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Abstract. Purification is an essential step in the production of biopharmaceuti-
cals. Resources are usually limited during development to make a full assessment
of operating conditions for a given purification process commonly consisting of
two or more chromatographic steps. This study proposes the optimization of all op-
erating conditions simultaneously using an evolutionary multiobjective optimiza-
tion algorithm (EMOA). After formulating the closed-loop optimization problem,
which is subject to constraints and resourcing issues, four state-of-the-art EMOAs
— NSGAII, MOEA/D, SMS-EMOA, and ParEGO — were tuned and evaluated
on test problems created from real-world data available in the literature. The sim-
ulation results revealed that the performance of an EMOA depends on the set-
ting of the population size, and constraint and resourcing issue-handling strategies
adopted. Tuning these algorithm parameters revealed that the EMOAs, in particu-
lar SMS-EMOA and ParEGO, are able to discover reliably within 100 evaluations
operating conditions that lead to high levels of yield and product purity.

1 Introduction

Manufacturing costs of therapeutic proteins are driven by costs associated with the pu-
rification of a protein of interest from impurities, such as host cell proteins and DNA,
arising during the fermentation and harvest process, and by the need to achieve strictly
controlled levels of key impurities. Chromatography is a commonly-used technique for
purifying proteins and has been identified as a key cost driver [1]. The overall goal of
this study is to optimize the operating conditions of a chromatography platform so as to
improve multiple criteria, such as recovery yield and final product purity, contributing
to a reduction in manufacturing costs.

Approaches for optimizing a chromatographic process can be classified
broadly into two classes: experimentally-validated simulation approaches or direct ex-
perimental approaches [2]. The former includes approaches that describe a chromato-
graphic process using a (predictive) linear or non-linear model based on mass transfer
and thermodynamics [3]. Although simulation-based, this approach relies on physical
experiments being performed to calibrate and validate the model. Various optimization
methods have been used to estimate the parameters of a chromatographic model (see
e.g. [3,4]).
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If the process modeled is not well-understood or cost prohibitive to define in terms of
a simulation model, then a direct experimental optimization approach can be adopted.
Such approaches optimize a chromatographic process by performing physical experi-
ments guided, for example, by design of experiments (DoE) in combination with a re-
sponse surface analysis [5,6] or an evolutionary algorithm (EA) [2,7]. An experimental
optimization approach might incur high experimental costs, whilst a simulation-based
approach relies heavily on the computational resources available.

Recently, multiobjective methods have found application in chromatography pro-
cesses optimization. For example, in [8] an evolutionary multiobjective optimization
algorithm (EMOA) was used within a simulation-based approach to optimize purity,
productivity, and/or yield of a single chromatography step. EMOAs have found appli-
cation in various experimental optimization problems [9], and are easily adaptable to
problems featuring constrained, non-linear, non-convex, noisy, dynamically changing,
and/or multiple objective functions. EMOAs have also been extended to cope with re-
sourcing issues in experimental optimization leading e.g. to delayed/missing objective
values [10] and temporary non-availability of certain solutions for evaluation [9]. The
issue around missing objective values can also be encountered in chromatography pro-
cess optimization and is investigated in more detail in this study.

Although a chromatographic purification process consists of multiple steps, the work
cited above focuses on the optimization of a single step only. The goal of this study is
to optimize multiple chromatography steps simultaneously so as to maximize recovery
yield and final product purity (or equivalently minimize impurities). Optimizing multi-
ple steps means that ideally interactions, technical limitations and/or resourcing issues
between steps can be accounted for in the optimization. The lack of models capable
of capturing interactions and constraints between multiple chromatography steps ac-
curately, means however that a direct experimental approach needs to be adopted. To
realize this experimental optimization platform, a sophisticated and precise laboratory
setup is required as well as an optimization method capable of dealing efficiently with
the enlarged search space and additional constraints (arising due to the presence of mul-
tiple chromatography steps). This study focuses on the design of an effective optimizer
to guide the selection of conditions for physical experiments.

