
Balancing Bicycle Sharing Systems:

An Analysis of Path Relinking and
Recombination within a GRASP Hybrid�

Petrina Papazek, Christian Kloimüllner, Bin Hu, and Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Favoritenstraße 9–11/1861, 1040 Vienna, Austria
{papazek,kloimuellner,hu|raidl}@ads.tuwien.ac.at

Abstract. In bike sharing systems, a vehicle fleet rebalances the system
by continuously moving bikes among stations in order to avoid rental
stations to run entirely empty or full. We address the static problem
variant assuming initial fill levels for each station and seek vehicle tours
with corresponding loading instructions to reach given target fill levels
as far as possible. Our primary objective is to minimize the absolute
deviation between target and final fill levels for all rental stations. Build-
ing upon a previously suggested GRASP hybrid, we investigate different
approaches for hybridizing them with Path Relinking (PR) and simpler
recombination operators. Computational tests on benchmark instances
derived from a real world scenario in Vienna give insight on the impacts
of the PR and recombination techniques and manifest that certain PR
extension improve the results significantly. Ultimately, a hybrid exclu-
sively searching a partial PR path in the neighborhood of the guiding
solutions turns out to be most fruitful.

1 Introduction

Public Bicycle Sharing Systems (BSSs) are booming in many cities around the
globe. A BSS comprises a set of automated rental stations, which allows users to
rent and return bikes at any station of the system at any time. Establishing BSSs
in cities is beneficial as they augment public transport very well, are “green”
alternatives to motorized traffic, and contribute to public health [1]. However,
BSSs face one major issue: without actively redistributing bikes among stations,
i.e. balancing the stations, most would either run out of available bikes or free
slots. This natural disbalance of a BSS originates from diverse circumstances,
such as topography, commuting patterns, and weather conditions. To keep the
system in balance, most BSS operators actively redistribute bikes among stations
by a vehicle fleet.

� This work is supported by the Austrian Research Promotion Agency (FFG), contract
831740. The authors thank Citybike Wien, the Austrian Institute of Technology
(AIT), and Energie und Umweltagentur Niederösterreich (eNu) for the collaboration
in this project.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 792–801, 2014.
c© Springer International Publishing Switzerland 2014

Balancing Bicycle Sharing Systems 793

We consider the Balancing Bicycle Sharing System (BBSS) problem as intro-
duced in [2]: Given a set of vehicles and a certain time budget, our goal is to
find vehicle tours with corresponding bicycle loading instructions such that the
stations’ fill levels are brought to specified target values as far as possible.

Building upon our previous work, in particular a GRASP hybrid, we inves-
tigate different extensions by Path Relinking (PR) and simpler recombination
operators and their impacts. While straight-forward applications of PR do not
yield significant improvements in solution quality but rather increase the com-
putational costs substantially, a variant, where only a part of the complete PR
path in the vicinity of the guiding solution is searched, turns out to be fruitful.
The GRASP hybrid in conjunction with this restricted form of PR is able to
improve previously leading results on mid-size instances significantly.

2 Related Work

Although BBSS is a relatively new problem domain already several different
algorithmic approaches have been suggested for diverse variants of it. Most of
them apply integer linear programming techniques [3,4,5,6], whose applicability,
however, is restricted to small instances or strongly simplified problem variations.

In our previous work we have developed a greedy construction heuristic which
we improved by the PILOT method [7]. As metaheuristic approaches we estab-
lished a Variable Neighborhood Search (VNS) [2] with an embedded Variable
Neighborhood Descent (VND) and GRASP [7]. Our results about the static case
have been refined together with comprehensive computational tests in the Jour-
nal of Global Optimization [8]. A more detailed description of these approaches
can be found in Section 4. Comparing different work on BBSS is usually difficult
because they consider various specific problem variants. Di Gaspero et al. [9,10]
proposed approaches based on constraint programming, ant colony optimiza-
tion, and large neighborhood search and tested them on the same benchmark
instances as ours, though they could not outperform our previous approaches
mentioned above.

