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Abstract. Evolution-in-materio (EIM) is a method that uses artificial
evolution to exploit the properties of physical matter to solve computa-
tional problems without requiring a detailed understanding of such prop-
erties. EIM has so far been applied to very few computational problems.
We show that using a purpose-built hardware platform called Mecobo, it
is possible to evolve voltages and signals applied to physical materials to
solve machine learning classification problems. This is the first time that
EIM has been applied to such problems. We evaluate the approach on
two standard datasets: Lenses and Iris. Comparing our technique with
a well-known software-based evolutionary method indicates that EIM
performs reasonably well. We suggest that EIM offers a promising new
direction for evolutionary computation.

Keywords: Evolutionary algorithm, evolution-in-materio, material com-
putation, evolvable hardware, machine learning, classification problem.

1 Introduction

Natural evolution could be viewed as an algorithm which exploits the physical
properties of materials. Evolution-in-materio (EIM) aims to mimic the exploita-
tion of physical properties by natural evolution by manipulating physical systems
using computer controlled evolution (CCE) [6,10]. In particular, EIM aims to
exploit the properties of physical systems for solving computational problems.

Evolution-in-materio was first described by Miller and Downing [10]. The
concept was inspired by the work of Adrian Thompson who investigated whether
it was possible to evolve working electronic circuits using a silicon chip called a
Field Programmable Gate Array (FPGA). He evolved a digital circuit that could
discriminate between 1kHz or 10kHz signal [12]. When the evolved circuit was
analysed Thompson discovered that artificial evolution had exploited physical
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properties of the chip. To demonstrate that EIM was possible, Harding and
Miller attempted to replicate these findings using a liquid crystal display. They
found that computer-controlled evolution could utilize the physical properties of
liquid crystal to help solve a number of computational problems [4]:

– Two input logic gates: OR, AND, NOR, NAND, etc. [6].
– Tone Discriminator: A device was evolved which could differentiate different

frequencies [4].
– Robot Controller: A controller for a simulated robot with wall avoidance

behavior [5].

In this paper, we describe the use of a purpose built platform called Mecobo
that facilitates computer controlled evolution of a material (the hardware is
described in detail in [8]). The Mecobo platform has been developed within an
EU funded research project called NASCENCE [3]. The computational material
we have used in this investigation is a mixture of single-walled carbon nanotubes
and a polymer. Evolutionary computation has been widely used to solve machine
learning classification problems. Here, we show that using the Mecobo platform
it is possible to evolve solutions to two classification problems using materials. To
form a basic assessment of effectiveness of the technique we have compared our
results with a well-known software-based evolutionary computation technique
called Cartesian Genetic Programming (CGP) [9] on the same problems.

The organisation of the paper is as follows. In Sect. 2 we give a brief conceptual
overview of EIM. We describe the Mecobo EIM hardware platform in Sect. 3. The
preparation and composition of the physical computational material is described
in Sect. 4. Sect. 5 describes the machine learning classification problem. The
way we have used the Mecobo platform for classification problem is described in
Sect. 6. We describe our experiments and analysis of results in Sect. 7. Finally
we conclude and offer suggestions for further investigation in Sect. 8.

2 Conceptual Overview Of Evolution-In-Materio

EIM is a hybrid system involving both a physical material and a digital com-
puter. In the physical domain there is a material to which physical signals can
be applied or measured. These signals are either input signals, output signals
or configuration instructions. A computer controls the application of physical
inputs applied to the material, the reading of physical signals from the material
and the application to the material of other physical inputs known as physi-
cal configurations. A genotype of numerical data is held on the computer and
is transformed into configuration instructions. The genotypes are subject to an
evolutionary algorithm. Physical output signals are read from the material and
converted to output data in the computer. A fitness value is obtained from the
output data and supplied as a fitness of a genotype to the evolutionary algorithm
[11]. Figure 1 shows conceptual overview of EIM.

Miller and Downing noted that only certain materials may be suitable for EIM
and they gave some guidelines for choosing materials [10]. The material needs to
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Fig. 1. Concept of evolution-in-materio [11]

be reconfigurable, i.e., it should be able to be evolved over many configurations to
get the desired response. It is also important for a physical material to be able to
be “reset” in some way before applying new input signals to it, otherwise it might
preserve some memory of a past configuration and give fitness scores that are de-
pendent on the past. Preferably, the material should also be able to be physically
configured using small voltage and be manipulable at a molecular level.

