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Abstract. This paper investigates the relation between the distribution
of the weights and the number of local optima in the Number Partitioning
Problem (NPP). The number of local optima in the 1-bit flip landscape
was found to be strongly and negatively correlated with the coefficient of
variation (CV ) of the weights. The average local search cost using the 1-
bit flip operator was also found to be strongly and negatively correlated
with the CV of the weights. A formula based on the CV of the weights for
estimating the average number of local optima in the 1-bit flip landscape
is proposed in the paper. The paper also shows that the CV of the weights
has a potentially useful application in guiding the choice of heuristic
search algorithm.

Keywords: Combinatorial optimisation, phase transition, partitioning
problem, makespan scheduling, fitness landscape.

1 Introduction

The number partitioning problem (NPP) is a classical problem in theoretical
computer science. It is one of Garey and Johnson’s six basic NP-complete prob-
lems [4]. It has many practical applications such as multiprocessor schedul-
ing. The optimisation version of the problem can be defined as: given a set
A = {a1, . . . , an} of positive integers (weights) drawn at random from the set
{1, 2, ..,M}, the goal is to partition A into two disjoint subsets S, S′ such that
the discrepancy between them |∑ai∈S ai −

∑
ai∈S′ ai| is minimised. A partition

is called perfect, if the discrepancy between the two subsets is 0 when the sum
of the original set is even, or 1 when the sum is odd. Equivalently, the problem
can be viewed as minimising the maximum sum over the two subsets:

f(x) = max

{
∑

ai∈A

aixi,
∑

ai∈A

ai(1 − xi)

}

, x ∈ {0, 1}n (1)

The NPP has an easy-hard phase transition, with many perfect partitions with
probability tending to 1 in the easy phase, then the number of perfect partitions
drops to zero with probability tending to 1 in the hard phase. The transition is
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determined by the control parameter k = log2 M/n, which corresponds to the
number of bits required to encode the numbers in the set divided by the size
of the set. For log2 M and n tending to infinity, the transition occurs at the
critical value of kc = 1 [2,6]. The pairs of weights that are placed in the same
subset or in opposite subsets in all optimal solutions of an NPP instance, form
the backbone of that instance. There is a very sharp increase in the backbone
size of the optimal solutions in the NPP as one approaches the phase transition
boundary, after which the backbone tends to be complete giving a unique optimal
solution [8].

Theoretical analysis of randomized local search shows that it can be a good
approximation algorithm for the NPP [12]. Generally, when using local search
metaheuristics the average local search cost can vary across problem instances of
the same size by many orders of magnitude. A number of models of local search
cost for various NP-complete problems such as the Traveling Salesman Problem
(TSP), the Boolean Satisfiability Problem (SAT), and the Job-Shop Scheduling
Problem (JSP) [7,13,11], have been developed as functions of the problem fitness
landscape features. These models attempt to provide explanations for some or
ideally all of this variability in the search cost. They also aim to give insights
into why one problem instance is more difficult than the other and how the local
search is influenced by the properties of the landscape.

The phase transition in the NPP provides an explanation for the increase in
the local search cost for problem instances in the hard phase [1], agreeing with the
intuition that having fewer optimal solutions usually yield an increase in the local
search cost. However, there is considerable variability in the average local search
cost for instances in the hard phase that the phase transition fails to account for.
The average local search cost was found to vary by many orders of magnitude
for hard instances drawn from different distributions such as uniform, normal,
negatively and positively skewed distributions [1]. Also, it has been shown in
[9] that the number of local optima is not dependent on the easy-hard phase
transition, which suggests that the control parameter k is not necessarily good
for predicting which problem instances will be easy or hard for local search.

In this paper, we investigate the relation between the distributions of the
weights and the fitness landscape features of the NPP. We examine how the
number of local optima and the average cost of local search are influenced by
the distributions of the weights.

2 Weights Coefficient of Variation and NPP Landscape

Most of the existing analyses of the NPP assume that weights are drawn uni-
formly at random from a given range. Paper [1] shows that when different dis-
tributions are used, there can be large changes in local search performance in
hard instances, most noticeable in the 1-bit flip landscape. These changes are
mostly due to the difference in the number of local optima between instances
drawn from the different distributions. The results shown in [1] suggest that the
variability of the weights is what causes the difference in the number of local
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optima between instances of the NPP. To measure the variability of the weights
we use the coefficient of variation (CV ) which provides a measure of relative
variability or dispersion. CV is defined as the ratio of the standard deviation σ
to the mean μ:

CV =
σ

μ
(2)

We conducted a series of experiments in order to test the assumption that
variability of the weights results in different number of local optima. In the
experiments, instances from small problem sizes were considered to allow ex-
haustive enumeration of the entire search space, the problem sizes considered
are n = 12, 14, 16, 18, 20. For each problem size, 700 instances from the hard
phase (k = log2M/n > 1) were randomly generated with different values of CV .