2 Problem Definition

This section describes the problem formulation for the multiobjective optimization
of chromatographic operating conditions (MOCOC) subject to resourcing issues. The
experimental platform adopted for the optimization of operating conditions across mul-
tiple chromatography steps is visualized in Figure 1, and can be formulated mathemat-
ically as follows:

maximize f(x, σ) = ( f1(x, σ), ..., fm(x, σ))

subject to x ∈ X,

where x = (x1, ..., xl) is a solution vector (here a set of operating conditions), and X a
feasible search space (here the set of all possible operating conditions). The objective



Tuning Evolutionary Multiobjective Optimization 743

Step yields (Y1, ..., Yk)

HPLC

Physical
material

Data

Set of operating
conditions x

Computer

Y1 Yk

...
Sequence of chromatography steps

Impurity levels (IP1, ..., IPs)

Fig. 1. Schematic of a typical experimental setup for the closed-loop optimization of chromato-
graphic operating conditions. Following the set up of the operating conditions, defined by x, the
sample is passed through a sequence of chromatography steps i = 1, ..., k. An HPLC device is
used to obtain the step yields Yi and the final levels of individual impurities IPj, j = 1, ..., s.
Based on this quality measure, an optimizer running on the computer then selects the next set of
operating conditions for testing.

vector function f is a black box and represents a time-consuming and costly physi-
cal experiment on x, which is characterized by m > 0 noisy measurements f1, ..., fm.
The functions fi are known as objectives and are typically in conflict. The vector σ
represents environmental factors that cannot be controlled, e.g. imprecision in the ex-
perimental equipment. In the following, these problem features are described in more
detail.

Decision variables x1, ..., xl: A solution vector x represents a set of relevant operating
conditions, such as pH and salt concentration, for a set of chromatography steps i =
1, ..., k. Figure 2 shows the solution encoding used in this work: each step i is associated
with a pre-defined resini and a variable number of operating conditions ci,j, 1 ≤ j ≤
di, resulting in l = ∑k

i=1 di decision variables in total. Typically, the values ci,j are
represented by discretized real values.
Objective functions f1, ..., fm: Two (m = 2) commonly-used metrics were considered
in order to characterize the quality of a chromatographic process: the overall recovery
yield Y and the final product impurities ∑ IPj:

maximize f1 = Y = Y1 × ... × Yk

minimize f2 = ∑ IPj =
s

∑
j=1

IPj,

where Yi is the yield of chromatography step i, and IPj, j = 1, ..., s, the levels of dif-
ferent impurity types, such as host cell proteins and DNA; note, the objective of mini-
mizing product impurities is equivalent to maximizing purity and used here due to the
structure of the test problems considered (see Section 3.1). Both objectives, yield and
(im)purity, are obtained by analyzing the sample using an HPLC (high-performance
liquid chromatography) device. Measuring the yield and levels of different impurities
takes around 4 min and 30 min per sample, respectively, whilst the robot takes around 1
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Fig. 2. Representation of a solution x for a process with i = 1, ..., k chromatography steps. Each
step i is linked to a fixed resini and a set of operating conditions ci,j, 1 ≤ j ≤ di.

hour per chromatography step to prepare a sample (this robotic step can be parallelized
to up to 8 samples).
Feasible Search Space X: In addition to standard constraints on the decision vari-
able value ranges, the search space may be defined by dependency constraints between
chromatography steps. For instance, setting the salt concentration of a step i dictates
the lowest possible salt concentration of the successive step, or ci,j ≤ ci+1,t, assum-
ing indices j and t point to the salt concentration at chromatography step i and i + 1,
respectively.

In addition to constraints defining the search space X, there may also be constraints
on the objective values f1, ..., fm. For example, for antibodies, regulatory requirements
specify that the final product impurities needs to be ∑ IPj < 5%. Moreoever, in the
presence of limited resources, there may be a threshold Ymin on the minimum recovery
yield. This limitation can be seen as a resourcing issue and shall prevent the waste of
resources dedicated to the evaluation of inefficient purification processes. Mathemati-
cally, this resourcing issue can be expressed by a Boolean clause as follows

if Yi × ... ×Yp < Ymin then terminate experiment and return Y1, ..., Yp (1)

where p ≤ k denotes the chromatography step after which the cumulative yield is below
the threshold Ymin. That is, if the resourcing issue is ‘activated’, then the objectives Y
and ∑ IPj are missing. However, the measurements Y1, ..., Yp are available and might
be used to estimate Y and/or ∑ IPj.
Uncertainties: The decision variables x1, ..., xl and the measurements f1 and f2 might
be subject to some level of uncertainty (noise) given the experimental nature of the
problem. This level is typically low if the experimental platform is set up accurately,
and thus neglected here.

