

1 Introduction

As material variability starts to limit the design of modern silicon-based processors
[1,2], the NASCENCE project [3] has started investigating how nano-scale materials
and devices that could be configured for computation [4]. While engineering for com-
putation at such small scales remains extremely difficult, it is possible to use a method
of automatically configuring materials so that they can perform a dedicated task [5].
In this paper, we illustrate a method to achieve this using a single-walled carbon nan-
otube (SWCNT) material configured by applying static voltages to specific locations on
a micro-electrode array. The remaining electrodes act as inputs to the computation, in
this case a small instance of the Travelling Salesman Problem (TSP). The hybrid system
successfully finds the shortest path in many cases and its search performance is on a par
to a comparable (optimised) evolutionary algorithm implemented in software. We be-
lieve this work represents the first time a benchmark search problem has been solved by
a machine configured material and could pave the way toward designing novel compu-
tational materials: resulting in small, single purpose devices that are stable, low voltage
and yet able to compute answers to challenging tasks.

Previous work in computer controlled configuration of physical systems for compu-
tation has had limited success [6,7,8]; results were sometimes unstable [9,10], able to
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Fig. 1. Overview of hybrid computation with ‘in materio’ configuration performed by evolution-
ary search. The computer configures the application of physical signals to a material and tests
the output. A genotype of configuration instructions is subject to evolutionary mutation. Physical
output from the materials acts as computational input to the selection process. The configura-
tion loop stops when the computational inputs have found a solution or no more improvement is
required or possible.

carry out only low level processing tasks [6,11] or performed no better than exhaus-
tive search [12,13]. Most work done on configuring materials to carry out computation
has used search-based algorithms to exploit physical characteristics within the material
without much concern as to how those characteristics could be formally understood or
engineered [14,15]. An overview of the hybrid approach to materials-based computa-
tion is shown in Figure 1.

2 Hardware and Material Description

The NASCENCE consortium [3] is investigating candidate materials and techniques
that could be employed to configure materials for computation. The project is looking at
SWCNT held in fixed, gel and liquid mediums (such as liquid crystal). In this paper we
report results using a fixed material system (supplied by Durham University) prepared
on gold micro-electrode arrays with contacts arranged in either a 3x4 or a 4x4 grid.
The early prototype 3x4 grid array has pads that are 40µm diameter with a pitch of
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Fig. 2. Top left: shows the CNT dispersal over an earlier prototype 3x4 grid electrodes (x200
mag). Note unevenness of material over electrodes and the mask fault on the third electrode does
not appear to affect the evolutionary search when finding the shortest path of the TSP (the evolu-
tionary history is shown by the best performing genotype for each generation, bottom right). In
this final configuration, voltages are applied to the circled electrodes and the remaining electrodes
provide the floating point values into the TSP. Top right: recorded voltages which when sorted
determine the path order to visit cities. Bottom left: Optimum path solution of the TSP.

100µm, leaving an electrode separation of approximately 60µm, while the later 4x4
grid has a spacing of 50µm pads and separation. The material is composed of 0.10% (by
weight) of single-walled carbon nanotubes (purchased from Carbon Nanotechnologies
Inc. Houston, TX, USA) mixed with poly-methyl methacrylate (PMMA, Aldrich Mw
= 93,000) and dissolved in Anisole (VWR, analytical reagent grade). Approximately
20µL of material is dispensed on the electrode array which is then dried at 100◦C for
30mins to leave a “thick film”. The density of SWCNTs within the PMMA is quite
variable, as is the accuracy of the mask to create the electrodes (see top left panel,
Figure 2), however these inconsistencies in the substrate do not appear to present a
problem to evolutionary search.