For the dynamic case, where the system is rebalanced while usage is simulated,
only few work has been published so far [11]. In a recent work we considered this
scenario and extended our techniques to handle expected dynamic user demands
without relying on an expensive time-discretization [12].

Much more work exists on other aspects of BSSs, such as an optimal network
design [13], system characteristics and usage patterns [14], but they are not in
the scope of this paper.

3 Problem Definition

We consider the static or offline BBSS problem variant which neglects user in-
teraction during rebalancing and model the BSS as a complete directed graph
G0 = (V0, A0). The vertices V0 comprise all rental stations V and the depot 0,
which is the start and end point of the tours. The arcs A0 connect all vertices

794 P. Papazek et al.

and are weighted with time tu,v. This time represents the travel time between
nodes u, v ∈ V0 including an average service time for loading or unloading bikes
at node v. Furthermore, we are given for each station v ∈ V the capacity Cv,
i.e., the number of bike slots, the initial fill level pv, and a target fill level qv.
The BSS operator employs a fleet of vehicles L for distributing the bikes. Each
vehicle l ∈ L starts empty at the depot and may visit an arbitrary number of
stations before it has to return empty to the depot again. Each vehicle l ∈ L has
associated a bike capacity Zl.

A solution to the BBSS problem comprises a tour for each vehicle l ∈ L
and corresponding loading instructions for each stop. We define this ordered
sequence of visited stations as rl = (r1l , . . . , r

ρl

l) with ril ∈ V , i = 1, . . . , ρl, and
ρl being the number of visited stations. An important aspect is that stations
may be visited multiple times by the same or different vehicles. Each visit has
associated loading instructions yil ∈ {−Zl, . . . , Zl} with l ∈ L and i = 1, . . . , ρl,
specifying how many bikes are to be picked up (yil > 0) or delivered (yil < 0)
at that visit. A solution is feasible if vehicle and station capacities are never
exceeded, the number of bikes available at stations is never below zero, a vehicle
does not deliver more bikes than it has actually loaded, and if the working time
tl of a vehicle l ∈ L does not exceed a given total time budget t̂.

Let av be the final number of bikes at each station v ∈ V after rebalancing.
The primary objective is to minimize the deviation from the target values qv,
i.e., the disbalance |av − qv| at each station v ∈ V . As secondary objectives we
want to minimize the total number of loading operations |yil | over all visits ρl
and all vehicles L and the working time tl of all drivers l ∈ L. This is expressed
by the following objective function:

min ωbal
∑

v∈V

|av − qv|
︸ ︷︷ ︸

disbalance

+ ωload
∑

l∈L

ρl∑

i=1

|yil |
︸ ︷︷ ︸
loading operations

+ ωwork
∑

l∈L

tl

︸ ︷︷ ︸
working time

(1)

The scaling factors ωbal, ωload, and ωwork control the relative importance of
these terms. We assume that any improvement in balance is always preferred
over decreasing the number of loading actions or reducing the working time and
set the scaling factors accordingly (ωbal = 1 and ωload = ωwork = 1/100 000).
The reason is that a balanced system is top priority for maximizing customer-
satisfaction while from the operator’s point of view, workers are paid for the
whole shift length anyway, and therefore a reduction in the tour lengths is just
a secondary aspect.

4 Metaheuristics Approaches

This section gives an overview on the metaheuristic approaches we proposed
in [8]. All of these approaches utilize an incomplete solution representation by
considering vehicle tours only; corresponding loading operations are computed
via an auxiliary procedure whenever a solution is evaluated. From the different

Balancing Bicycle Sharing Systems 795

variants for this procedure considered in [8], we use here the fastest greedy heuris-
tic [2,8], which is the most reasonable approach in practice since it scales best
for large instances and nevertheless yields close to optimal loading operations.