3 Mecobo Hardware Platform

The hardware system we have used has three main components: a host com-
puter, the Mecobo platform and an electrode array. The Mecobo platform is
designed to interface a large variety of materials. The hardware allows the pos-
sibility to map inputs, outputs, configurations and signal properties in arbitrary
ways. The platform’s software components, i.e. the EA and the software stack,
are as important as the hardware. Mecobo includes a flexible software platform
including hardware drivers, support of multiple programming languages and the
possibility to connect to hardware over the internet. This makes Mecobo a highly
flexible platform for EIM experimentation [8].

Mecobo is built on PCBs with an FPGA as the main component. The digital
and analogue parts of Mecobo are implemented on separate PCBs. All the ana-
logue components are placed on a daughter board; such as crossbar switches and
analogue-digital converters. This has the advantage that it allows the redesign of
the analogue part of the system without changing the digital part of the moth-
erboard. A micro controller stands as a communication interface between the
FPGA and an external USB port.

At present the Mecobo hardware allows only two types of inputs to the mate-
rial. One is constant voltage (0V or 3.5V) and the other is a square wave signal.
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Fig. 2. Mecobo Hardware platform together with gold electrode array and material
sample

Different characteristics or input parameters associated with these inputs can be
chosen, these control the amplitude of an input, the square wave frequency, cycle
time (percentage of period square wave is 1), phase, and the start and stop times
of applied input. The start time and end time of each input signal determine how
long an input is applied. Mecobo only samples using digital voltage thresholds,
hence the material output is interpreted as strictly high or low, (i.e. 0 or 1). In
later versions of this hardware, analogue inputs and outputs will be possible.

In the case that an electrode is chosen to be read (see section 4), a user-defined
output sampling frequency determines the buffer size of output samples. If the
output frequency is Fout, start time T imestart and end time is T imeend, then
the buffer size is Bufsize is given by:

Bufsize = Fout(T imeend − T imestart)/1000 (1)

Where, T imestart and T imeend are measured in milliseconds. However, in
practice due to pin latency, the real buffer size is generally smaller.

4 Physical Computational Material

The experimental material consists of single-walled carbon nanotubes mixed
with polymethyl methacrylate (PMMA) and dissolved in anisole (methoxyben-
zene) 1. The sample is baked causing the anisole to evaporate. This results in
material which is mixture of carbon nanotube and PMMA. The concentration of
carbon nanotube is 0.71% (weight% fraction of PMMA). Carbon nanotubes are
conducting or semi-conducting and role of the PMMA is to introduce insulating
regions within the nanotube network, to create non-linear current versus voltage
characteristics. Another benefit of the polymer is to help with dispersion of the
nanotubes in solution. The preparation of experimental material is given below:

1 Mark K. Massey and Michael C. Petty prepared the materials used as substrates
and the electrode masks for our experiments.
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– A M3 sized nylon washer was glued on the electrode array to contain the
material whilst drying;

– 20 μL of material were dispensed into the washer;
– This was dried at ≈ 100o C for ≈1 h to leave a “thick film”.

The experimental material is placed in the middle of a plate of the electrode
array. Twelve gold electrodes are connected directly with the experimental ma-
terial in the plate. The electrode array is connected directly with the Mecobo
board via wires. The electrode sample is shown in Fig. 2.

5 Machine Learning: Classification Problems

Classification is an important class of problems in Machine learning. The objec-
tive is to correctly classify data instances. In this paper we have evaluated our
approach on two classification problems: Lenses and Iris. [2]. Both datasets have
four attributes which are classified into one of three classes. The Lenses dataset
consists of 24 instances with integer attributes. The attributes are categorical
in nature and take values either 1,2 or 1, 2, 3. We used the first 16 instances
as training data and the last 8 as testing data. The Iris dataset contains 150
instances with real-valued attributes. The first fifty instances are class 1, the
second fifty class two and third set of 50 are class 3. We divided the data set into
two groups (training and testing set) of 75 instances each. Each set contained
exactly 25 instances of each class.

6 Classifying Data Using Evolution-In-Materio

6.1 Methodology

The experiments were performed with an electrode array having 12 electrodes.
For both datasets, four electrodes have been used as inputs (i.e. they are at-
tribute related), 3 electrodes have been used as outputs (i.e. to define the class)
and the remaining 5 electrodes have been used for configuration voltages. Each
output electrode is associated with an output class. Each chromosome defined
which electrodes are either outputs, inputs (receive square waves) or receive the
configuration data (square waves or constant voltage). We accumulated sampled
output values in a buffer for 128 milliseconds using a 25KHz sampling frequency.