The 4x4 electrode array is connected a 16x16 analogue cross point switch which
controls connections from the substrate to a data acquisition (DAQ) card, enabling us
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to place configuration voltages anywhere within the array. The DAQ card first digitally
configures the switch connections and then inputs analogue configuration voltages to
the material and records the corresponding analogue outputs. The number of configu-
ration voltages deployed depends on the problem being tackled and the availability of
spare electrodes on the array. The configuration voltages and electrodes to which they
connect are decided by a 1+4 evolutionary algorithm (see method). The range is re-
stricted to ±3V and all connections are one to one (i.e. one configuration voltage can
only go to one electrode). We apply the voltages for 1s and take mean values of the final
0.2s to minimize any noise or “settling periods” within the material. The time required
to configure the analogue switch and set up channels on the DAQ card means that test-
ing a configuration takes several seconds. While this is relatively “slow” to perform a
computation, signals from the SWCNT-PMMA materials have negligible noise levels
after the initial 50ms and our sampling times could be substantially reduced.

3 Problem and Method

The TSP was selected as our computational task as the problem belongs to a class of
computationally hard problems known as NP-complete, it has been extensively studied
[16] and there exist excellent free solvers against which we can check our solutions1. In
terms of the search, the total number of paths within a given TSP increases factorially
with the number of cities to visit, making it an excellent problem to see whether a solver
can scale to larger problems.

A circular layout of cities has an easily identifiable shortest path. For symmetric
TSPs, the minimum number of shortest paths is equal to double the number of cities,
as a path can start at any city and go in either direction along the shortest path. Thus
a circular 9 city TSP has 18 shortest paths, while an irregular 9 city layout may have
more. A path can be expressed as a permutation, therefore the total number of paths for
a given TSP is given by the factorial of the number of cities:

9 city = 9! = 362,880
10 city = 10! = 3,628,800
11 city = 11! = 39,916,800

Our representation maps the path visiting each city to a sorted vector of floating point
numbers (the voltage outputs from the substrate, see below). The computational aim is
to get the evolutionary algorithm to select the connections and configure the material
with voltages so that it outputs a vector that represents the shortest path in the TSP (see
bottom left of Figure 2). The sorted vector, or ‘smallest position value’ representation
[17], can be readily applied to many other well-known computational problems such as
classification tasks [18].

Currently, when we tackle a 10 city TSP with a 4x4 electrode array, we can in theory
use the remaining 6 voltages to configure the SWCNT-PMMA material. In practice we
are limited to a maximum of 4 analogue outputs from our current DAQ card and the
results presented here reflect this limitation. However, we are having bespoke hardware

1 http://www.math.uwaterloo.ca/tsp/concorde/

http://www.math.uwaterloo.ca/tsp/concorde/
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built for the NASCENCE consortium [3] that will allow many more analogue inputs
and outputs to connect to the electrode arrays and permit us to look at a broader range
of problems.

For example, using our current electrode array and DAQ card to configure the SWCNT-
PMMA material on a 12 city TSP, we can use between 2–4 configuration voltages to con-
figure the substrate and use the remaining electrodes of the array to provide the 12 input
values to the problem. The input vector of values (1.a below — note just a few values are
shown for clarity) is converted to a path by using the original indices after sorting (1.b);
the sorted indices then become the order in which to visit the cities (see also bottom left
Figure 2). In the following example city 6 would be visited first, then 2, then 4 and so on:

1. a) 1.892 0.321 2.064 0.984 1.664 0.056 2.391 2.907
1 2 3 4 5 6 7 8

1. b) 0.056 0.321 0.984 1.664 1.892 2.064 2.391 2.907
6 2 4 5 1 3 7 8

The use of a 16x16 cross point switch permits an evolutionary algorithm to select
which electrodes in the array will be used for the configuration voltages and which are
to be used as inputs to the TSP. This selection allows the search algorithm to exploit
the physical resources available to different electrodes (this can be important, note the
variable SWCNT dispersion shown top left of Figure 2). After the path order to visit
cities is determined, the path length is calculated and this represents the evolutionary
fitness for that configuration.

The evolutionary algorithm uses a 1+4 schema, where the best is kept and 4 copies
are mutated for each generation. If a mutant scores an equivalent fitness to the previ-
ous best it is selected to form the subsequent generation so that the search continues to
‘move on’ despite not increasing solution fitness. The schema was chosen for its sim-
plicity rather than its efficiency [19,20,21]. We impose a limit of 1500 generations on
the search, as a run that fails to find the shortest path within this will have taken approx-
imately 14 hours to complete. However, failure to solve these smaller instances of the
TSP using the SWCNT-PMMA material is relatively rare (although the failure rate has
been observed to increase on larger problems with fewer configurations); so allowing
the search to continue beyond 1500 generations seems unlikely to impact the average
number of generations to find the shortest path.