To create an initial solution we employ two alternative construction heuris-
tics: a greedy construction heuristic (GCH) and an extension of it based on the
PILOT method [15]. GCH sequentially constructs vehicle tours following a local
best successor strategy. To derive a tour for each vehicle, we compute the max-
imum number of bicycles γv that can be picked up or delivered at any not yet
balanced station v without exceeding/deceeding its target value. For each vehi-
cle, we construct a tour by starting at the depot and evaluating the next best
successor by the ratio γv/tu,v. Here, we only consider a station v if enough time
remains to return to the depot afterwards. If there are no further feasible stations
left, we proceed with the next vehicle. Afterwards, we derive loading instructions
by an auxiliary heuristic. The PILOT construction heuristic (PCH) extends the
greedy construction heuristic by overcoming possibly shortsighted successors.
In particular, PCH evaluates each potential successor more accurately by con-
structing a complete temporary route utilizing the objective function value as
evaluation criterion. This approach requires more time than GCH, but yields
substantially better results in return.

For locally improving candidate solutions, we employ a Variable Neighbor-
hood Descent (VND) [16] using seven neighborhood structures and applying a
best improvement strategy [8]: remove station, insert unbalanced station, replace
station, intra or-opt, 2-opt* inter-route exchange, and intra-route 3-opt.

As the solution construction followed by VND is still quite fast and improve-
ment potential remains, the approach is further extended into a Variable Neigh-
borhood Search (VNS) [8] with the following shaking operators: move-sequence,
exchange-sequence, destroy-&-recreate, and remove-stations.

In addition to the VNS, we investigated a hybrid Greedy Randomized Adap-
tive Search Procedure (GRASP) [17] by iteratively applying randomized versions
of either GCH or PCH, locally improving each solution with the VND, and fi-
nally returning the overall best solution. Here, the PCH version with a random
neighborhood in the VND turned out to perform best.

In the experimental evaluation in [8], VNS yields the best results on small
and mid-size instances with up to 300 stations, while PCH-GRASP performed
better on large instances with up to 700 stations.

5 Path Relinking and Recombination in GRASP

Glover et al. [18] define PR as the evolutionary technique of altering an initial
solution I towards a guiding solution G – typically a solution from an elite set
– by a series of simple moves. These moves describe a trajectory or path of (not
necessarily feasible) solutions, and a best encountered solution is returned as re-
sult. According to numerous studies such as [19,20], PR yields promising results
on diverse related vehicle routing problems. Moreover, simpler recombination
techniques as they are mainly used in evolutionary algorithms are able to yield

796 P. Papazek et al.

possibly promising candidate solutions from the joined properties of two input
solutions in a fast manner. Therefore, we investigate extensions of the above
hybrid GRASP by PR and simpler recombination techniques. This section de-
scribes several specific approaches in detail, which we found most meaningful in
the context of BBSS, and explains how to embed it into GRASP.

5.1 PR and Recombination Variants

In order to iteratively transform solution I into solution G inside PR, we need to
define basic moves. Again, we consider loading instructions to be always calcu-
lated by the auxiliary greedy heuristic for each intermediate candidate solution
on the fly and thus, solely concentrate on the tours. One basic move edits a
single vehicle tour rl by removing, adding, or replacing exactly one station.

We adopt the common principle from PR for other vehicle routing problems to
match each tour of I with a tour in G and individually relink or recombine each
pair of corresponding tours. As we consider the case of having a not necessarily
homogeneous vehicle fleet, we relate each vehicle tour of I with the tour of the
same vehicle in G. Then, we transform the tours from I into corresponding ones
from G, yielding a series of intermediate solutions. These intermediate solutions
are not necessarily feasible as the relinked tours may exceed the allowed time
budget t̂. Consequently, we repair such infeasible tours by pruning them from
the end before they are evaluated. In the following we denote by rl(G) the tour
of vehicle l in solution G and by rl(I) the corresponding tour in solution I, l ∈ L;
ρl(G) and ρl(I) denote their respective tour lengths. We consider the following
operators for systematically generating intermediate solutions.

