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Abstract. We propose an tabu search algorithm using an candidate
list stratety with random sampling for the university course timetabling
problem, where the neighborhood size can be adjusted by a parameter
ratio. With this framework, we can control the trade-off between explo-
ration and exploitation by adjusting the neighborhood size. Experimen-
tal results show that the proposed algorithm outperforms state-of-the-art
algorithms when the neighborhood size is set properly.

1 Introduction

To solve optimization problems that are computationally intractable, heuristic
(approximation) algorithms have been widely used for finding nearly optimal
solutions in a reasonable computation time. In particular, neighborhood search
is a wide class of heuristic algorithms, where the current solution is iteratively
moved to a solution in the neighborhood at each iteration.

Crucial issues in the design of an effective neighborhood search algorithm are
the choices of the neighborhood structure and search strategy. The neighborhood
is defined as a set of solutions that are obtained typically by performing prear-
ranged local modifications on the current solution. The choice of the neighbor-
hood structure is very important because it directly affects the fitness landscape.
The choice of the search strategy is also important because it controls the trade-
off between exploration and exploitation of the search. A lot of search strategies
have been proposed in the literature, ranging from simple hill-climbing, simu-
lated annealing, tabu search, guided local search [7] to more sophisticated ones,
where the trade-off between exploration and exploitation can be controlled by
their specific parameters (e.g. temperature for SA, tabu tenure for TS, and λ
value for GLS).

Most of the neighborhood search algorithms use a fixed neighborhood struc-
ture (sometimes a composite of several neighborhoods) throughout the search
while controlling the trade-off between exploration and exploitation by the search
strategy. Contrary to these algorithms, candidate list strategies [3] consider only
a subset of a predefined full neighborhood at each iteration in order to reduce
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the computational effort. The simplest way of introducing candidate list strat-
egy is to define a neighborhood as a randomly selected part of a predefined full
neighborhood. Apart from the effect of reducing the computational effort, this
candidate list strategy is useful for diversifying the search. With this strategy, we
can control the trade-off between exploration and exploitation by adjusting the
ratio of the size of the partial neighborhood to that of the full neighborhood; the
smaller the neighborhood size is, the more diverse is the search. This is because
the quality of a solution accepted in the partial neighborhood becomes worse
with decreasing the neighborhood size (if a solution must be accepted at each
iteration).

In this paper, we incorporate the candidate list strategy with random sampling
into a tabu search framework to construct an effective neighborhood search algo-
rithm for the university course timetabling problem (UCTP), and in this paper
we call this algorithm random partial neighborhood search (RPNS). In addition,
we analyze the effect of changing the neighborhood size on the performance. Ex-
perimental results on the well-studied benchmark set of Socha et al. [6] show
that the RPNS algorithm outperforms the state-of-the-art algorithms [1][4][5][2]
when the neighborhood size is set properly.

The remainder of this paper is organized as follows. The definition of the
UCTP is described in Section 2. The framework of RPNS is presented in Section
3. The computational analysis of the RPNS algorithm and the performance com-
parison with state-of-the-art algorithms are presented in Section 4. Conclusions
are presented in Section 5.

2 The University Course Timetabling Problem

Several formulations of the UCTP have been proposed in the literature, and we se-
lect the one proposed by Socha et al. [6] because the corresponding benchmark set,
which is available at http://iridia.ulb.ac.be/~msampels/tt.data/, have
been intensively tackled by many algorithms.

Let E = {e1, e2, . . . , eN} denote a set of N events, T = {t1, t2, . . . , tK} a set
of K timeslots (K = 45, 5 days of 9 hours), and R = {r1, r2, . . . , rL} a set of L
rooms, S = {s1, s2, . . . , sM} a set of M students. For each event, the students
who attend this event and a set of the rooms that meet requirements for this
event 1 are known.

A timetable is represented as an assignment of the events to the timeslots
and rooms. A timetable is said to be feasible if it satisfies the following hard
constraints (H1-H3).

H1: No student attends more than one event in the same timeslot.
H2: Each event must be assigned to a room that meets the requirements for

this event.
H3: Only one event can be assigned to each room at any timeslot.

