
PaDe: A Parallel Algorithm Based on the

MOEA/D Framework and the Island Model

Andrea Mambrini1,� and Dario Izzo2

1 University of Birmingham, Birmingham, UK
2 European Space Agency, Noordwijk, The Netherlands

Abstract. We study a coarse grained parallelization scheme (thread
based) aimed at solving complex multi-objective problems by means of
decomposition. Our scheme is loosely based on the MOEA/D framework.
The resulting algorithm, called Parallel Decomposition (PaDe), makes
use of the asynchronous generalized island model to solve the various de-
composed problems. Efficient exchange of chromosomic material among
islands happens via a fixed migration topology defined by the proximity
of the decomposed problem weights. Each decomposed problem is solved
using a generic single objective evolutionary algorithm (in this paper we
experiment with self-adaptive differential evolution (jDE)). Comparing
our algorithm to MOEA/D-DE we find that it is attractive in terms of
performances and, most of all, in terms of computing time. Experiments
with increasing numbers of threads show that PaDe scales well, being
able to fully exploit the number of underlying available cores.

1 Introduction

In many real-world decision problems several conflicting criteria need to be op-
timized at the same time. Those problems can be modelled as Multi-objective
Optimization Problems (MOPs). A MOP is defined as follow:

Minimize F (x) = (f1(x), . . . , fo(x))
subject to x ∈ Ω

where Ω is the decision space, F (x) : Ω → R
o consists in o objective functions,

R
o being the objective space. In continuous problems Ω ⊂ R

s and s is defined as
the problem size.

Being u = (u1, . . . , uo) and v = (v1, . . . , vo) two objective vectors in Ω, we say
that u dominates v if ui ≤ vi for i = 1, . . . , o and the strict inequality sign holds
for at least one objective. A point x∗ ∈ Ω is called Pareto Optimal if there isn’t
any x ∈ Ω such that F (x) dominates F (x∗). The set of all pareto optimal points
in Ω is called Pareto Set and the set of the associated objectives is called Pareto
Front. The aim of a multi-objective optimisation algorithm is to find a well spread
set of points in the Pareto Set, or as close as possible to the Pareto Set.

� Andrea Mambrini has been partially supported by EPSRC through grant no.
EP/I010297/1.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 711–720, 2014.
c© Springer International Publishing Switzerland 2014



712 A. Mambrini and D. Izzo

Traditionally, multi-objective evolutionary algorithms (MOEAs) are
dominance-based. In dominance-based algorithms, individuals are selected using
the Pareto dominance notion and some auxiliary criteria aimed at maintaining a
good distribution along the same non-dominated front. Examples of dominance-
based MOEAs are NSGA-2 [1] and SPEA-2 [2]. Decomposition is another way
to solve a MOP. MOEA/D [3] decomposed the original multi-objective problem
into many single objective problems constructed in a way that the optimal so-
lution to each of these subproblems is a point on the optimal Pareto Front of
the original MOP. It then uses a single-objective optimization algorithm to solve
concurrently the subproblems and returns as Pareto Set the union of the optimal
solution to each single objective subproblem.

There are two main components of a MOEA/D. The first one is the mech-
anism to decompose the MOP into subproblems. Traditionally weight vectors
are randomly generated and from each of them a single objective problem is
obtained using weighted sum [4], Tchebycheff [4] or Boundary Intersection [5].
Some recent work propose a way to adapt the weight vectors throughout the
run [6]. The second important component is the way to solve the single ob-
jective problems obtained from the decomposition. The original approach uses
point crossover and standard mutation [3], while other approaches use different
operators, e.g. from Differential Evolutions [7] or Particle Swarm Optimization
[8]. As the decomposed problems are solved concurrently, it is natural to con-
sider parallel implementations of a MOEA/D algorithm. In recent work [9] [10] a
thread-based parallelization of MOEA/D-DE has been proposed. The approach,
a fine-grained scheme, is that of parallelizing the original MOEA/D-DE algo-
rithm by dividing the main population loop in different threads. In order for
this fine-grained approach to balance the work load across threads, the number
of threads must be kept small in comparison to the population size and the
objective function evaluation must account for most of the computing time.