Sequential Replace PR (Seq-PR). Within this basic PR operator, we se-
quentially transform each tour rl(I), l ∈ L step-by-step with basic moves into
G’s corresponding tour. This is achieved by iterating over the stops ril with
i = 1, . . . , ρl(G) and replacing each corresponding stop ril (I) by ril(G) or adding
it if I’s original tour was shorter.

One-Point-Recombination (OP-Rec). Starting from the parent solutions
I and G, we randomly select a vehicle l ∈ L and a crossover position p ∈
{1, . . . ,min(ρl(I), ρl(G))}. In a first offspring, the tour rl becomes

(r1l (I), . . . , r
p−1
l (I), rpl (G), . . . , r

ρl(G)
l (G))

and in a second

(r1l (G), . . . , rp−1
l (G), rpl (I), . . . , r

ρl(I)
l (I)).

For each of the next vehicles l ∈ L we randomly decide whether its tour is copied
from rl(G) or rl(I) without any further change.

Balancing Bicycle Sharing Systems 797

Single Tour Recombination (ST-Rec). This recombination variant basically
works like OP-Rec by first selecting a vehicle and performing one-point crossover
on the two corresponding tours, but then, all remaining tours are only adopted
from I for the first offspring and only G for the second offspring, respectively.
Thus, this operator changes a parent solution only in a part of one tour.

Restricted Multistart PR (MS-PR). This operator combines concepts from
Seq-PR and ST-Rec. A main drawback of Seq-PR is its high computational cost.
To speed up Seq-PR, we skip the evaluation of solutions in the middle part of
the tours, since most potential solutions are in the close neighborhood of the
optimized tours in I and G. As we found out in preliminary analysis, the best
solutions on trajectories from I to G are almost always located relatively close
to G and for this reason we focus on the final stations of tours. We therefore
restrict ourself in MS-PR to final parts of paths from I to G. This is achieved by
starting with a whole copy of G and replacing just one tour rl(G), l ∈ L, by a
copy from rl(I). This tour rl(I) is then step-by-step relinked as in Seq-PR until
G is reached again. In particular, it turned out most successful to solely evaluate
the first and three final stations of the tour. If there is more than one vehicle, we
perform the same procedure also for all the other vehicles in L; i.e., we perform
multiple starts, one for each vehicle, which gives the operator its name.

Applying VND to the final best solution from the PR operator as suggested
by [21] typically improves our results, because of frequent unfavorable ordering
of stations by merely merging arbitrary tours. Note that our PR primarily uses
replace operations without more sophisticated best improvement insert strate-
gies. To integrate a reordering of stations into the PR or recombination operator,
we can additionally employ VND to each intermediate/offspring solution.

However, performing the full VND at each step may soon become too expen-
sive for large instances. In order to speed up the process, we use a limited variant
of VND, which works as follows: For each intermediate PR solution, we test if
applying a single move of each VND neighborhood leads to a solution that is
better than I. Only if this is the case, a full VND is applied. This way lots of
mediocre solutions on the path are skipped relatively quickly.

5.2 Embedding in GRASP

For applying PR and recombination operators within our PILOT-GRASP from
[8], we add a memory to GRASP through an elite set of best solutions. Fiesta et
al. [21] proposed different adaptive variants to join PR and GRASP, in particular
Path Relinking GRASP (PR-GRASP), which we adopt here.

In PR-GRASP we employ the PR or recombination operator on each new
VND improved GRASP solution and a randomly selected member of the elite
set. The elite set is initialized by adding solutions from the GRASP procedure
with the condition that they must be different from each other. If the initial elite
set is sufficiently large (e.g., after five GRASP iterations), we employ the PR
or recombination operator in each GRASP iteration. Before embarking the next

798 P. Papazek et al.

GRASP iteration, we consider to incorporate the PR or recombination enhanced
candidate solution to the elite set in case it is different from all other already
included members. In this context, a pure random update strategy turned out
to perform best: We select a random element from the elite set and replace it by
the new candidate solution if the objective value of the new one is better. In or-
der to enhance diversity and quality in the elite set, we also tested the common
approach of considering a minimal solution edit distance as proposed by [21].
However, preliminary tests revealed that this distance-based replacement strat-
egy did not yield significantly better solutions but introduced a non-negligible
runtime overhead due to the distance calculations.