1 In the original benchmark data set, this information is not explicitly given, but it is
easily obtained from the given data.
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The objective is to find a feasible timetable that minimizes the total violations
of the soft constraints (S1-S3) described below.

S1: A student has an event scheduled in the last timeslot of a day.
S2: A student has more than two consecutive events 2.
S3: A student has only one event on a day.

More formally, the total violations of the soft constraints for a timetable x is
defined as follows:

f(x) = f1(x) + f2(x) + f3(x),

where fi(x) (i = 1, 2, 3) is the number of the occurrence of constraint violations
in terms of soft constraint Si.

3 Solution Method

As used in some of the previous works, we employ a two-stage approach where
a feasible timetable is constructed in the first stage (not main focus of this
paper) and then the total violation of the soft constraints is minimized in the
second stage (main focus of this paper) while maintaining the feasibility. We first
present the RPNS algorithm that is used in the second stage and then describe
the outline of the first stage.

3.1 Random Partial Neighborhood Search

Neighborhoods. We first define the two neighborhoods N1 and N2, which are
widely used in neighborhood searches for various timetabling problems.

N1(x): A set of the feasible timetables that are obtained from a timetable x by
moving an event e to another timeslot-room pair (t, r) for all possible (e, r, t)
combinations.

N2(x): A set of the feasible timetables that are obtained from a timetable x
by exchanging the timeslots of two events (e1, e2) for all possible (e1, e2)
combinations, where a change of the room is allowed unless the room is not
occupied by other events.

The neighborhood N2 is slightly different from the standard swap neighbor-
hood because the standard swap move is to exchange the assignment of timeslot-
room pairs between two events (or exchange is allowed only if two events are
assigned to the same room). This modification is reasonable because the N2

neighborhood is more flexible in the assignment of rooms and it scarcely increases
the computational effort to evaluate all possible moves in the neighborhood.

To vary the neighborhood size, we introduce two neighborhoods N1(x, ratio)
and N2(x, ratio) as partial neighborhoods of N1(x) and N2(x), respectively,
where ratio (0 ≤ ratio ≤ 1) is a parameter that specifies the ratio of the size of
the partial neighborhood to that of the full neighborhood. These neighborhoods
are defined as follows.
2 Two events in different days are not regarded as consecutive. If the number of con-
secutive events is s (≥ 3), the number of violations caused by these events is s− 2.
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N1(x, ratio): A set of the feasible timetables that are obtained from a timetable
x by moving an event e to another timeslot-room pair (t, r) for e ∈ I1 and
all possible (r, t) combinations, where I1 is defined by randomly selecting
�ratio×N� elements of E.

N2(x, ratio): A set of the feasible timetables that are obtained from a timetable
x by exchanging the timeslots of two events (e1, e2) for e1 ∈ I2 and e2 ∈
E (e1 < e2) (i.e., at least one of the two events is selected from I2) where I2 is

defined by randomly selecting � 1
2

{
2N − 1−√

4N(N − 1)(1− ratio) + 1
}
�

(= N2) element of E. The change of room is allowed for both events e1 and
e2 unless the room is not occupied by other events.

Note that N2 in the definition of N2(x, ratio) neighborhood is determined
such that the size of N2(x, ratio) neighborhood divided by the size of N2(x)
neighborhood is equal to ratio. In fact, N2 is obtained by solving the following

equation: N2N − N2(N2+1)
2 = ratio× N(N−1)

2 .

Algorithm. The idea of using the random partial neighborhood is incorpo-
rated into tabu search (TS) to construct a RPNS algorithm, which is presented
in Algorithm 1. Before starting iterations, the current timetable x and the cur-
rent best timetable xbest are initialized with an input feasible timetable (line
1). At each iteration, the best non-tabu solution x′, which will become the next
current timetable, is selected from the union of the two partial neighborhoods
N1(x, ratio) and N2(x, ratio) where the selection of a tabu solution is forbidden
(line 3). Tabu solutions are defined as follows. If an event e is moved using N1

neighborhood (or two events e1 and e2 are swapped using N2 neighborhood),
event e (or two events e1 and e2) is regarded as “tabu event” during the subse-
quent T iterations, where T is a parameter called tabu tenure. At each iteration,
a timetable obtained by moving an tabu event using N1 neighborhood or by
swapping two tabu events using N2 neighborhood is regarded as a tabu solution.
In addition, the aspiration criterion is considered where a solution that improves
the current best solution xbest is regarded as a non-tabu solution. After selecting
the best non-tabu solution x′, the current solution x and current best solution
xbest (if necessary) are updated by x′ (line4). Iterations are repeated until the to-
tal number of iterations reaches a given maximum number of iterations iterMax
(lines 2 and 5), and the current best timetable xbest is returned (line 7).