In this paper we introduce a new algorithm called Parallel Decomposition
(PaDe) using a different approach to parallelize a MOEA/D algorithm. The
idea is to solve each subproblem in a separate logical computational unit and
to then use the island model [11] paradigm to introduce exchange of solutions
across problems. In an island model, several subpopulations (islands) are evolved
independently. Selected individuals are then sent to other islands during a pro-
cess calledmigration. Island models are well suited for parallelization since group
of islands can run in parallel on different computational units. Traditionally in
an island model each island runs the same algorithm and solves the same prob-
lem. PaDe uses instead a generalised (or heterogeneous) island model where
each island solves a different problem and can run a different optimisation algo-
rithm [12]. A recent theoretical work studied how heterogeneous island models
can find approximate solutions to NP-Hard problems [13]. Compared to fine-
grained parallelization approaches the asynchronous island model at the core of
PaDe, is suitable for modern multi-cores architectures as well as for heteroge-
neous parallel architecture (e.g. grid computing). Moreover the modularity of
this approach allow to employ any single objective solver or even run different



PaDe: A Parallel Algorithm Based on the MOEA/D Framework 713

ones on each island, thus assigning different areas of the Pareto Front to different
algorithms.

We made a C++ implementation of PaDe available as part of the open source
scientific library PaGMO [14], and its python front-end PyGMO [15].

Firstly we compare PaDe (with a self-adaptive version of Differential Evolu-
ton) to the MOEA/D-DE algorithm [7]. We will show that the two approaches
get similar pareto front’s quality. We then investigate the parallel performances
of PaDe showing how increasing the number of threads up to the population size,
PaDe is able, unlike fine grained approach proposed elsewhere [9] [10], to fully
take advantage of the underlying cores (linear speedup) even when the objective
function has small computational cost.

2 Algorithm Definition

PaDe is a multi-objective evolutionary framework based on decomposition and
parallelized using the island model. It first generates m weight vectors of dimen-
sion o (being o the number of objectives of the original multi-objective problem)
using a weight vector generation method W . The o components of the weight
vector must sum to 1, thus the vector must lie on the standard (o− 1)-simplex.
The weight vectors can be generated using one of the following methods:

– GRID : the weights are generated to optimally maximize their spread as
described in [3]. Using this method it is not possible to generate any amount
of weight vectors. In fact, for any fixed H ∈ N this method can generate
m =

(
o−1

H+o−1

)
, where o is the dimension of the weight vectors.

– RANDOM : differently from GRID it can generate any amount of vectors. It
generates each weight vector sampling uniformly at random between 0 and 1
each component. In order to enforce that the sum of all the components of a
weight vector is equal to 1, each vector is projected to the o-dimensional stan-
dard simplex. This method cannot guarantee the optimality of the spread as
the previous method.

– LOW-DISCREPANCY : a novel method to generate any amount of weight
vectors with a good spread. An Halton sequence [16] of m points of size o is
generated. As in the RANDOM method it is then projected to the standard
(o − 1)-simplex. This method is a good compromise between the maximum
spread guaranteed by the GRID method, and the freedom to generate any
amount of vectors guaranteed by RANDOM. We introduced this method as
in our island model it is often useful to increase/decrease the population sizes
adaptively, which would be not allowed by the standard weight generation
method GRID.

After generating the weight vectors, PaDe decomposes the originalmulti-objective
problem intom single objective problems Pi using one decomposition method be-
tweenWeighted, Tchebycheff and Boundary Intersection, obtaining each problem
from a weight vector wi. It then assigns each subproblem to an island defined by
a single-objective solver S and a population of size T + 1. The evolution of the



714 A. Mambrini and D. Izzo

islands is executed by n threads, each one taking care of evolving m/n islands.
In order to fully take advantage of the parallelism, n should be set at least as the
number of available computational nodes, so that each core will execute at least
one thread. Each island i, associated with the weight vector wi, is connected to
the T islands whose weight vectors are the closest to wi according to the Euclid-
ian distance: this way migration will exchange solutions between islands solving
similar problems.

Then the following is repeated for GP (PaDe’s number of generations) times:
each island is evolved using the single objective solver S for GS generations
(solver’s number of generations) and, at the end of the evolution, the worst T
individuals of each island are replaced from the best individuals from each of the
T neighbouring islands (migration). Eventually the union of the best individuals
from each island is returned as final population. Algorithm 1 provides an high
level pseudo-code description of PaDe.