6 Computational Analysis

In this section we show the results of our PR and recombination hybrids and
compare them with the leading approaches from [8]. The instances of our bench-
mark sets1 have been derived from the real-world scenario in Vienna provided by
Citybike Wien and the AIT. The initial fill levels pv of the stations are taken from
a historical snapshot of the system in Vienna whereas the target fill levels qv are
calculated according to the estimated user demands at the particular stations.
For further reference on the computation of target values, please, refer to our
publication in the Journal of Global Optimization [8]. We consider an amount
of stations |V | ∈ {60, 90, 180, 300, 400, 500}, a time budget t̂ of 2, 4, 8 hours,
and a number of vehicles |L| between 1% and 2% of |V | in order to test rea-
sonable settings for practical scenarios. Large instances beyond 500 stations are
neglected because the PR-GRASP variants are able to run only a few iterations,
and PR extensions would make no sense in such situations. All benchmark sets
include 30 instances and represent unique combinations of |V | and |L|. We run
each instance on a single core of an Intel Xeon E5540 machine with 2.53 GHz.
For every algorithmic variant we use a common CPU time limit of 15 minutes
for small instances with 30 stations, 30 minutes for medium instances with 60
to 90 stations, and 60 minutes for large instances with more than 90 stations.

Tables 1 and 2 include the results for the basic PR and recombination variants
in conjunction with PILOT-GRASP as well as our previously developed meta-
heuristics from [8] and our most successful PR-GRASP variants: PILOT-GRASP
with ST-Rec including full VND and MS-PR including limited VND. We list the
mean objective values obj, the counted best values #best (i.e., the number of
instances where the approach has been superior to all other variants over both
tables), and the number of major GRASP-iterations gtot for each instance.

The OP-Rec operator is comparatively fast and enables many GRASP iter-
ations. In particular, it requires only two VND evaluations per iteration and is
thereby substantially faster than the Seq-PR operator. Both variants, Seq-PR
as well as OP-Rec, are only competitive on smaller instances and are worse for
mid-size and large instances. Thus, it is most interesting to concentrate on in-
stances of smaller size for these PR variants. We observe that for these smaller

1 https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#bbss

https://www.ads.tuwien.ac.at/w/Research/Problem_Instances#bbss

Balancing Bicycle Sharing Systems 799

Table 1. Computational results of Seq-PR- and OP-Rec-GRASP

Seq-PR-GRASP OP-Rec-GRASP
Inst. set full VND limited VND full VND limited VND

|V | |L| t̂ #best obj gtot #best obj gtot #best obj gtot #best obj gtot
30 1 2 26 147.33499 715197.0 26 147.33499 713813.0 26 147.33499 713312.0 26 147.33499 723585.5
30 1 4 22 95.60334 43876.5 28 95.40335 20617.0 28 95.40335 53717.0 22 95.73667 74951.0
30 1 8 24 29.20639 3605.5 29 29.20639 1142.0 28 29.27305 5352.5 26 29.20639 8773.0

60 1 4 18 270.93692 44641.5 26 269.93695 19738.0 26 269.93695 48428.5 20 270.73692 65299.5
60 1 8 15 170.80700 4086.0 20 170.34035 1273.0 19 170.27369 5616.0 15 170.87366 9330.5
60 2 2 24 293.93664 92158.0 26 293.80331 45680.5 26 293.80331 116599.5 24 293.93664 133458.0

90 2 4 8 347.60720 6505.0 12 346.27390 1783.5 19 345.94057 8604.0 5 347.80719 14387.5
90 2 8 5 174.94703 647.0 0 176.28033 99.0 0 175.88033 1039.5 0 174.94702 1971.0
90 4 4 0 197.94672 1537.0 0 198.54669 217.5 0 197.61337 2490.0 1 197.21339 5547.5