4 Results

To the best of our knowledge, this work represents the first time the TSP has been
solved using search algorithms to configure a material for computation. Knowing the
exact size of the solution space for small instances of TSP allows us to calculate the
proportion of samples taken from the total solution space that were required to find
the shortest path. By comparing the number of samples taken from the total solution
space to the number taken by doing the same computation entirely in software, we get
an insight into whether performing the computation via the SWCNT-PMMA material
has any advantages over doing the same task entirely in software. In order to do this,
we wanted to chose an evolutionary algorithm that could be meaningfully compared to
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Fig. 3. The two evolutionary search algorithms are not exact correlates. The LHS represents the
CGP evolved network of nodes and mathematical operators. In this schema, the inputs C1..n to
the network are constants initially chosen at random but which do not change. The remaining
connections and operators within each node are open to mutation, including those nodes selected
as connecting to the inputs I1..n to the TSP. The RHS shows the SWCNT-PMMA material over
an early 4x3 electrode. In this case the evolutionary algorithm is able to select which electrodes
serve as inputs to the TSP and which will take the configuration voltages V1..n (note that in
contrast to CGP, the input voltages are subject to evolutionary selection).

our hybrid material-based computation. Although we have no current means to analyse
what electrical networks or properties are created within the SWCNT-PMMA material
during its configuration, we can treat it as a ‘black box’ which takes certain inputs and
transforms them into our desired outputs.

Cartesian Genetic Programming (CGP [22]) is a technique that creates a similar
‘black box’ of up to a 1000 networked nodes, within which mathematical and arith-
metic operators transform inputs before passing on the values to other nodes or outputs
[23]. The evolutionary mutation of the genotypes that describe the CGP network has
parallels with our evolutionary mutation of the voltages and switch connections that af-
fect the SWCNT-PMMA material’s configuration. We show a schematic comparison of
the two methods in Figure 3. As CGP is known to be an efficient technique at solving
well known benchmark problems [24] one would not normally expect a 1+4 evolution-
ary schema in software to outperform a similar schema in CGP. We encoded the same
TSP instances to be solved by CGP and compared its performance against the SWCNT–
PMMA material. It should be noted that as CGP running in software runs many times
quicker than the hybrid SWCNT-PMMA system, it was possible to experiment with the
CGP parameters to optimise its performance on the problem. Indeed, we discovered
that we could improve the average number of generations to find the shortest path for
CGP by a factor of ten or more. Time constraints meant this sort of experimentation
was impossible for the SWCNT-PMMA material.

Since Thompson’s work it has been known that evolutionary algorithms with access
to physical resources can make use of them in ways that are difficult to analyse or
even predict [25]. Even so we were not expecting that instances of the TSP would be
solved almost as efficiently (in terms of sampling the solution space) and reliably (in
terms of successful runs) by the hybrid system using the SWCNT-PMMA material as an
optimised encoding of CGP. While it is difficult to draw exact comparisons between the
methods, both Table 1 and Figure 4 show that increasing the number of configuration
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Table 1. Results for an optimised version of CGP and the hybrid evolutionary system with
SWCNT-PMMA material for different instances of the TSP. Note proximity in the median num-
ber of generations of highlighted instances despite a decrease in the average number of samples
from the solution space by a factor of almost ten.