Algorithm 1. PaDe (Decomposition method D, single-objective solver S,
weight generation method W , number of threads n)

Generate m weight vectors w1, . . . , wm using W
For each wi find the set Ni containing the T indices of the Euclidian closest weights

Generate m problems Pi using weights wi and decomposition method D
Create m random populations Pi of dimension T + 1
Assign each population Pi to a decomposed problem Pj

for k = 0 to GP do
Set s = 1
while s < (m + n) do

for i = s to min(s + n,m) in parallel do
Migrate solutions from Pj , j ∈ Ni

Evolve Pi using S for GS generations
s = s + n

In its current implementation PaDe needs a reference point z∗ to be defined
upfront and kept fixed throughout the entire run. Such a point could also be de-
fined as the ideal point of the population and updated adaptively during the run,
similarly to what done in MOEA/D-DE. In the implementation here discussed
this is not done, and z∗ is defined as the origin of the axis, which is appropriate
as we experiment with DTLZ and ZDT problems. The online update of the z∗

point is indeed an area of improvement for PaDE and it is a delicate issue as
it must be implemented as to not break the island asynchronicity, while still
providing an effective adaptation mechanism for z∗.

2.1 Comparison to a Traditional MOEA/D Implementation

PaDe has several advantages compared to a traditional MOEA/D implementa-
tion: the main one being its simple and effective parallelization. In fact, MOEA/D
is a steady state algorithm as each individual must be evaluated in sequence.
This limit the possibility to solve the subproblems in parallel as it requires syn-
chronization between the nodes and communication at each generation. A simple



PaDe: A Parallel Algorithm Based on the MOEA/D Framework 715

transformation of MOEA/D-DE into a generational variant, on the other hand,
simply degrades too much performances. In PaDe we use asynchronous migration
to help each problem with solutions from the neighbours. This approach is eas-
ier to parallelize since each problem is independently solved by every island and
communication between islands doesn’t need to apply at each generation, while
the original performances are kept.

Moreover the island model used by PaDe is asynchronous. That means that
each island migrates when it is ready, without waiting for other islands, and each
island can receive immigrants at any moment. This and the fact that communi-
cation doesn’t need to happen at every generation, is particularly helpful when
PaDe is deployed on an heterogeneous parallel architecture mixing slow and fast
nodes, as for example a grid, where its performances, though, would be affected
and need to be evaluated.

The main disadvantage of PaDE is in the overhead caused by the internal
island model, and by the population based evolutionary algorithm used on each
subproblem, an overhead that is only justified when the decomposed problems
are hard, and thus the deployment of generic, state of the art, single objective
evolutionary algorithm on the decomposed problems is justified.

Finally PaDe is a flexible and modular algorithm: the decomposition and the
optimization of each single-objective subproblem are two phases that can be
designed independently. In our implementation [14] we propose a novel method
for the former (LOW-DISCREPANCY, see Section 2), while for the latter we
provide many well known single objective solvers (Covariance Matrix Adaptation
Evolutionary Startegy, Differential Evolution, PSO, Harmony Search, . . . ).

3 Experiments

The aim of the experiments is to investigate the parallel scalability of PaDe and
whether this appraoch is competitive with other common MOEA/D implemen-
tations from a quality of the final Pareto Front point of view. First, we compare
PaDe (using a self-adaptive version of Differential Evolution as a solver) with
the MOEA/D-DE algorithm [7]. The implementations we used for both the algo-
rithms, are available as part of the open source scientific library PaGMO [14]. We
then investigate the parallel performances of PaDe showing how increasing the
number of threads up to the population size PaDe is able to fully take advantage
of the underlying cores.

3.1 Performance Measures

We have considered the following performance measures

– p-distance: measures the average distance between points on a non domi-
nated front and the optimal Pareto Front [17]. The indicator can only be
defined for ZDT and DTLZ problems and is zero if the non dominated front
belongs to the Pareto Front. A smaller p-distance is better. A zero p-distance
means that all points are on the Pareto Front.



716 A. Mambrini and D. Izzo

– Hypervolume: the hypervolume of the Pareto Front calculated according to
a reference point shared between both the algorithms and all the runs for
the same benchmark problem. The reference point is chosen as the largest
point to box all the final non dominated fronts, or equivalently as the nadir
point of the union of the populations of all the runs and all the algorithms
for the same benchmark problem. Since the reference point is different for
each problem we report the hypervolumes normalized as follow h̃i = (hi −
min(h1, h2))/max(h1, h2), where h1 and h2 are the hypervolume for PaDe
and MOEA/D-DE respectively. When the normalized hypervolume is zero,
it indicates that the algorithm achieved the smallest hypervolume. To know
how much smaller, one has to read the normalized hypervolume of the other
algorithm. Small values will indicate, essentially, that the same quality has
been achieved.