180 4 4 1 721.21426 1459.0 3 721.14757 236.0 2 721.34759 2486.5 1 722.01424 4505.0
180 4 8 0 380.29379 146.5 0 385.09377 16.0 0 383.82704 261.0 1 379.89377 654.5
180 5 8 0 271.23286 91.0 0 275.83275 11.0 0 275.56617 160.5 0 269.69964 465.5

300 6 4 0 1249.08822 311.5 0 1253.88816 38.0 0 1253.22150 530.0 0 1249.08824 1220.5
300 6 8 0 718.77440 38.0 0 725.04097 7.0 0 724.44097 60.5 3 716.24113 187.0
300 9 8 0 399.45832 18.0 0 403.59148 6.0 0 402.99165 29.0 0 396.45840 103.0

400 8 4 0 1660.96188 128.5 0 1668.42848 16.0 0 1665.62856 237.5 0 1660.36191 563.0
400 8 8 0 954.52126 17.0 0 956.92125 6.0 0 957.92127 27.0 3 950.72133 86.5
400 12 8 2 530.27760 10.0 0 531.27760 6.0 0 532.07758 14.0 8 525.81105 49.5

500 10 4 1 2094.23569 61.0 0 2104.63555 9.0 0 2101.96892 110.5 1 2092.36906 297.0
500 10 8 1 1207.40169 11.0 2 1211.06830 6.0 0 1211.80159 15.5 3 1203.53505 47.0
500 15 8 1 665.83047 7.0 2 666.96383 6.0 2 667.16383 9.0 3 662.96395 27.0

Total 148 12581.61667 914552.0 174 12631.01597 804726.5 176 12623.41628 959100.0 162 12556.95064 1045509.0

Table 2. Computational results of ST-Rec- and MS-PR-GRASP

Inst. set VNS PILOT-GRASP ST-Rec-GRASP MS-PR-GRASP

|V | |L| t̂ #best obj gtot #best obj gtot #best obj gtot #best obj gtot
30 1 2 28 147.20166 1215760.5 29 147.13500 618965.5 26 147.33499 724028.0 26 147.33499 698800.0
30 1 4 27 95.20336 269610.5 23 95.73667 100840.0 28 95.40335 52850.5 22 95.80334 60057.5
30 1 8 26 29.20639 37254.0 26 29.27305 10879.0 28 29.20639 5422.0 25 29.27305 6728.0

60 1 4 29 269.60362 310747.5 17 271.20358 77673.0 26 269.93695 48277.0 18 270.93692 55162.0
60 1 8 18 170.47367 44431.5 12 171.00699 10889.5 25 170.20702 5539.5 13 170.87366 7755.0
60 2 2 23 293.80331 505746.0 22 294.06999 190196.5 27 293.60332 118511.5 23 294.00330 79788.0

90 2 4 15 346.27390 50771.5 2 348.74052 17740.5 21 345.87391 8492.5 5 347.40721 9292.5
90 2 8 18 173.14705 7677.0 2 175.34702 2325.5 2 176.08031 1015.0 3 174.74701 1296.5
90 4 4 21 193.74679 15854.5 0 197.88006 6829.5 5 196.41340 2693.5 5 195.41342 2103.5

180 4 4 15 718.08096 14634.5 1 722.61423 5184.0 2 720.21427 2739.0 6 719.61426 2174.5
180 4 8 12 374.22726 1687.5 0 379.96048 739.0 0 382.42709 278.0 17 372.76058 308.5
180 5 8 11 264.03307 996.5 0 269.83290 510.0 0 272.96620 187.5 19 263.16634 187.5

300 6 4 19 1241.28831 3209.0 1 1248.82158 1355.5 0 1248.95489 699.0 10 1242.35494 459.0
300 6 8 6 715.10780 322.5 0 715.64113 201.0 0 722.04101 75.0 22 709.37453 79.5
300 9 8 3 403.25824 127.5 9 394.39177 114.5 0 401.52495 39.5 18 391.99176 37.0

