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Abstract. This paper reports on a successful application of evolution-
ary computation techniques to the computer aided design of a dedicated
highly dispersive mirror which is used in an ultrafast laser. The mir-
ror is a GaAs plate coated with many interleaving layers of GaAs/AlAs
and SiO2/Si3N4 layers whose thickness undergo optimization. We report
and compare results obtained by leading global optimization techniques:
Covariance Matrix Adaptation Evolution Strategy and Differential Evo-
lution, as well as few efficient local optimization methods: Nelder-Mead
and variable metric. The evolutionary designed mirror has been manufac-
tured by the Molecular Beam Epitaxy technology and the measurements
confirmed successful implementation of the instrument.
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1 Introduction

In the evolutionary computation history, it has been relatively early observed
that the driving force of development of methods is their application for global
optimization. Since the 1990ies, many benchmark problems have been adopted
from the global optimization domain and have been used to test efficiency of evo-
lutionary computing techniques. In 2005 and 2009, two families of benchmark
sets were born: CEC [1] (starting from CEC2005) and BBOB [2] (starting from
BBOB 2009). These benchmark sets include not only the test problems, but also
specify procedures to test optimization methods and to interpret their results.
With the use of benchmark sets it is possible to compare two optimization meth-
ods to answer the question which of them will, on average, provide better results
than the other. This allows to organize competitions to select algorithms that
perform most efficiently on the benchmark set.

A practitioner’s perspective is somewhat different, since he/she is not inter-
ested in the long-lasting tuning of many parameters of a beloved algorithm to
make it perform better that other competitors. Instead, the practitioner is fo-
cused on obtaining an acceptable solution of a particular problem with the least
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effort. Results of benchmarking may be useful to perform preliminary selection
of optimization methods. Parameter-free methods are obviously preferred over
these with many settings to be tuned, since the practitioner is interested in easy
use rather than in the development of optimization methods. Hence, software
packages with predefined parameter setting will usually be preferred.

In the presented work we followed this practitioner’s point of view. We report
results of an application of two packages for the R environment [3], DEoptim
[4] and cmaes [5], which implement DE [6] and CMA-ES [7] — two global op-
timization methods from the evolutionary family which have been usually on
top of efficiency rankings based on benchmarking [1,8]. These methods have
a relatively small number of user-defined parameters and the aforementioned
packages provide default parameter settings. We applied these methods to the
computer aided design of a mirror, which was dedicated for an ultrafast laser.
The mirror design was represented as a vector of 126 real numbers. We have
performed multiple runs of compared methods and we report statistics of the
results to select the optimization method. Further tests were carried out to as-
sess influence of starting point generation method upon mirror quality. The best
structure of the mirror, which was found by the CMA-ES, was performed in
a semiconductor technology and successfully tested for conformance with the
design assumptions. This structure, after antireflective layer deposition, will be
used to build the ultrafast laser in the near future.

2 Designing Mirrors for Ultrafast Lasers

Ultrafast lasers, which generate optical pulses in the picosecond and femtosec-
ond range, have found numerous applications, e.g., in industry [9], biology and
medicine [10]. The basic technique allowing for generation of ultrashort pulses is
modelocking. We distinguish between active and passive modelocking, while the
latter provides much shorter pulses [11]. The underlying principle of this technique
is to induce a fixed phase relationship between the modes inside the resonant cav-
ity. In order to achieve it, all kinds of dispersion appearing in the cavity must be
compensated. This can be achieved either by using the prism pair or grating pair,
or a multilayer mirror, called also a Chirped Mirror (CM) [12].

The CM is a structure that contains an alternating sequence of layers of two
different optical materials. Thickness of each pair of layers is linearly variable.
In effect, light from a range of wave length is effectively reflected, and longer
wavelengths penetrate the structure deeper than shorter ones. Thus the delay of
the reflected light depends on its wavelength. This process can be characterized
by the Group Delay Dispersion (GDD) coefficient and typically, the dependence
of GDD on the wavelength is very irregular, which is undesirable. This effect
can be reduced in a Double Chirped Mirror (DCM) where thickness of layers is
changing non-linearly. Properly designed DCM should exhibit high reflection in
a broad wavelength band together with non-oscillating dependence of GDD on
the wavelength.