We should note that it is also possible to define tabu solutions based on
the attribute of event-timeslot pairs (e.g. an event is forbidden from moving
back to timeslot t during the subsequent T iterations after this event is moved
from timeslot t in a previous iteration) rather than the attribute of only events.
However, we decided to employ our definition because we confirmed that the
performance of RPNS with the tabu definition based on only events was slightly
better than that with tabu definition based on event-timeslot pairs and the
former one is simpler.
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Algorithm 1. Tabu-Search(xinput)

1: Set x := xinput, xbest := xinput and iter := 0;
2: while (iter ≤ iterMax) do
3: Select a best non-tabu solution x′ ∈ N1(x, ratio) ∪ N2(x, ratio) (the aspiration

criterion is considered);
4: Update x := x′ and xbest := x′ (if x′ is better than xbest);
5: Set iter := iter + 1;
6: end while
7: return xbest;

3.2 Construction of an Initial Feasible Timetable

To construct an initial feasible timetable in the first stage, we use an algorithm
similar to tabu search (TS) where a current solution is represented as a par-
tial timetable during the course of the search. Here, a partial timetable refers
to an incomplete timetable in which one or more events are not scheduled. A
partial timetable is regarded as feasible if the scheduled events satisfy all hard
constraints. We evaluate the quality of partial timetables by the number of the
unscheduled events (small number is better). The unscheduled events are stored
in a list called ejection list (EL).

The procedure is started by initializing both the current timetable x and the
current best timetable xbest with an empty timetable and EL with all events
in a random order. At each iteration, an event ein is popped from EL, and
an attempt is made to schedule the selected event into the current (partial)
timetable x without violating any hard constraints. Let Nin out(ein, x) be a set
of the feasible (partial) timetables that are obtained from x by assigning ein to a
timeslot-room pair and ejecting the conflicting events caused by the insertion of
ein (no event is ejected if no hard constraint violation occurs) in all possible ways.
Note that ein must be assigned to a room that satisfies the requirement for this
event (hard constraint H2), while the violation of the hard constraints H1 and H3
caused by the insertion of ein can be resolved by ejecting the conflicting events in
the same timeslot. The next current timetable x′ is selected from Nin out(ein, x)
so that the number of the ejecting events is minimized. In practice, the idea
of tabu search is incorporated to diversity the search; the selection of a tabu
solution is forbidden where a timetable obtained by assigning ein to a timeslot
t is regarded as a tabu solution during the subsequent T (= 100) iterations after
ein is assigned to a timeslot t in the previous iteration. In addition, the aspiration
criterion is considered, where a solution that improves the current best solution
xbest is always regarded as a non-tabu solution. After the selection of the next
current timetable, push the ejected events into EL if one or more events are
ejected, and the current solution x and current best solution xbest (if necessary)
are updated by x′. Iterations are repeated until all events are scheduled, and the
obtained feasible timetable is returned.
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4 Computational Experiments

4.1 Experimental Settings

We investigated the performance of the RPNS algorithm on the benchmark set
of Socha et al. [6] because this benchmark set has been intensively tackled by
many algorithms. This benchmark set consists of 11 instances, which are divided
into three categories (5 small instances, 5 medium instances, and one large in-
stance) according to the number of courses, rooms, and students. The numbers
of (courses, rooms, students) are (100, 5, 80) for the small instances, (400, 10,
200) for the medium instances, and (400, 10, 400) for the large instance. We do
not show results for the small instances because some of the previous approaches
in the literature as well as RPNS can find feasible timetables with a penalty cost
of zero, which makes these instances useless for comparison purposes.