– Fitness Evaluations this is simply the number of calls to the fitness functions
throughout one run. In PaDe the number of fitness evaluations cannot be
fixed in advance as the inner algorithm S may have multiple termination
conditions (as jDE has). For a fair comparison GP has been set to get,in
almost all cases, a similar number of fitness evaluations between PaDe and
MOEA/D-DE.

– cpu-time for both the parallel and the sequential experiments this is the
wall-clock time for the algorithm to stop after evaluating the given number
of generations.

3.2 Sequential Experiments

PaDe running on a single thread has been tested against MOEA/D-DE on the
following continuous multi-objective benchmark problems ZDT1, ZDT2, ZDT3,
ZDT4, ZDT6 (problem size equal to 30), and for the 3-objectives, 4-objectives
and 5-objectives version of DTLZ1, DTLZ2, DTLZ3, DTLZ4, DTLZ5, DTLZ6,
DTLZ7 (problem size equals to 30). For both the algorithms the decomposition
method is Tchebycheff, and weight vectors are generated using GRID (see Sec-
tion 2). The population size has been set to 100 for the 2-objectives problems,
105 for the 3-objectives ones, 120 for the 4-objectives ones and 126 for the 5-
objectives one to accommodate the limitation imposed by the grid method (see
Section 2). The number of neighbours is set to T=15.

PaDe runs for GP = 20 generations on n = 1 threads, the solver S used is a
self-adaptive differential evolution jDE [18] running for GS = 100 generations.
The best/1/exp variant is used. MOEA/D-DE uses a crossover probability equal
to 1, it uses both the diversity preserving mechanism described in [7] and it runs
for GD = 32000 generation. This has been chosen to have a comparable number
of generations between PaDe and MOEA/D. In fact PaDe needs to run the solver
on m populations of size T + 1. That means that approximately, the number of
fitness evaluations required by PaDe is GP ·m · (T +1) ·GS , while MOEA/D-DE
will perform approximatelym·GD fitness evaluations. We run the two algorithms
30 times on each problem. We report the median of the measures presented in
Section 3.1 on Table 1.



PaDe: A Parallel Algorithm Based on the MOEA/D Framework 717

Fig. 1. Comparison between the Pareto Fronts found by MOEA/D-DE (first row) and
PaDe (second row) on the 3-objective problems in which PaDe gets a worse p-distance
than MOEA/D-DE [DTLZ4,5,6,7 respectively in 1st, 2nd, 3rd and 4th column]

The two algorithms have comparable performances from a quality of the fronts
point of view. In Fig. 1 we show the Pareto Fronts for the problems in which
PaDe achieves higher p-distance than MOEA/D. Excluding DTLZ7 for which
MOEA/D-DE is much better, for the other problems the gap between MOEA/D-
DE and PaDe in term of p-distance is due to few point which don’t converge to
the optimal front rather than to the whole Pareto Front not converging. We sus-
pect this happens because MOEA/D-DE adapts the reference point throughout
the run, while PaDe fixes it to the origin. We don’t plot the Pareto Fronts for
the problems in which PaDe is better because they look very similar to the the
ones obtained by MOEA/D. From Table 1 we can also notice that the way we
set GS and GP is appropriate, since it leads to a comparable number of fitness
evaluations between MOEA/D and PaDe. Hypervolumes are still very similar
between the two methods, while in terms of cpu-time PaDe is faster even if it is
executed on a single thread.

3.3 Parallel Experiments

The scalability of PaDe has been tested running it on a 8-core machine with hy-
perthreading for increasing n (number of threads). Results for the ZDT, DTLZ-
3obj, DTLZ-4obj, DTLZ-5obj problems are summarized in Fig. 2. We define the
speedup as the ratio between the running time using an increasing number of
threads and the running time using just one thread. As all the problems tested
do not require to access neither memory nor other peripherals, hyperthreading
is not expected to help, thus the maximum theoretical speed-up achievable on
the tested architecture is sM = 8.

We see in Fig. 2 how increasing the number of threads up to the population
size PaDe is able to fully take advantage of the underlying cores and to get very
close to the linear speedup of 8 for most of the problems tested.



718 A. Mambrini and D. Izzo

T
a
b
le

1
.