There are several theoretical approaches to design DCMs in an analytical way.
Coupled mode theory is a perturbational approach for analyzing the coupling of
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vibrational systems (inter alia optical) in space or in time [13]. WKB approxima-
tion is a method for finding approximate solutions to linear partial differential
equations with spatially varying coefficients [14]. For example these methods
have been used by Matuschek to derive formulas for reflectivity and group de-
lay [12]. Such analytical works undoubtedly enabled deeper understanding of
chirped mirrors, but the GDD characteristics of the resulting DCM exhibited
oscillatory behavior and it needed further fine tuning.

The majority of approaches to designing DCMs have used the transfer matrix
method [15] to model the light reflection from multilayer structure and to op-
timize layers’ thickness to achieve desired DCM properties. Such approach was
used by Yakovlev et al. [16] who applied a memetic algorithm to design a 49-
layer dielectric SiO2/TiO2/Ta2O5 chirped mirror. Dielectric materials were also
used by other authors, e.g. Yan-Zhi et al. [17] applied a needle optimization tech-
nique [18] to design 52-layers structure with GDD ≈ −60 fs2. They have also
reported successful physical implementation of the design. Another successful
DCM implementation has been reported by Pervak et al. [19] who used a com-
mercial package OptiLayer to design a dielectric DCM for GDD ≈ −2500 fs2.
Unfortunately, all aforementioned articles did not report important information
about optimization methods, like the objective function formulation, settings of
parameters or the starting point, which does not allow to reproduce the results.

This paper briefly describes the design process of a Semiconductor DCM
(SDCM). Semiconductor materials, GaAs and AlAs, which are used for the mir-
ror realization, have high refractive indexes (3.51 and 2.95) which makes it hard
to avoid reflection of the light from the mirror surface. For this reason, the SDCM
should be additionally covered by an Anti-Reflective (AR) layer composed of few
layers of dielectric materials. The difference of refractive indexes of GaAs and
AlAs is lower than in the case of dielectric materials used by other authors,
therefore more layers are needed to achieve mirror parameters comparable to
dielectric DCMs. More layers means also more interfaces between layers which
increases risk of harmful interferences that disrupt the GDD curve. DCMs with
larger number of layers are also harder to optimize due to the “curse of dimen-
sionality”.

The SDCM production process consists of two technological stages: the Molec-
ular Beam Epitaxy (MBE, see Fig. 1) to produce semiconductor layers on a
two-inch GaAs substrate and the plasma-enhanced chemical vapor deposition
technology to coat it with dielectric AR layers.

3 SDCM Design Problem Formulation

SDCM Model. Mathematical model of the reflection process assumes that a
time-harmonic plane wave falls on the stratified medium, which is schematically
depicted in Fig. 2. The electric field E(x) satisfies the Helmholtz equation [13]:
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a) b)

Fig. 1. a) MBE reactor which is used to produce SDCM, b) 2” substrate wafers on
which the mirror is deposited

Fig. 2. Schematic view of a stratified medium

d2E(x)

dx2
+
[
(ñnk0)2 − β2

]
E(x) = 0, (1)

where ñn is the complex refractive index of the n-th layer, β = neffk0 is the
propagation constant, k0 = 2π/λ0, λ0 is the free space wavelength and neff is
the effective refractive index. In the n-th layer, the field E(x) is a superposition
of waves traveling towards the left and the right direction:

E(x) = An exp(iKnx) + Bn exp(−iKnx), (2)

where Kn = k0
√
ñ2
n − n2

eff , and An, Bn are constants. Assuming A0 = 1, BN+1 =
0, we identify B0 and AN+1, as coefficients of mirror reflectivity and mirror trans-
mission, respectively.