The fitness calculation in the evolutionary algorithm only used training data.
Once the evolutionary algorithm finished the configuration of electrodes having
the best fitness was subsequently tested with the test data to determine its
ability to predict correctly unseen data (the test set).

6.2 Genotype Representation

Each chromosome used ne = 12 electrodes at a time. Associated with each
electrode there were six genes which define which electrode was used, or charac-
teristics of the input applied to the electrode: signal type, amplitude, frequency,
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Table 1. Description of genotype

Gene Symbol Signal applied to, or read from Allowed values

ith electrode

pi Which electrode is used 0, 1, 2 . . . 11
si Type 0 (constant), 1 (square-wave)
ai Amplitude 0 , 1
fi Frequency 500 ,501 . . . 10K
phi Phase 1, 2 . . . 10
ci Cycle 0, 1, 2 . . . 100

phase, cycle (see Sect. 3). This means that each chromosome required a total of
72 genes. Mutational offspring were created from a parent genotype by mutating
a single gene (i.e., one gene of 72). The values that genes could take are shown
in Table 1, where i takes values 0, 1, . . . 11.
The genotype for a chromosome of an individual consists of the 72 genes shown
below:

p0s0a0f0ph0c0 . . . p11s11a11f11ph11c11

6.3 Input Mapping

The inputs to the electrode array (representing the data instances) were square
waves of a particular frequency. The frequency was determined by a linear map-
ping of attribute data. Denote the ith attribute in a dataset by Ii, where i takes
values 1, 2, 3, 4. Denote the maximum and minimum value taken by this attribute
in the whole data set by Iimax and Iimin respectively. Denote the maximum and
minimum allowed frequencies be denoted by Fmax and Fmin respectively. Then
the linear mapping given in Eqn. 2 allows the ith attribute of an instance Ii to
map to a square-wave frequency Fi which was applied to a given electrode. In
the experiments we chose Fmin = 500Hz and Fmax = 10000 Hz.

Fi = aiIi + bi (2)

where the constants ai and bi are found by setting Ii and Fi to their respective
maximum and minimum and solving for ai and bi.

ai = (Fmax − Fmin)/(Iimax − Iimin) (3)

bi = (FminIimax − FmaxIimin)/(Iimax − Iimin) (4)

6.4 Output Mapping

We determined the class that an instance belonged to, by examining the output
buffers which contain samples taken from the output electrodes. The current
Mecobo platform can only recognize binary values, so the output buffers contain
a binary string. We used the transitions from 0 to 1 in the output buffers to define
the class that an instance belonged to. For each output buffer, the positions of
transitions were recorded and the gaps between consecutive transitions were
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measured and an average calculated. A transition based fitness was used as it
is frequency related. Since instance data determine the frequencies of applied
signals, it seemed natural to use a method of reading output buffer bitstrings
that is itself frequency related. An example of average gap calculation for an
output electrode has been shown in Fig. 3.

Fig. 3. Example of average transition gap calculation for an output electrode

The output class was determined by the output buffer with largest average
transition gap. If two or more buffers had the same average gap then the class
was determined by the first such buffer encountered (starting at 1).

6.5 Fitness Score

The fitness calculation required counts to be made of the number of true positives
TP , true negatives TN , false positives, FP and false negatives, FN . For an
instance having a class c, according to the dataset, and a predicted class p, we
can calculate TP , TN , FP , and FN as shown in Eqn. 5.

if p = c then TP = TP + 1; TN = TN + 2

if p �= c then FP = FP + 1; FN = FN + 1; TN = TN + 1 (5)

The explanation of this is as follows. If the predicted p is correct, then it is
a true positive so TP should be incremented. It is also a true negative for the
other two classes, hence TN should be increased by two. If the predicted class
is incorrect, then it is a false positive for the class predicted, so FP should be
incremented. It is also a false negative for the actual class of the instance, so FN
should be incremented. Finally, the remaining class is a true negative, so TN
should be incremented. Once all instances have been classified we calculated the
fitness of a genotype using Eqn. 6 [1].

fitness =
TP.TN

(TP + FP )(TN + FN)
(6)