The RPNS algorithm was implemented in C++ and was executed in a virtual
machine environment (i.e., each job is executed on a single core, but multiple jobs
may be executed in the same node) on a cluster with Intel Xeon 2.93 GHz nodes.
We performed the RPNS algorithm with various combinations of tabu tenure
(T = 0, 5, 10, 20, 30, 50, 70, 100, 120, 150, and, 200) and neighborhood size
(ratio = 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.5, and 1) in order to investigate
their effects and relation on the performance. We set iterMax = � 100,000

ratio � in
order to makes the total number of evaluations of solutions in a single run
(and therefore the computation time) the same regardless of the difference in
the neighborhood size. For each of all configurations, we performed the RPNS
algorithm 10 times on each instance.

4.2 Results

Figure 1 shows the results of the RPNS algorithm for all possible pairs of ratio
and T ; each curve, which corresponds to a value of ratio, is a plot of the average
penalty values over 10 runs against the different values of T .

The RPNS algorithm with the full neighborhood (ratio = 1) finds high quality
timetables that improves the lowest penalty timetables reported in the litera-
ture (except for instance large) if T is set to the best value for each instance.
However, the quality is fairy sensitive to the value of T , meaning that the trade-
off between exploitation and exploration must be controlled appropriately to
achieve a high performance.

We can see that when T is set to the best value for each value of ratio, the use
of partial neighborhoods (ratio < 1) improves the result of the full neighborhood
(ratio = 1) unless the neighborhood size is too small. This is attributed to the
trade-off between the positive effect of the increase in the number of iterations
and the negative effect of the decrease in the possibility of finding a better solu-
tion in the neighborhood at each iteration. An important observation is that the
best value of T decreases as the value of ratio is decreased. The reason for this is
that a reduction of the neighborhood size has an effect to diversify the search. An
interesting observation is that the best performance over all possible pairs of ratio
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Fig. 1. Results of RPNS (iterMax = � 100,000
ratio

�), where horizontal dotted lines represent
the best penalty values found in the literature

and T seems to be obtained when the neighborhood size is optimized under the
setting of T = 0. For example, in the result on medium 1, the best performance is
obtained by setting T = 5 and ratio = 0.1, but a better (or similar) result will
be obtained by setting T = 0 and ratio between 0.05 and 0.1. This is a little bit
surprising because the strength of tabu search is completely spoiled in the setting
of T = 0, meaning that a mechanism of diversifying the search depends solely on
the reduction of the neighborhood size. From a practical standpoint, this is a nice
property because the best performance is attained by adjusting only one param-
eter ratio instead of adjusting both parameters T and ratio.

4.3 Analysis

In RPNS, the reduction of the neighborhood size plays an important role in
diversifying the search, and we analyze this effect in more detail. Graph (a)
of Figure 2 shows the number of students attending to each of the events for
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Fig. 2. (a) The number of students attending to each of the events, and (b–i) the
cumulative number of moves for each of the events in a single run of RPNS

medium 1 and medium 5, where the events are re-indexed in descending order of
the number of the students. We can see that the number of students varies widely
among the events in medium 5, while the difference in the number of students
is relatively small in medium 1. The other graphs (b)–(i) show the cumulative
number of moves for each of the events (e.g. if events e1 and e2 are exchanged,
both counts of e1 and e2 are incremented) in a single run of the RPNS algorithm
for several settings of ratio and T on the two instances, where the events are re-
indexed in the same order as in the graph (a). Note that the cumulative number
of moves presented in Figure 2 is the result when the number of iterations is
100,000.

Graphs (b) and (c) show the results of a setting (ratio = 1, T = 0) on the two
instances. We can see that in medium 5 the cumulative number of moves tends
to increase as the number of students decreases (graph (c)). This is a natural
consequence because the impact of an event on the penalty cost increases as the
number of students increases. A similar situation does not occur in medium 1

because the difference in the number of students between the events is small,
but cycling occurred frequently during the search and therefore the cumulative
number of moves are concentrated in a part of the events (graph (b)).