The rest of this section gives an analysis of the obtained experimental results,
focusing on the number of local optima and the average local search cost and how
they correlate with the CV . The following definitions will be used throughout
this paper:

Search Space. The search space X is the finite set of all the candidate so-
lutions. Since the fitness function of NPP is a pseudo-Boolean function the
search space size is 2n. The binary representation of NPP creates a symmetry
in the search space, in the sense that a solution and its bitwise complement
have the same fitness value. Thus, the number of unique solutions is 2n−1.

Neighbourhood. A neighbourhood is a mapping N : X → P (X), that as-
sociates each solution with a set of candidate solutions, called neighbours
which can be reached by applying the neighbourhood operator once. The set
of neighbours of x is called N(x), and x /∈ N(x).
We consider two different neighbourhood operators in this paper: The 1 ham-
ming operator (H1), the neighbourhood using this operator is the set of
points that are reached by 1-bit flip mutation of the current solution x,
hence the neighbourhood size is |N(x)| = n. The second operator is the 1+2
hamming operator (H1+2), the neighbourhood here includes the hamming
one neighbours plus the hamming two neighbours of the current solution x
which can be reached by 2-bits flip mutation, the neighbourhood size for this
operator is |N(x)| = n+ (n(n− 1)/2).

Fitness Landscape. The fitness landscape of a combinatorial optimisation
problem is a triple (X,N, f), where f is the objective function f : X → R,
X is the search space and N is the neighbourhood operator function [10].

Local Optima. A point x ∈ X is a local optimum iff ∀y ∈ N(x), f(y) ≥ f(x).
The number of local optima found in the fitness landscape will be referred
to as m.

2.1 Number of Local Optima

We investigate here if the variability of the weights correlates with the number
of local optima in the NPP landscapes induced by the H1 and H1+2 neigh-
bourhood operators. Figure 1 shows that the local optima fraction of the search
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Fig. 1. Local optima as a fraction of the search space in the H1 landscape versus the
coefficient of variation CV for problem sizes n = 12, 14, 16, 18 and 20 and for 700
instances for each problem size. The correlation coefficients (r) between CV and the
the fraction of the local optima are shown for each plot.
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Fig. 2. Local optima as a fraction of the search space in the H1+2 landscape versus
the coefficient of variation CV for problem sizes n = 12, 14, 16, 18 and 20 and for 700
instances for each problem size. The correlation coefficients (r) between CV and the
the fraction of the local optima are shown for each plot.

space (m/2n) in the H1 landscape is highly and negatively correlated with the
coefficient of variation.
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The intuition behind the strong correlation between the number of local op-
tima in the H1 landscape and the CV is that, for smaller values of CV , the
similarity of the weights provides many ways to arrange the weights such that
moving one of the weights from one subset to the other does not lead to a bet-
ter solution, resulting in a larger number of local optima in the H1 Landscape.
Contrarily, in instances with larger values of CV , the discrepancy of the weights
enables the same application of the 1-bit flip move operator to lead to a better
solution most of the time, which result in fewer local optima.

Figure 2 shows that the fraction of local optima in the H1+2 landscape has
a weak negative correlation with the CV and slightly higher fractions of local
optima for instances with (0.4 < CV < 0.8). In both landscapes, the fraction
of local optima decreases as n gets larger. The correlation coefficients also get
weaker as the problem size grows, with a faster decay in the correlation between
the CV and the number of local optima in the H1+2 landscape. Higher orders
of n would need to be studied to examine if and how the correlation between
the CV and the number of local optima in both landscapes continue to exist in
larger problem sizes.

2.2 Average Number of Local Optima

The number of local optima typically influences the performance of local search
metaheuristics, and for the NPP it has been shown in [1] that the number of local
optima does indeed influence the local search cost. Given that, it is interesting
to be able to estimate the average number of local optima in the landscape of
a given NPP instance. For instances of the NPP with weights drawn from a
uniform distribution, Ferreira and Fontanari [3] derived the following formula,
using statistical mechanics analysis, for the average fraction of local minima in
the H1 landscape.

〈m〉
2n

=

√
24

π
n−3/2 (3)

Here we propose a generalized formula for estimating the average fraction of
local minima in the H1 landscape of the NPP. The formula does not require
the knowledge of the distribution from which the weights are drawn and only
depends on the CV of the weights and the size of the problem. The proposed
formula is based on the data we observed in figure 1 and it is as follows:

〈m〉
2n

= a exp(−b CV ) (4)

Where the values of the coefficients a and b depend on the size of the problem.
Figure 3 shows the estimation of the fraction of the local optima using this
formula and with the values of a and b, determined by the least squares fit
method, as shown in figure 4.
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Fig. 3. The fraction of Local optima versus the coefficient of variation CV for problem
sizes n = 12, 14, 16, 18 and 20 and for 700 instances for each problem size. The least-
squares fit lines were obtained using Eq. (4) with values of a and b as shown in figure 4
and the r2 values for the regression models ≈ 0.97.
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Fig. 4. The values of the a and b coefficients from Eq. (4) for problem sizes n = 12,
14, 16, 18 and 20, estimated using regression models. The r2 values for the regression
models are 0.96, 0.97, 0.97, 0.96, 0.97 respectively.