So if all instances are correctly predicted, the fitness is 1, since in this case
FP = 0 and FN = 0. In the case that all instances are incorrectly predicted,
then TP = 0 and TN = 0, so the fitness is zero.
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7 Experiments

For each of the datasets a 1+λ−ES evolutionary algorithm with λ = 4 was used
[9] and run for 500 generations. This evolutionary algorithm has a population
size of 1 + λ and selects the genotype with the best fitness to be the parent of
the new population. If there is no offspring better than the parent but at least
one with a fitness equal to the parent, then an offspring is chosen to be the
new parent. The remaining members of the population are formed by mutating
the parent. Thirty and twenty independent runs were carried out for the Lenses
dataset and Iris dataset respectively. The smaller number of runs for the latter
was due to the large time required for each experiment. It took more than 12
hours to run 500 generations on the Iris training set. This time also precluded
using leave-one-out cross validation methods.

7.1 Using CGP For Classification

To evaluate the effectiveness of the EIM method for solving classification prob-
lems we compared results with those obtainable using CGP using the same 1+4
evolutionary algorithm over the same number of generations using the same
fitness function. It should be noted that CGP has previously been shown to
perform well on classification problems (e.g. with Mars terrain images [7] and
mammograms [13]). CGP is a graph-based form of genetic programming [9]. The
genotypes encode directed acyclic graphs and the genes are integers that repre-
sent where nodes get their data, what operations nodes perform on the data, and
where the output data required by the user is to be obtained. In classification
problems the number of outputs, nO is chosen to be equal to the number of
classes in the dataset. The class of a data instance is defined as the class indi-
cated by the maximum numerical output. The function set chosen for this study
was defined over the real-valued interval [0.0, 1.0] and consisted of the following
primitive functions of their inputs. The functions were assumed to have three
inputs, z0, z1, z2 (but some are ignored):

(z0 + z1)/2; (z0 − z1)/2; z0z1;
if |z1| < 10−10 then 1 else if |z1| > |z0| then z0/z1 else z1/z0;
if z0 > z1 then z2/2 else 1− z2/2.

We used three mutation parameters. A percentage for mutating connections,
μc and functions, μf . Mutation of outputs μo, is done probabilistically. In all
experiments μc = 3%, μf = 3%, and μo = 0.5. The output mutation probability
was set as 0.5 because there are only as many outputs as there are classes.
We chose a linear CGP geometry by setting the number of rows, nr = 1 and
the number of columns, nc = 100 with nodes being allowed to connect to any
previous node.
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Table 2. Experimental results comparing results of experimental material with CGP
on machine learning classification problem using two datasets: Lenses and Iris. Accu-
racy is the percentage of the training or test set correctly predicted.

Dataset Average Average Best Average Average Best
Training Test Accuracy Training Test Accuracy
Accuracy Accuracy of Accuracy Accuracy of
of of Experimental of of CGP
Experimental Experimental Material CGP CGP
Material Material

Lenses 92.7% 65.8% 95.8% 93.8% 68.3% 95.8%

Iris 84.7% 77.1% 96.7% 97.7% 93.6% 98.0%

7.2 Results and Discussion

It can be seen from Table 2 that in the case of the Lenses dataset the training and
testing of experimental material are very close to the corresponding accuracies
of CGP and best accuracy of experimental material is same as that of CGP. In
the case of the Iris dataset, although the results with training and test for the
experimental material are not as good as CGP, the best accuracy is quite close.

8 Conclusions and Future Outlook

We have shown how using a purpose-built evolutionary platform called Mecobo,
we can evolve configurations of a physical system to perform classification. The
material we have used is a mixture of single-walled carbon nanotubes and a
polymer. The aim of the paper is not to show that the experimental results of
solving machine learning classification problems using EIM is competitive with
state-of-the-art machine learning classification algorithms, but rather to start a
new beginning in the world of computation. To our knowledge, this is the first
time that classification problems have been attempted by the manipulation of
a physical material. There were many decisions that were made in this inves-
tigation that require more detailed experiments before the ideal experimental
conditions can be ascertained. This implies that it is likely that much better re-
sults could be obtained in the future. Increasing the number of electrodes could
allow us to consider more instances or instances with more attributes, this could
make the system faster and scale up to larger problems. Circuitry could be po-
tentially built that allows the electrode array and material sample to act as a
standalone classifier (i.e. no PC, or Mecobo board). There remain many ques-
tions for the future. The Mecobo platform is currently under development and
the next version will be able to allow the utilization of analogue voltages.
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