S
eq

u
en

tia
l

ex
p

erim
en

ta
l

resu
lts.

In
g
rey

th
e

b
est

resu
lts

a
m

o
n

g
th

e
tw

o
a
lg

o
rith

m
s.

S
ee

S
ectio

n
3
.1

fo
r

a
d

escrip
tio

n
o
f

th
e

p
erfo

rm
a
n

ce
m

ea
su

res.
p

-d
ista

n
ce

n
o
rm

a
lized

h
y
p

erv
o
lu

m
e

cp
u

-tim
e

F
itn

ess
eva

lu
a
tio

n
s

P
ro

b
/
A

lg
P

a
D

e
M

O
E

A
/
D

-D
E

P
a
D

e
M

O
E

A
/
D

-D
E

P
a
D

e
M

O
E

A
/
D

-D
E

P
a
D

e
M

O
E

A
/
D

-D
E

Z
D

T
1

1
.5

6
e-0

6
2
.0

4
e-0

5
7
.6

9
e-0

6
0
.0

0
e+

0
0

5
.8

3
1
2
.3

4
3
1
5
1
3
2
0

3
2
0
0
0
0
0

Z
D

T
2

9
.7

7
e-0

7
9
.9

4
e-0

6
0
.0

0
e+

0
0

1
.7

7
e-0

5
5
.7

0
1
2
.3

1
3
1
5
0
4
8
0

3
2
0
0
0
0
0

Z
D

T
3

2
.2

6
e-0

1
2
.7

3
e-0

5
0
.0

0
e+

0
0

8
.6

5
e-0

5
5
.3

3
1
3
.0

1
2
5
2
3
2
4
0

3
2
0
0
0
0
0

Z
D

T
4

8
.8

9
e-0

9
8
.0

1
e-0

4
2
.0

1
e-0

4
0
.0

0
e+

0
0

1
5
.3

9
2
1
.9

5
2
9
6
7
3
6
0

3
2
0
0
0
0
0

Z
D

T
6

4
.1

5
e-0

1
2
.3

8
e-0

4
0
.0

0
e+

0
0

9
.8

9
e-0

5
6
.4

8
1
3
.4

3
2
8
0
1
2
0
0

3
2
0
0
0
0
0

D
T

L
Z

-3
o
b

j
1
.2

3
e-0

9
3
.7

7
e-0

3
0
.0

0
e+

0
0

1
.2

0
e-0

6
2
0
.4

2
3
0
.4

5
3
0
5
0
2
4
0

3
3
6
0
0
0
0

D
T

L
Z

2
-3

o
b

j
1
.3

8
e-1

1
3
.2

7
e-0

4
0
.0

0
e+

0
0

2
.0

2
e-0

5
1
1
.3

4
2
0
.3

8
2
9
7
6
9
2
0

3
3
6
0
0
0
0

D
T

L
Z

3
-3

o
b

j
5
.1

8
e-1

0
1
.4

2
e-0

3
0
.0

0
e+

0
0

2
.5

6
e-0

5
2
1
.0

8
3
2
.5

6
2
9
6
8
8
4
0

3
3
6
0
0
0
0

D
T

L
Z

4
-3

o
b

j
3
.0

0
e-0

1
8
.5

9
e-0

4
0
.0

0
e+

0
0

1
.2

2
e-0

5
1
2
.4

1
2
1
.9

5
2
9
5
2
0
0
0

3
3
6
0
0
0
0

D
T

L
Z

5
-3

o
b

j
7
.1

6
e-0

2
3
.5

3
e-0

5
0
.0

0
e+

0
0

4
.3

1
e-0

5
1
0
.3

7
2
0
.8

8
2
6
9
2
6
4
0

3
3
6
0
0
0
0

D
T

L
Z

6
-3

o
b

j
5
.3

9
e-0

1
6
.9

3
e-0

6
0
.0

0
e+

0
0

4
.3

7
e-0

4
2
0
.4

6
2
9
.8

9
3
3
4
1
9
2
0

3
3
6
0
0
0
0

D
T

L
Z

7
-3

o
b

j
4
.4

4
e-0

1
2
.2

9
e-0

4
0
.0

0
e+

0
0

5
.8

4
e-0

3
6
.2

9
2
0
.4

3
1
7
7
4
4
0
0

3
3
6
0
0
0
0

D
T

L
Z

1
-4

o
b

j
3
.6

8
e-1

0
2
.7

3
e-0

3
0
.0

0
e+

0