DCM analysis method based on the transfer matrix [15] is facilitated on the
fact that the field and its first derivative must be continuous at the interfaces.
According to this method we derive a matrix equation of the form:

[
a11 a12
a21 a22

] [
B0

AN+1

]
=

[
b1
b2

]
. (3)

Elements akl and bk depend on thickness and refractive indexes of layers. Solution
of (3) yields the key parameters of SDCM:

R = |B0|2,GDD =
d2(argB0)

dω2
. (4)

where ω = 2πc/λ0 denotes the angular frequency, c is the light velocity, R is the
reflectivity coefficient, and GDD is the Group Delay Dispersion.
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Representation of Solutions and Constraints. On the basis of our exper-
imentally verified knowledge it was assumed that SDCM should consist of 120
semiconductor layers and 6 dielectric AR layers. The structure is represented as
a sequence of real numbers which define thickness of layers. Layers are numbered
according to the sequence in which they are penetrated by the light which enters
into the mirror structure. Hence, the sequence starts from AR layers, i.e. from
3 pairs of SiO2 and TiO2. They are followed by 60 pairs of GaAs/AlAs. Upper
limit of each semiconductor layer thickness was assumed to 0.2 μm. Lower limits
of thickness were 7 nm for dielectric layers and 0.6 nm for semiconductor layers,
except for the the first semiconductor layer which had to be at least 30 nm thick.
The first semiconductor layer is thicker to prevent the destructive oxidation of
AlAs.

Objective Function. The design objective was to achieve the following mirror
parameters: GDD= −2500 ± 100 fs2, R≥ 0.999 in a band from λl = 1.02μm to
λh = 1.04μm. Having performed a series of trials we decided to use the following
objective function to be minimized:

q = a · qR + (1 − a) · qD (5)

where qD and qR are the distance from the target levels of GDD and R, and a is
scalarization coefficient. It is known that optimization of GDD is much harder
than R, therefore a was set to 0.01. Values of qD and qR are defined as

qD = b
∑

λ

(D0 −Dλ)2, qR = u
∑

λ

(1 −Rλ)2 (6)

where b, u are the scaling factors responsible for bounding values of qD and qR
in range 〈0, 1〉, λ is a wavelength sampled from range 〈λl, λh〉, D0 is the required
GDD value, Dλ and Rλ are the GDD and R values calculated for wavelength λ.
Note that the objective function values come from the range 〈0, 1〉. The objective
function is very irregular — sample two-dimensional cross-sections are provided
in Fig. 3.

a)

0 50 100 150 200

0
50

10
0

15
0

20
0

 0.1 
 0.15 

 0.2 

 0.25 

 0.25 

 0.25 

 0.25 

 0.25 

 0.3 

 0.3 

 0.3 

 0.3 

 0.3 

 0.3 

 0.3 

 0.35 

 0.35  0.35 

 0.35 

 0.35 
 0.4 

 0.4 
 0.4 

 0.4 
 0.4 

 0.4 

 0.4 

L
ay
er

6
1

Layer 1
b)

0 50 100 150 200

0
50

10
0

15
0

20
0

 0.05 

 0.05 

 0.05 

 0.1 

 0.1 

 0.1 
 0.1 

 0.15 
 0.15 

 0.15 

 0.15 

 0.2 

 0.2 

 0.2 

 0.2 

 0.25 

 0.25 

 0.25 

 0.25 

 0.3 
 0.3  0.3 

 0.3 

 0.35 

 0.35 

 0.35 

 0.35 

 0.4 

 0.4  0.4 
 0.4 

 0.4 

 0.4 

 0.4 

 0.4 

 0.4 

 0.4 

 0.4 

 0.4  0.4 

 0.4 

 0.4 

 0.4 

 0.4 

Layer 61

L
ay
er

6
2

c)