400 8 4 13 1654.16199 1179.5 2 1658.49534 612.0 2 1660.89527 336.0 13 1653.16199 196.0
400 8 8 0 958.58794 120.0 6 949.05467 91.5 0 956.32119 37.0 21 946.52135 37.0
400 12 8 0 543.47730 53.0 13 524.34443 52.0 1 531.27757 21.0 7 526.47768 19.0

500 10 4 5 2092.16902 517.0 2 2091.90240 322.0 0 2095.03570 177.5 21 2084.03580 90.0
500 10 8 0 1225.46808 55.5 11 1202.93505 49.5 1 1209.66824 21.5 12 1202.66836 21.0
500 15 8 0 690.22984 26.5 16 660.43057 28.0 3 666.63055 13.0 4 664.96383 12.0

Total 289 12598.74956 2480782 194 12548.81743 1045598 197 12592.01657 971453.5 310 12502.88432 924604.0

instances it does not make sense to apply the limited VND since only a few solu-
tions are actually improved. Moreover, ST-Rec yields significantly better results
than the original OP-Rec operator because we destroy less well working parts of
the tours.

Comparing with state-of-the-art approaches (i.e., VNS and PILOT-GRASP),
the PR extensions are able to boost the performance of GRASP on medium
instances which have so far been dominated by VNS. Among the PR-GRASP
variants, we observe that MS-PR-GRASP is superior on medium and large in-
stances with 180 to 500 stations whereas ST-Rec-GRASP is able to enhance
GRASP for small instances with 60 to 90 stations. While VNS still performs

800 P. Papazek et al.

best on medium instances with 90 stations in overall, the results indicate that
our new GRASP variants are able to catch up on instances with smaller time
budgets of 2 and 4 hours. These observations are confirmed by the Wilcoxon
Rank Sum test on an error level of 5%.

7 Conclusions and Future Work

To improve results of a state-of-the-art PILOT-GRASP hybrid for the static
BBSS variant, we analyzed different variants of PR and recombination opera-
tors to obtain new promising candidate solutions by joining parts of two parental
solutions. Seq-PR follows a very traditional way of performing PR and introduces
a quite high computational overhead. In contrast, OP-Rec is an implementation
of a fast, rather classical one-point crossover in the context of our solution rep-
resentation. It turned out that intermediate solutions that are constructed from
large parts of both parent solutions are in general less promising than when
most properties are inherited from one parent and only a smaller portion is
adopted from the second parent. Consequently, we came up with ST-Rec, which
performs the crossover only on a single tour and adopts all other tours from
a single parent. It turned out that this generally less disruptive recombination
yields significantly better results. We then also modified Seq-PR into MS-PR,
where we investigate only parts of whole paths from an initial solution to the
guiding solution that are close to the guiding solution and skip solutions in the
middle of tours. This modification was most fruitful and yields the best results.
In this way we could obtain new leading solutions and significantly improved
average results especially on larger instances with up to 500 nodes.

More generally, we strongly believe that also in other problems, the parts of
path relinking trajectories close to either the initial or the guiding solutions may
be more promising than the middle ones, and consequently, focusing the search
on those ends may yield significant improvements or speedups. With respect to
BBSS, we intend to integrate PR also in our GRASP-variant for the dynamic
BBSS [12], where user interactions during rebalancing are also considered.

References

1. DeMaio, P.: Bike-sharing: History, impacts, models of provision, and future. Public
Transportation 12(4), 41–56 (2009)

2. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing
systems: A variable neighborhood search approach. In: Middendorf, M., Blum, C.
(eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 121–132. Springer, Heidelberg (2013)

3. Chemla, D., Meunier, F., Calvo, R.W.: Bike sharing systems: Solving the static
rebalancing problem. Discrete Optimization 10(2), 120–146 (2013)

4. Raviv, T., Tzur, M., Forma, I.A.: Static repositioning in a bike-sharing system:
models and solution approaches. EURO Journal on Transp. and Log., 1–43 (2013)