Graphs (d)–(f) shows the results of three settings (ratio = 1, T = 30),
(ratio = 0.1, T = 0), and (ratio = 0.02, T = 0) on medium 1, where T = 30 is
the best value (when ratio = 1) and ratio = 0.1 is the best value
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Table 1. Comparisons with the state-of-the-art algorithms

GDTS NGDHH ENGDHH HHSA RPNS

(5 runs) (10 runs) (20 runs) (10 runs) (10 runs)

best best best best ave. best

medium 1 78 71 38 99 14.8 7

medium 2 92 82 37 73 12.4 10

medium 3 135 112 60 130 32.3 24

medium 4 75 55 39 105 9.6 5

medium 5 68 103 55 53 16.6 6

large 556 777 638 385 262.0 205

(when T = 0) for this instance. Graphs (g)–(i) shows the results of three set-
tings (ratio = 1, T = 150), (ratio = 0.1, T = 0), and (ratio = 0.02, T = 0) on
medium 5, where T = 150 is the best value (when ratio = 1) and ratio = 0.02
is the best value (when T = 0) for this instance.

Compared to the result of the full neighborhood (ratio = 1) with T = 0
(graphs (b) and (c)), the distribution of the cumulative number of moves is
spread by setting T = 30 (medium 1) and T = 150 (medium 5) through the effect
of tabu search. More importantly, we can see that a similar effect is obtained by
decreasing the neighborhood size even if the value of T is set to zero, and this
effect becomes more prominent as the value of ratio is decreased. These results
show that the degree of diversification of the search can be controlled by the
neighborhood size.

4.4 Comparisons with Other Algorithms

Finally, we compare the performance of RPNS (iterMax = � 100,000
ratio �) with those

of leading algorithms that have shown competitive performance on the bench-
mark set of Socha et al. Table 1 shows the comparison results. The compared
algorithms, which are selected from about thirty algorithms found in the litera-
ture are Great Deluge with Tabu Search (GDTS) [1], Non-linear Great Deluge
Hyper Heuristic (NGDHH) [4], Extended version of Non-linear Great Deluge Hy-
per Heuristic (ENGDHH) [5], and Hybrid Harmony Search Algorithm (HHSA)
[2]. For RPNS, we present the best and average results of 10 runs obtained with
the setting of T = 0 and the best value of ratio for each instance (see Figure 1)
where the values of ratio are 10 (medium 1), 10 (medium 2), 5 (medium 3), 10
(medium 4), 2 (medium 5), and 2 (large), respectively. For each of the compared
algorithms, the best results obtained by multiple runs with various parameter
settings (if experiments were conducted with various settings) are presented.
Note that our purpose here is not to allege the superiority of RPNS over the
compared algorithms because the value of ratio was adjusted for each instance
in RPNS, but we can see that the quality of the timetables obtained by RPNS
is far ahead of others.

The average computation times for a single run of RPNS with the best values
of ratio (and T = 0) were 323 seconds (medium 1), 282 seconds (medium 2), 451
seconds (medium 3), 315 seconds (medium 4), 826 seconds (medium 5), and 418
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seconds (large), respectively. For the compared algorithms, the average compu-
tation times for a single run for each of the instances were approximately 12 hours
(GDTS), 3–5 hours (NGDHH), 2.5–5 hours (ENGDHH), and 6 hours (HHSA),
respectively. We can see that the computational effort of RPNS is reasonable
even allowing for the differences in the computer speed and implementation.

5 Conclusion and Future Work

We have proposed an tabu search algorithm using an candidate list stratety
with random sampling (random partial neighborhood search, RPNS) for the
the university course timetabling problem, where the neighborhood size can be
adjusted by a parameter ratio. Experimental results show that the degree of
diversification of the search can be controlled by the neighborhood size, and the
RPNS algorithm attains a very good performance when the neighborhood size is
set properly especially when the tabu tenure is set to zero. In fact the quality of
the timetables obtained by the RPNS algorithm with the best value of ratio is
far ahead of those of the state-of-the-art algorithms. However, the quality is fairy
sensitive to the value of ratio. At the current moment, it is difficult to estimate
the best value of ratio for a given instance before or during the search, and a
possible direction for future research is to develop a self-adapting mechanism for
the value of ratio.
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