0 50 100 150 200

0
50

10
0

15
0

20
0

 0.002 

 0.0025 

 0.0025 

 0.0025 

 0.003  0.003  0.003 

 0.0035 

 0.0035 

 0.0035 

 0.0035 

 0.004 

 0.004 

 0.0045 

 0.0045 

 0.005 

 0.005 

Layer 119

L
ay
er

1
2
0

Fig. 3. Fitness function contour plot for varying thickness of: a) layers 1 and 61, b)layers
61 and 62, c) layers 119 and 120. Dotted lines marks values achieved after mirror
optimization
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4 Optimization of the SCDM Design

The solution of the SDCM design problem was a two stage process. In the first
stage we performed experimental comparison of results obtained by several op-
timization methods. For all compared methods it was observed that the quality
of results was unacceptable when the initial SDCM structure was set randomly
with uniform distribution in the admissible area. Acceptable results were ob-
tained when the starting structure was the design obtained by application of the
theory provided by Matuschek [12]. This starting point, which will be denoted by
DCM0, was used for selection of the best performing optimization method. In the
second stage, for the selected method, different starting points were examined
which finally gave the setup that would allow for obtaining high quality results.
In addition to DCM0, we considered the Bragg mirror, which was designed to
achieve high reflectivity for a single wavelength, and the single chirped Bragg
mirror for which high-reflectivity bandwidth is significantly increased. Plots of
the layers’ thickness for these starting points are shown in Fig. 4.
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Fig. 4. Layers thickness of: a)Bragg mirror, b)single chirped Bragg mirror, c)DCM0

Our previous experience with similar design problems [20,21] showed that
metaheuristics from the evolutionary family would be good candidates for solving
engineering problems. According to results of competitions [8,22] we selected
Differential Evolution (DE) [6] and Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [7]. We also tested two efficient local optimization methods:
nonlinear simplex by Nelder and Mead (NM), and the L-BFGS-B algorithm. The
whole process of simulation and optimization of SDCM structures, and of testing
optimization methods, was performed under the R environment [3]. We used R
packages: cmaes for the CMAES [5] and DEoptim for the DE [4]. Implementations
of NM was provided by Bihorel et al. [23] and L-BFGS-B [24] was taken from
the optim package.

Selection of the Most Efficient Optimization Method. In preliminary
tests we observed that DE was able to improve the quality of the initial design
using default parameter settings but the GDD spectral characteristics was far
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from satisfactory. Default parameter settings for CMA-ES yielded no improve-
ment to the initial design. Therefore we performed manual parameter tuning and
we ended up with different settings which gave acceptable solutions. In the case
of CMA-ES, Hansen suggested [25] that in most cases default values of param-
eters which are used by the ”reference” implementation of CMA-ES should be
appropriate if design variables are scaled to fit into the range 〈0, 10〉. Our design
variables are bounded by 0.0006 and 0.2, so they are not in CMA-ES ”favorite”
range. Instead of scaling, we changed the σ parameter and we observed good
results for σ = 0.0003. We used the default DE version in the DEoptim package,
which was the DE/local-to-best/1/bin algorithm. The best results were obtained
for CR=1 and the remaining parameters were set to the default values. The DE
method must be started with a diversified population. To achieve this, the initial
population was filled with Gaussian perturbations of the starting point.

An additional comments needs to be made on the NM method. We tested its
three different implementations: NM1 [26], NM2 [23] and NM3 from the optim

package. These three versions gave substantially different results: NM1 was 10
times worse than NM3 and 33 times worse than NM2. For this reason we report
only the results by NM2.

In Fig. 5a, box and whisker plots are provided of the distribution of the
best objective function values obtained in 25 independent runs of compared
algorithms; for NM and L-BFGS-B a single value is provided, since they are
deterministic methods and the starting point is always the same.

According to the results, both DE and CMA-ES outperformed their competitors
when starting from the initial design DCM0. CMA-ES revealed greater variability
than DE, but in the same time median of its results was significantly better than for
DE. For this reason, an additional experiment was made to check if the CMA-ES
efficiency could be further improved by using a different starting point.