3 Experimental Setup

This section describes the case study, extensions augmented on the EMOAs for coping
with the challenges of the MOCOC problem, and algorithm parameter settings as used
in the subsequent experimental analysis.

3.1 Case Study

Ultimately, the goal is to tackle MOCOC problems with k ≈ 3 chromatography steps
and l ≈ 8 operating conditions in total. The purification sequence considered in [6]
falls into this problem domain and was used in this study as the “test problem” to
tune and validate different state-of-the-art EMOAs (using computational experiments).
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Table 1. MOCOC problem characteristics

Chromat. Operating Value Step
Step i condition range size δ

i = 1, pHwash [4.5; 5.5] 0.1
affinity pHelution [2.5; 3.5] 0.1

NaClwash [50; 500] 25
i = 2, pHload,2 [4.5; 5.5] 0.1
cation Grad. length [10; 20] 2

exchange Load [45;55] 1
i = 3, pHload,3 [7; 8] 0.1
anion Load [100; 200] 5

exchange

Table 2. EMOA default parameter settings

EMOA Parameter Setting

All

Max evaluations G 100
Crossover probability pc 0.6

Per-variable mutation
1/l

probability pm
NSGAII Population size n 10

MOEA/D
Population size n 20
#Weight vectors T 20

SMS-EMOA Population size μ 4

ParEGO
Initial population size n 50

#Scalar vectors s 10

Table 1 lists the operating conditions to be optimized for each of the k = 3 steps
(affinity, cation and anion exchange); the operating condition values were discretized
as specified by the step size δ. The heatmap data published in [6] was used to construct
two interpolated fitness landscapes for each of the k = 3 steps, one for the step yield Yi
and one for the step’s impurity level IPi, using the Kriging approach.1 The experimental
study considered the problem with k = 2 steps (the first two steps) and l = 6 operat-
ing conditions, and the complete problem with all k = 3 steps and l = 8 operating
conditions.

The independent optimization of each chromatography step has been studied
before [6]. In our work the problem was extended by dependency constraints and re-
sourcing issues (mimicking real limitations of the problems of interest): the dependency
constraint was defined by pHwash ≤ pHload,2 (for the sake of this constraint, the value
ranges of both variables were set identically), and the resourcing issue was represented
by Equation (1).

3.2 Tuning Evolutionary Search for the MOCOC Problem

To run an EMOA on the MOCOC problem, strategies for coping with the constraints
and resourcing issues need to be defined.
Handling Dependency Constraints: Four strategies — random, copy, swap, and re-
generate — were investigated for coping with the dependency constraint defined above.
Upon encountering an infeasible solution, the strategy random sets its pHload,2 value to
a random value selected from the range [pHwash, 5.5], whilst the strategy copy sets
pHload,2 =pHwash. The strategy, swap, swaps the values of pHload,2 and pHwash, which
results in a feasible solution due to the identical value range of the two variables. Fi-
nally, the strategy regenerate iteratively generates new solutions until it generates one
that is feasible.
Handling Resourcing Issues: Three strategies — strict penalizing, relaxed penaliz-
ing, and fitness-inheritance — were investigated for coping with the resourcing issue
defined in Equation (1). The aim of these strategies is to substitute missing objective

1 A Kriging function, Krig(), was used from the fields package of the statistical software R.



746 R. Allmendinger et al.

values with some surrogate. The strategy, strict penalizing, sets the objectives of a so-
lution violating Equation (1) to the worst possible values; i.e. f1 = 0 = 1 (assuming a
normalized objective space). The strategy, relaxed penalizing, uses the available yield
measurements to set the objective values to f1 = Yi × ... × Yp and f2 = 0. Finally,
the strategy, fitness-inheritance, selects for a solution with missing objectives a solu-
tion from the set of all solutions evaluated so far that is both closest to it in the decision
space (in terms of normalized Euclidean distance) and has no missing objectives, and
then simply copies the solution’s values of f2 and Yp+1, ..., Yk to allow the computation
of f1.