5. Benchimol, M., Benchimol, P., Chappert, B., De la Taille, A., Laroche, F., Meunier,
F., Robinet, L.: Balancing the stations of a self service bike hire system. RAIRO –
Operations Research 45(1), 37–61 (2011)

Balancing Bicycle Sharing Systems 801

6. Schuijbroek, J., Hampshire, R., van Hoeve, W.J.: Inventory Rebalancing and Ve-
hicle Routing in Bike Sharing Systems. Technical Report 2013-E1, Tepper School
of Business, Carnegie Mellon University (2013)

7. Papazek, P., Raidl, G.R., Rainer-Harbach, M., Hu, B.: A PILOT/VND/GRASP
hybrid for the static balancing of public bicycle sharing systems. In: Moreno-Dı́az,
R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST. LNCS, vol. 8111, pp.
372–379. Springer, Heidelberg (2013)

8. Rainer-Harbach, M., Papazek, P., Hu, B., Raidl, G.R.: PILOT, GRASP, and VNS
approaches for the static balancing of bicycle sharing systems. Journal of Global
Optimization (2013), doi:10.1007/s10898-014-0147-5

9. Di Gaspero, L., Rendl, A., Urli, T.: A hybrid ACO+CP for balancing bicycle
sharing systems. In: Blesa, M.J., Blum, C., Festa, P., Roli, A., Sampels, M. (eds.)
HM 2013. LNCS, vol. 7919, pp. 198–212. Springer, Heidelberg (2013)

10. Di Gaspero, L., Rendl, A., Urli, T.: Constraint-based approaches for balancing
bike sharing systems. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 758–773.
Springer, Heidelberg (2013)

11. Contardo, C., Morency, C., Rousseau, L.M.: Balancing a dynamic public bike-
sharing system. Technical Report CIRRELT-2012-09, Montreal, Canada (2012)

12. Kloimüllner, C., Papazek, P., Hu, B., Raidl, G.R.: Balancing bicycle sharing sys-
tems: An approach for the dynamic case. In: Evolutionary Computation in Com-
binatorial Optimization, 12 p. (to appear, 2014)

13. Lin, J.R., Yang, T.H., Chang, Y.C.: A hub location inventory model for bicycle
sharing system design: Formulation and solution. Computers & Industrial Engi-
neering 65(1), 77–86 (2013)

14. Nair, R., Miller-Hooks, E., Hampshire, R.C., Bušić, A.: Large-scale vehicle sharing
systems: Analysis of Vélib’. Int. Journal of Sustain. Transp. 7(1), 85–106 (2013)

15. Voß, S., Fink, A., Duin, C.: Looking ahead with the PILOT method. Annals of
Operations Research 136, 285–302 (2005)

16. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Oper-
ations Research 24(11), 1097–1100 (1997)

17. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In:
Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249.
Kluwer Academic Publishers (2003)

18. Glover, F., Laguna, M., Marti, R.: Fundamentals of scatter search and path relink-
ing. Control and Cybernetics 29(3), 653–684 (2000)

19. Ho, S.C., Grendreau, M.: Path relinking for the vehicle routing problem. Heuris-
tics 12(1-2), 55–72 (2006)

20. Rahimi-Vahed, A., Crainic, T., Gendreau, M., Rei, W.: A path relinking algorithm
for a multi-depot periodic vehicle routing problem. Heuristics 19(3), 497–524 (2013)

21. Festa, P., Resende, M.G.C.: Hybridizations of GRASP with path-relinking. In:
Talbi, E.-G. (ed.) Hybrid Metaheuristics. SCI, vol. 434, pp. 139–159. Springer,
Heidelberg (2013)

	Balancing Bicycle Sharing Systems:An Analysis of Path Relinking andRecombination within a GRASP Hybrid
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Metaheuristics Approaches
	5 Path Relinking and Recombination in GRASP
	5.1 PR and Recombination Variants
	5.2 Embedding in GRASP

	6 Computational Analysis
	7 Conclusions and Future Work
	References