Sensitivity to the Starting Point. From preliminary experiments we learned
that the CMA-ES was unable to generate acceptable solutions when started
from a random solution. The DCM0 structure is a nearly optimal design which
introduces a risk that it would become a trap which would not allow CMA-ES
to generate better solutions which are substantially different than the initial
structure. In Fig. 5b we provide statistics of objective function values achieved
for 25 independent runs of CMA-ES for three starting points depicted in Fig. 4.
The DCM0 structure appeared the worst among all considered starting points,
although this structure is the result of the most advanced analytical approach
to the DCM design. Much better results were obtained for simple Bragg and
linearly chirped mirrors — in most of runs CMA-ES was able to approach the
global minimum of the fitness. For the single chirped structure the number of
successful runs was greater so we conclude that this was the best choice of
starting point for CMA-ES.

Solutions generated from this starting point revealed another advantage over
those generated from DCM0. According to the technology experts, they were
easier to produce, because thickness of neighboring layers is less diversified. An-
other advantage of obtained designs was that they allowed for reduction of the
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Fig. 5. Box and whisker plots of the best objective function values obtained in 25
independent runs of each method; a) Results for various optimization methods with
starting point DCM0, b) results of CMA-ES for three different starting points

number of layers. We took the best result obtained in all experiments and we
removed 10 semiconductor layers and 4 dielectric layers (in both cases layers
were removed from the base side). Additionally we changed TiO2 dielectric into
Si3N4. This was the starting point for CMA-ES which yielded another solution
that satisfied design criteria. This solution was the final design (see Fig. 6a).

5 Implementation and Tests of the Designed Mirror

The final design obtained by CMA-ES was used to produce the semiconductor
part of the mirror in the MBE reactor (Fig. 1) in the Institute of Electron
Technology (ITE). Prior to coating the mirror with AR layers, its R and GDD
factors were measured by the ITE and Institute of Experimental Physics in the
assumed wavelength band.

Measurements of GDD were performed using a modified Michelson interfer-
ometer illuminated with a white light source, delivered by a halogen bulb, to
obtain GDD characteristic in a broad range of wavelengths. A reference curve
of GDD vs. wavelength has been generated from the SDCM model and it was
verified if it is approximately matched by the measured curve. The results, which
are presented in Fig. 6b, indicate a good agreement of both curves.

Mirror reflectance was measured using a dark configuration of a standard
optical set-up, where a broadband source light is dispersed by a monochromator
and formed to a quasi-parallel probe beam which illuminates the sample surface
at normal incidence. Reflected light is optically collected and focused onto a
silicon detector. The measurement confirmed that the mirror reflectance matched
the design criteria.

The measurements confirm that the mirror was correctly produced by the
MBE process, and it therefore can undergo the second phase of production –
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Fig. 6. a)Layers thickness of designed SDCM. b)Comparison of theoretical (circles)
and measured (squares) GDD characteristics.

deposition of 2 dielectric layers of AR coating. The resulting product will be used
as a component of an ultrafast laser constructed by Institute of Experimental
Physics.

6 Conclusions

We presented a successful practical application of evolutionary techniques to
the design of a Double Chirped Mirror which was produced in the semiconduc-
tor technology. Application of CMA-ES yielded a solution that outperformed
engineering practice of designing DCM structures. Obtained design was also ac-
ceptable from the production technology point of view. The mirror has been
performed and it will be used to build a compact ultrafast laser.

The design problem size exceeds an informal limit of 100 dimensions which
was suggested for CMA-ES applications. Quality of obtained results is sensitive
to the starting point which indicates that analyzed methods realize a form of
a “globalized local search” — they are only partially robust against getting
trapped into local optima. The objective function used for the design, which has
been implemented in the R language, is very irregular and it may serve as a
benchmark problem for testing global optimization methods.
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