3.3 Algorithm Parameter Settings

Four state-of-the-art EMOAs were considered in the experimental analysis: NSGAII [11],
MOEA/D [12], SMS-EMOA [13], and ParEGO [14]. All EMOAs avoided the evalua-
tion of duplicate solutions (solutions were regenerated until a unique one is created),
each used a latin hypercube initialization procedure, uniform crossover, binary tourna-
ment selection (with replacement), and a mutation operator that selects a value at ran-
dom from the feasible variable value range (see Table 1). Both NSGAII and MOEA/D
employ a generational reproduction scheme (using a fixed population size of μ), whilst
SMS-EMOA uses a steady-state scheme, and ParEGO considers all solutions evaluated
to create a single solution.

The aim of the experimental study was to understand how the performance of the
EMOAs is affected by different algorithm parameter settings, and constraint and re-
sourcing issue-handling strategies. The default settings of the EMOAs are given in
Table 2. The total number of evaluations G = 100 represents the estimated budget
available for the problems of interest. Results shown are the average across 30 indepen-
dent runs. Hypervolume and attainment surface results were obtained by considering
all solutions found during a run that had no missing objective values. For the hypervol-
ume calculation, the objective values were normalized to lie in the range [0,1], and the
reference point was set to a value of 2 for all objectives.

4 Experimental Analysis

The first two sets of experiments investigate the performance of the constraint-handling
strategies and sensitivity of algorithm parameter settings in the absence of the resourc-
ing issue, which is the focus of the last set of experiments.

Investigation of Constraint-Handling Strategies: Figure 3 shows the performance
of the different constraint-handling strategies when augmented on NSGAII. From Fig-
ure 3(a) it is apparent there is a trade-off between the population size n and the number
of generations G/n available for optimization: the performance increases until a popu-
lation of n ≈ 10 after which any further increases in n lead to a performance reduction
(due to the smaller number of generations available). The random strategy performs
most robustly, followed closely by the copy and regenerate strategy. The swap strategy
performs significantly worse than the other strategies, in particular around the sweet
spot of n ≈ 10, as it deteriorates the original solution’s string most. The attainment
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Fig. 3. a)Average hypervolume and its standard error as a function of the population size n, and
b) worst (thin lines) and median (bold lines) attainment surfaces for n = 10 obtained by different
constraint-handling strategies augmented on NSGAII for a MOCOC problem with k = 2 steps
and l = 6 variables. For every setting marked by a point in a), a Kruskall-Wallis test (significance
level of 5%) has been carried out. Random, copy, and regenerate perform best for n = 10. There
is no clear winner for the other settings.

surface plot, Figure 3(b), confirms this ranking as well as the significant gap of the ran-
dom strategy to the estimated true Pareto front (which has been obtained by taking the
non-dominated front discovered across multiple and long runs of NSGAII). The perfor-
mance patterns were similar for both test problems, i.e. k = 2 and 3 steps, and the other
EMOAs. For ParEGO, the choice of the constraint-handling strategy is not as crucial
as the search for a new solution is performed over an interpolated landscape (instead of
the actual search space), which is cheap to evaluate.

Investigation of Crucial Algorithm Parameter Settings: Figure 4 analyses the sen-
sitivity in performance of the different EMOAs as a function of algorithm parameter
settings, in particular the population size n. From Figure 4(a), it is obvious that the per-
formance of all EMOAs improves until a certain n is reached, and then degrades for
further increases in n. SMS-EMOA is able to achieve the highest average hypervolume,
when used in combination with small population size of n ≈ 4. ParEGO performed
slightly worse than SMS-EMOA in terms of the average hypervolume but is more ro-
bust to variations in n. Note, for n = 100, no optimization was performed as all EMOAs
sample the search space using a latin hypercube design, which can be seen as the de-
fault performance obtained with a DoE approach. As can be seen from Figure 4(a), this
performance is clearly beaten by the EMOAs for most settings of n. The performance
ranking of EMOAs with respect to worst and median attainment surfaces obtained,
which are shown in Figure 4(b), was in alignment with the hypervolume results. It is
also apparent from the plot that SMS-EMOA and ParEGO were able to get significantly
closer to the Pareto front than NSGAII.