Computation type Size of 
TSP 

No. of 
configuration 

voltages 

Average no. of 
generations for 
successful runs 

Median no. of 
generations 

Average % 
sample of 

solution space 

SWCNT-PMMA 
substrate  

9 2 158.6 104.5 0.1751 
9 3 57.36 42.5 0.0741 
9 4 118.4 61.5 0.1308 
10 2 157.95 155 0.0174 
10 3 79.76 63.5 0.0086 
10 4 68.03 46.5 0.0075 
11 2    
11 3    
11 4 170.7 92 0.0017 

Software (CGP  
encording) 

9 n/a 34.04 29.5 0.4599 
10 n/a 48.96 40.5 0.0643 
11 n/a 91.96 65.5 0.0065 

voltages exposed to evolutionary selection seems to improve search performance up
to point, beyond which the performance starts to degrade again. We do not yet have a
hypothesis as to why this is as it is impossible to know what physical characteristics
in the material that the search algorithm is exploiting. However, the results hold true
across different SWCNT-PMMA materials (i.e. changing the percentage of CNT within
the PMMA) and across different city layouts for the TSP instances (e.g. random and
irregular geometric arrangements).

Some instability observed in the population’s fitness scores during the evolutionary
runs for TSPs with 2 configuration voltages (first column in Figure 4) led us to suspect
that increasing the number of configuration voltages on larger instances would lead
to better performance. While we observed almost identical levels of performance for
10 city with 4 configuration voltages as for 9 city with 3, we are unable to verify the
performance of the hybrid system on an 11 city TSP beyond 4 configuration voltages as
this is the maximum number of analogue outputs that our current equipment supports.
It may be the case that there is a “sweet spot” for optimal performance based on the
proportion of configuration voltages to the number of cities in the TSP instance, which
from our (limited) initial results might be somewhere between a third and a half (e.g.
12 city might need around 5).

The instability during some evolutionary runs is caused by voltages that are recorded
as floating point numbers in the sorting vector converging to nearly identical values.
Noise (in the µV range) can then cause a radical difference to the permutation that
determines which order the cities are visited. This re-ordering of vector values can mean
that a search run which had reached a plateau representing a local fitness optima can
escape and go on to find the global optimum. We suspect this “feature” of the hardware
may be one factor that helps the SWCNT-PMMA materials outperform CGP in one
case, although we are aware this argument is contrary to results for the 9 city TSP with
3 and 10 city with 4 configuration voltages as in these instances there is almost no
instability recorded during the evolutionary runs and there may well be more important
factors.
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3 config 10 city TSP. Median no. of generations: 63.5
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Fig. 4. The plots show the evolutionary histories of 30 runs of 9, 10 and 11 TSP instances using
the same SWCNT-PMMA material over 1500 generations. There appears to be a “sweet spot”
for the number of configurations voltages for optimal search performance that may increase as
the number of cities increases. Unfortunately we cannot confirm this as our current hardware is
limited to a maximum of 4 configuration voltages. Note how the material struggles with insuf-
ficient configuration voltages; those runs using 2 configuration voltages all show instability and
occasional failure to find the shortest path. The median number of generations to find the shortest
path is given as some runs have outliers.

Another intriguing finding is that despite the factorial increase in solution space be-
tween 9, 10 and 11 city TSPs, the average number of generations for the SWCNT-
PMMA material to find the shortest path remains almost constant in the best cases. This
might suggests that the performance of the hybrid system with the SWCNT-PMMA
material could have a linear time complexity (rather than exponential) on NP complete
problems such as the TSP. However until we are able to build and test larger SWCNT-
PMMA electrode arrays, we are cannot confirm that this is the case and can only say
that the potential for the hybrid SWCNT-PMMA system to solve large instances of the
TSP efficiently appears promising.
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5 Conclusion

Currently our 16 electrode array and low number of analogue outputs restrict the max-
imum size of TSP we can tackle. However, our most recent experiments suggest it is
possible to split the genome of TSP configuration so that the problem is effectively
halved. This allows us to sequentially process much larger TSP instances using the
same array. While this appears to work, the evolutionary runs are more than doubled
in duration making it difficult to acquire meaningful performance data. However, as a
proof of concept it lays the way towards trying to tackle scalability by making two 4x4
arrays and using them to solve a single larger instance of the TSP. Such an approach
would demonstrate parallel computation that could massively speed up search times, as
all inputs to the problem are read simultaneously. While we are at an early stage in this
research, we believe that it may be possible in the future to configure many thousands of
small SWCNT-based electrode arrays to perform a computation in the way we currently
manufacture and program millions of logic gates in silicon.
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