2.3 Cost of Local Search

To examine how the cost of finding the optimal solution varies for different val-
ues of CV and to investigate if the coefficient of variation can be used to guide
the choice of local search neighbourhood operator, steepest descent with random
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restart (Algorithm 1) was run with two neighbourhood operators, the H1 opera-
tor and the larger neighbourhood operator H1+2. The algorithmwas run for 1000
times for each instance. The cost of finding the global optima is then calculated
using the number of used fitness evaluations.

Algorithm 1. Steepest Descent with Random Restarts
repeat

Chose x ∈ {0, 1}n, uniformly at random
repeat

choose x′ ∈ N(x), such that f(x′) = miny∈N(x)f(y)
replace x with x′ if f(x′) < f(x)

until f(x) ≤ f(x′)
until f(x) is the optimal solution

Figures 5 and 6 show, respectively, the results of the steepest descent runs
with H1 and H1+2 neighbourhoods operators. The figures show that the average
cost of local search using H1 operator and the CV of the weights are strongly
and negatively correlated, while for the H1+2 the correlation is weakly negative.
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Fig. 5. The cost of steepest descent search with H1 neighbourhood operator for prob-
lem sizes n = 12, 14, 16, 18 and 20 and for the 700 instances for each problem size.
The x-axes represent the coefficient of variation CV and the y-axes represent the av-
erage number of fitness evaluations used to find the global optimum in log scale. Each
data point represents the average of 1000 runs of steepest descent. The correlation
coefficients (r) between CV and the cost of local search are shown for each plot.
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Fig. 6. The cost of steepest descent search with H1+2 neighbourhood operator for
problem sizes n = 12, 14, 16, 18 and 20 and for the 700 instances for each problem
size. The x-axes represent the coefficient of variation CV and the y-axes represent
the average number of fitness evaluations used to find the global optimum in log scale.
Each data point represents the average of 1000 runs of steepest descent. The correlation
coefficients (r) between CV and the cost of local search are shown for each plot.

The landscape induced by the H1+2 operator has far less number of local op-
tima than the landscape induced by the H1 operator and the difference between
the number of local optima between the two landscapes is very large for smaller
values of CV . Intuitively, a decrease in the number of local optima should yield a
decrease in local search cost but if this decrease is not large (i.e. if the difference
between the number of local optima between the two landscapes is not large)
then it is possible that the advantage of having less local optima be offset by the
number of fitness evaluations needed to explore the much larger neighbourhood
of the H1+2 operator. To identify the values of CV , where such decrease in the
number of local optima would make the use of H1+2 neighbourhood operator
be more effective than the H1 neighbourhood operator, we compared the per-
formance of the two operators. Figure 7 shows the number of instances where
the performance of the algorithm with the H1 operator was significantly better
than the H1+2 performance, the number of instances where the performance
of the algorithm with the H1+2 operator was significantly better than the H1
performance, and the instances where the two performances were not statisti-
cally significantly different. The Wilcoxon rank-sum test was used to determine
the significance of the differences between the performances of the algorithm
(p < 0.05).

The figure shows that instances with small CV values (CV < 0.5), the per-
formance of the H1+2 operator is better than the H1 operator, which is not
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surprising due to the low number of local optima in the H1+2 landscape and the
very big difference between the number of local optima in the H1+2 landscape
compared to the H1 landscape which suggest that the algorithm probably had
to do far less restarts when using the H1+2 operator. For instances with large
values of CV (CV ≥ 0.5), the performance of the H1 operator is better than
H1+2 operator, even though the number of local optima is less in the landscapes
induced by the H1+2 operator. This could be explained by the large number of
fitness evaluations needed to explore the much larger neighbourhood of the H1+2
operator. These results show that the CV of the weights has a potentially useful
application in guiding the selection of the most suitable neighbourhood operator
for a given NPP instance.
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Fig. 7. Coefficient of variation CV against number of instances steepest descent with
H1 neighbourhood preformed significantly better, number of instances steepest descent
with H1+2 neighbourhood preformed significantly better, and instances where the
performance of the two neighbourhood operators was not significantly different. For
each problem instance steepest descent was run for 1000 times. The Wilcoxon rank-
sum test was used to determine the significance of the differences.

3 Conclusions

In this paper, we examined how the variability of the weights influences the NPP
landscape by looking at how the landscape features of the NPP change with the
different values of the coefficient of variation (CV ) of the weights. The CV of
the weights can be easily calculated for a given instance of NPP, and does not
require the knowledge of the distribution from which the weights are drawn. We
found that the number of local optima and the average cost of local search in
the H1 landscape are strongly and negatively correlated with the CV . For the
landscapes induced by the H1+2 operator, we found that both the number of
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local optima and the average search cost have a weak negative correlation with
the CV . We also showed what could be a practical use of the CV of the weights
for guiding the choice of the move operators of local search heuristics.

We proposed a formula to estimate the average number of local optima in
the H1 landscape that depends only on the problem size and the CV of the
weights, exploiting the strong correlation between the CV and the number of
local optima in the H1 landscape. We still need as future work to look at larger
problem sizes to be able to predict the relation between the two coefficients (a
and b) in the formula and the size of the problem. For that we are going to use
some sampling techniques to estimate the number of local optima [5].
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