0

1
.8

9
e-0

5
2
3
.4

9
4
0
.4

9
3
5
1
8
0
8
0

3
8
4
0
0
0
0

D
T

L
Z

2
-4

o
b

j
3
.1

4
e-1

1
1
.4

3
e-0

4
0
.0

0
e+

0
0

9
.6

2
e-0

5
1
4
.6

0
3
0
.0

6
3
4
2
2
6
0
0

3
8
4
0
0
0
0

D
T

L
Z

3
-4

o
b

j
2
.9

9
e-1

0
8
.1

2
e-0

4
0
.0

0
e+

0
0

6
.1

6
e-0

5
2
6
.1

2
4
4
.6

3
3
4
1
1
4
8
0

3
8
4
0
0
0
0

D
T

L
Z

4
-4

o
b

j
6
.3

7
e-0

1
6
.7

1
e-0

4
0
.0

0
e+

0
0

2
.1

3
e-0

5
1
6
.6

1
3
1
.8

2
3
3
0
8
1
2
0

3
8
4
0
0
0
0

D
T

L
Z

5
-4

o
b

j
1
.1

9
e+

0
0

9
.0

7
e-0

1
0
.0

0
e+

0
0

1
.3

3
e-0

5
1
2
.8

2
3
3
.2

1
2
9
3
8
8
0
0

3
8
4
0
0
0
0

D
T

L
Z

6
-4

o
b

j
3
.6

2
e+

0
0

3
.1

3
e+

0
0

0
.0

0
e+

0
0

5
.2

6
e-0

4
2
5
.3

3
7
6
.1

2
3
8
1
1
0
4
0

3
8
4
0
0
0
0

D
T

L
Z

7
-4

o
b

j
1
.4

2
e+

0
0

8
.6

5
e-0

4
0
.0

0
e+

0
0

7
.7

4
e-0

3
8
.7

6
2
8
.4

7
2
4
2
1
6
8
0

3
8
4
0
0
0
0

D
T

L
Z

1
-5

o
b

j
2
.5

1
e-1

0
2
.2

0
e-0

3
0
.0

0
e+

0
0

2
.1

3
e-0

5
2
5
.0

6
4
6
.6

4
3
7
5
2
2
0
0

4
0
3
2
0
0
0

D
T

L
Z

2
-5

o
b

j
7
.2

9
e-1

3
4
.9

8
e-0

5
0
.0

0
e+

0
0

1
.0

7
e-0

4
1
7
.7

5
3
8
.2

0
3
6
9
1
2
4
0

4
0
3
2
0
0
0

D
T

L
Z

3
-5

o
b

j
1
.9

0
e-1

2
2
.2

2
e-0

3
0
.0

0
e+

0
0

5
.7

6
e-0

5
3
0
.1

0
5
3
.6

3
3
6
7
3
9
6
0

4
0
3
2
0
0
0

D
T

L
Z

4
-5

o
b

j
1
.0

6
e+

0
0

9
.1

3
e-0

5
0
.0

0
e+

0
0

1
.9

4
e-0

5
2
1
.2

5
4
1
.2

6
3
5
6
6
5
6
0

4
0
3
2
0
0
0

D
T

L
Z

5
-5

o
b

j
2
.2

0
e+

0
0

1
.8

4
e+

0
0

9
.6

6
e-0

4
0
.0

0
e+

0
0

1
4
.0

8
3
3
.5

4
2
8
0
2
1
2
0

4
0
3
2
0
0
0

D
T

L
Z

6
-5

o
b

j
6
.7

0
e+

0
0

6
.4

7
e+

0
0

0
.0

0
e+

0
0

1
.0

6
e-0

5
2
8
.7

8
7
5
.4

3
3
9
6
8
0
8
0

4
0
3
2
0
0
0

D
T

L
Z

7
-5

o
b

j
1
.4

6
e+

0
0

1
.4

2
e-0

3
0
.0

0
e+

0
0

5
.4

7
e-0

3
1
0
.0

4
3
5
.1

4
2
6
6
9
2
0
0

4
0
3
2
0
0
0



PaDe: A Parallel Algorithm Based on the MOEA/D Framework 719

Fig. 2. The number of threads used versus the speedup (ratio between the cpu-time
obtained with one thread and the cpu-time obtained with that amount of threads)