Investigation of Resourcing Issue-Handling Strategies: Finally, Figure 5 analyzes
the performance of the resourcing issue-handling strategies when augmented on SMS-
EMOA. In Figures 5(a) and 5(b), the resourcing issue was present from the very be-
ginning of the optimization, whilst, in Figures 5(c) and 5(d), it was ignored and the
evaluation completed for the first 10 solutions with a cumulative yield below Ymin.
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Fig. 4. a) Average hypervolume and its standard error as a function of the population size n, and
b) worst (thin lines) and median (bold lines) attainment surfaces obtained for optimal settings of
n by several EMOAs for a MOCOC problem with k = 2 steps and l = 6 variables. For every
setting marked by a point in a), a Kruskall-Wallis test (significance level of 5%) has been carried
out. SMS-EMOA performs best for n < 10, and ParEGO for 25 < n < 100. There is no clear
winner for the other settings.

From Figures 5(a) and 5(c) it can be observed that the presence of the resourcing is-
sue has a significant negative impact on performance for Ymin > 90%. Relaxing the
resourcing issue reduces the impact on performance but it is an expensive approach.
Preventing the optimizer from entering certain regions of the objective space introduces
a search bias towards other parts of the Pareto front, as evident from the attainment sur-
faces shown in Figures 5(b) and 5(d), especially in Figure 5(b), for Ymin = 94%. Com-
paring the different resource issue-handling strategies, it is apparent that a penalizing
strategy performs best in Figures 5(a) and 5(b). A fitness-inheritance strategy performs
better in the relaxed scenario (Figures 5(c) and 5(d)) because, once the resourcing issue
is switched on, it allows the optimizer to enter more quickly a feasible region in the ob-
jective space than the penalizing strategies (as indicated by the number of experiments
below Ymin). Note, although relaxing the resourcing issue leads to more distributed at-
tainment surfaces (see Figure 5(d)), the surfaces are further away from the Pareto front
than in the unrelaxed case due to the lower level of exploitation. The other EMOAs are
affected in a similar way by the resourcing issue.

5 Conclusion and Future Work

This paper has considered a real-world problem concerned with the optimization of
operating conditions for chromatographic purification processes so as to maximize re-
covery yield and product purity. The problem has been formulated as a multiobjective
closed-loop optimization problem subject to dependency constraints, resourcing issues,
uncertainties, and a limited number of evaluations. Several strategies were proposed
for dealing with the constraints and resourcing issues, and subsequently augmented
and validated on four state-of-the-art EMOAs — ParEGO, NSGAII, MOEA/D, and
SMS-EMOA — for two test problems created from published real-world data. The ex-
perimental study revealed that EMOAs can achieve a better performance within 100
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Fig. 5. a) and c) Average hypervolume, its standard error, and #evaluations below Ymin as a func-
tion of the threshold Ymin, and b) and d) worst (thin lines) and median (bold lines) attainment
surfaces obtained for Ymin = 94% by SMS-EMOA for a MOCOC problem with k = 3 steps and
l = 8 variables. In a) and b), the resourcing issue was present throughout the search, whilst, in
c) and d), it was ignored for the first 10 solutions with f1 < Ymin. For every setting marked by a
point in a) and c), a Kruskall-Wallis test (significance level of 5%) has been carried out. Relaxed
penalizing performs best in a) for Ymin = 95%, whilst fitness-inheritance performs best in c) for
Ymin = 92% and 94%. There is no clear winner for the other settings.

evaluations than a standard DoE approach, such as a latin hypercube design. The best
performance was achieved by SMS-EMOA when used in combination with a small pop-
ulation of size n ≈ 4 and a random sampling-based constraint-handling strategy. The
performance of an EMOA depended on the resourcing issue-handling strategy: A pe-
nalizing strategy performed best if a resourcing issue is present throughout the search,
whilst a fitness-inheritance approach performs better if the resourcing issue is relaxed.
Future research will focus on applying SMS-EMOA to guide real physical chromato-
graphic experiments.
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