4 Conclusions

We have introduced a new multi-objective evolutionary approach, based on the
MOEA/D framework and on the island model. The new algorithm, called PaDe
is compared to MOEA/D-DE. Experiments show that PaDe can find good ap-
proximations to the Pareto Fronts on the tested problems in shorter time than
MOEA/D-DE even when deployed on one single CPU. When deployed on mul-
tiple CPU architectures, and, unlike fine-grained parallelization approaches for
MOEA/D-DE, PaDe is able to provide considerable (close to linear) speed ups
also with non CPU intensive fitness landscapes. Moreover the asynchronous is-
land model at the core of PaDe, make the algorithm suitable for modern multi-
cores architectures as well as for heterogeneous parallel architecture in which
slow nodes are mixed with fast ones (e.g. grid computing).

As future work PaDe should be tested on harder problems, where it could
perform better than MOEA/D from a quality of the Pareto Front point of view,
and a parallel-safe mechanism to adapt the reference point z∗ throughout the
run should be implemented to make PaDe competitive also for problems for
which setting z∗ to the origin is not a sensible choice.



720 A. Mambrini and D. Izzo

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6,
182–197 (2000)

2. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Proceedings of the EURO-
GEN 2001 Conference (2001)

3. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition. IEEE Trans. Evolutionary Computation 11(6), 712–731 (2007)

4. Miettinen, K.: Nonlinear Multiobjective Optimization. International series in op-
erations research & management science. Kluwer Academic Publishers (1999)

5. Das, I., Dennis, J.: Normal-boundary intersection: An alternate method for gener-
ating pareto optimal points in multicriteria optimization problems (1996)

6. Jiang, S., Cai, Z., Zhang, J., Ong, Y.S.: Multiobjective optimization by decompo-
sition with pareto-adaptive weight vectors. In: Seventh International Conference
on Natural Computation, ICNC 2011 (2011)

7. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 13(2), 284–302 (2009)

8. Al Moubayed, N., Petrovski, A., McCall, J.: A novel smart multi-objective particle
swarm optimisation using decomposition. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 1–10. Springer, Heidelberg (2010)

9. Nebro, A.J., Durillo, J.J.: A Study of the Parallelization of the Multi-Objective
Metaheuristic MOEA/D. In: Blum, C., Battiti, R. (eds.) LION 4. LNCS, vol. 6073,
pp. 303–317. Springer, Heidelberg (2010)

10. Durillo, J.J., Zhang, Q., Nebro, A.J., Alba, E.: Distribution of Computational
Effort in Parallel MOEA/D. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683,
pp. 488–502. Springer, Heidelberg (2011)

11. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time. Springer (2005)

12. Izzo, D., Ruciński, M., Biscani, F.: The generalized island model. In: Fernandez de
Vega, F., Hidalgo Pérez, J.I., Lanchares, J. (eds.) Parallel Architectures & Bioin-
spired Algorithms. SCI, vol. 415, pp. 151–170. Springer, Heidelberg (2012)

13. Mambrini, A., Sudholt, D., Yao, X.: Homogeneous and heterogeneous island models
for the set cover problem. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 11–20.
Springer, Heidelberg (2012)

14. PaGMO: Parallel Global Multiobjective Optimizer,
http://pagmo.sourceforge.net/pagmo/

15. PyGMO: Python Parallel Global Multiobjective Optimizer,
http://pagmo.sourceforge.net/pygmo/

16. Halton, J.H.: Algorithm 247: Radical-inverse quasi-random point sequence. Com-
mun. ACM 7(12), 701–702 (1964)

17. Märtens, M., Izzo, D.: The asynchronous island model and NSGA-II: study of a new
migration operator and its performance. In: Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation Conference, pp. 1173–1180.
ACM (2013)

18. Brest, J., Zumer, V., Maucec, M.S.: Self-adaptive differential evolution algorithm
in constrained real-parameter optimization. In: IEEE Congress on Evolutionary
Computation, CEC 2006, pp. 215–222. IEEE (2006)

http://pagmo.sourceforge.net/pagmo/
http://pagmo.sourceforge.net/pygmo/

	PaDe: A Parallel Algorithm Based on the
MOEA/D Framework and the Island Model

	1 Introduction
	2 Algorithm Definition
	2.1 Comparison to a Traditional MOEA/D Implementation

	3 Experiments
	3.1 Performance Measures
	3.2 Sequential Experiments
	3.3 Parallel Experiments

	4 Conclusions
	References




