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Abstract. This contribution analyzes dynamics of mean and variance
of real chromosomes in consecutive populations of an Evolutionary Al-
gorithm with selection and mutation. Quasi-stable state is characterized
with an area in which population mean and variance will remain roughly
unchanged for many generations. Size of the area can be indirectly es-
timated from the infinite population analysis and is influenced by the
population size, selection type and parameter, and the mutation vari-
ance. The paper gives formulas that define this influence and illustrates
them with numerical examples.
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1 Introduction

Quasi-stability of populations is a state of an Evolutionary Algorithm (EA) when
populations fluctuate in the same area of the search space for many consecutive
generations. In effect, although the actual mean and variance of position of chro-
mosomes are variable, they fluctuate around characteristic values which do not
change. Expected values of population mean and variance have been analyti-
cally derived in [1] assuming that the fitness function is Gaussian (for fitness
proportionate selection) or odd and concave (for other selection schemes).

Dynamics of the EA is usually put in the context of convergence or expected
hitting time. Here another perspective is taken, where more attention is paid to
the population diversity. Several authors have already taken this perspective be-
fore in the area of real coded EAs. For example, Beyer and Deb [2] analyzed the
dynamics of the population mean and variance assuming a “flat fitness” model
(identical selection probabilities) and various crossover schemes, without muta-
tion. They identified a risk for an EA with identical selection probabilities that
the population variance may collapse or blow up if the crossover parameters
are improperly set and they came up with admissible levels of these parame-
ters. They have also performed similar analysis for the Evolution Strategy for
the flat fitness. Works of Arnold have gone in a similar direction. He considered
the dynamics of central moments of the population distribution for the Evolu-
tion Strategy, assuming a random fitness and mixtures of a deterministic fitness
function and noise [3,4].

An important role in the analysis of EA dynamics in real spaces plays the
infinite population model introduced by Qi and Palmieri [5]. They considered the
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dynamics of populations assuming that they are infinite. This allowed to apply
deterministic equations to transform probability density functions of consecutive
populations. Their results have been adopted by Karcz-Duleba to analyze the
dynamics of populations for functions with a single optimum and with two local
optima [6].

In this paper we use results of the population diversity analysis based on
infinite population model which have been published in [1] for various types of
selection, with and without crossover, with and without elitism. We show that
the quasi-stable behavior of an finite population EA can be well explained by
this model.

2 Subject of Analysis

We consider a simple EA (see Fig. 1) which combines selection and mutation
to maximize a fitness function ¢ : R — R. The algorithm in the ¢-th genera-
tion is characterized by the base population P? which contains p individuals.
Each individual P! is a real number. In each generation, a population R’ of re-
produced individuals is created by selecting with replacement individuals from
the population P*. Each reproduced individual R} undergoes Gaussian mutation
with variance v, and yields an offspring which becomes the i-th member of the
base population for the next generation. The algorithm is stopped after reaching
a specified number of generations 7.

initialize( P?)
evaluate(P?)
fort=1to T do
for i =1 to pu do
R} + P} where j +select(P")
P« R+ M! where M} ~ N(0,vm)
end for
evaluate(P't)
end for

Fig. 1. Outline of the EA under consideration

Empirical moments of the population P, the mean P* and the sample variance
s2(P?), are defined as

1< 1 & .

Pr= M PL S(P)= (PP (1)
m= 4

Population P! can be characterized by its state u; = [P?, s2(P*)] which is defined

as a pair of mean and sample variance of chromosomes contained by P?. Thus a

single EA run generates a trajectory of states u;.
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The infinite population models have been used to analyze expected values of
empirical moments of populations [1,6]. Infinite population size facilitates the
analysis since the transformation state u; to usy1 is deterministic according to
equations

1t t+1 _ ¢
Mmp = = Mg, Up =Up Tt Unm (2)
where mf, and v}, are the expected value and variance of reproduced chromo-
somes

wh= [ af@ar b= [ @ombPh@a®)

and f} is the p.d.f. of reproduced points provided that P* is infinite and dis-
tributed with expectation m} and variance v}. If the fitness function is unimodal
and even then iteration of equations (2) yields stable values mp and vp which
have been derived in [1] for various types of selection, with and without crossover,
with and without elitism. In general, distribution of f5 may be different than
normal. Yet, as it has been shown in [1], values of mp and vp can be analytically
derived with a small error assuming normality of fh.

3 Finite Populations Generated with Stable Expectation
and Variance

For a considered EA, populations will never settle down in any position, since
state u;q1 relates to uy in a stochastic fashion. Nevertheless, it may be usually
observed that populations will fluctuate for many generations in a certain area.
In effect, mean values of the population mean and variance in consecutive pop-
ulations will agree with values predicted from the infinite population model, as
it has been shown in [1]. On the other hand, if the population size is finite and
variance of chromosomes is bounded, then stabilization of populations will be ob-
served for functions that are not necessarily unimodal — it is only necessary that
fitness function is unimodal in sufficiently large neighborhood of local maximum
which is covered by all possible locations of populations. Size of this neighbor-
hood can be predicted by analyzing the distribution of mean and variance of
finite size populations which are generated by the EA, whose stable expectation
and variance have been predicted with the infinite population model.

The population P! is modeled as a vector of variates of random variables
Pi,... P, which generate chromosomes Pf,...Pj. Since each chromosome is
generated according to the same procedure, variables Pi,... P, are identically
distributed. A stable state up = [mp,vp] of an infinite population model is
assumed. This means that all populations are approximated as if they were gen-
erated with the normal distribution with expectation mp and variance vp.

Empirical moments of P?, defined by equation (1), are estimators of theoret-
ical moments. Since the contents of population is random, empirical moments
themselves are random variables. It holds

E[P)=mp,  Els*(P")]=vp (4)
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where E[-] denotes the expected value. Further on, it is assumed that mp = 0
to simplify notation without generality loss. If the chromosomes were indepen-
dent and normally distributed then the population mean would be normally
distributed with variance V[P!] = mp/u and the population variance would be
chi-square distributed with variance V[s?(P!)] = 2vp/(u — 1).

Chromosomes contained by the population P? result from selection with re-
placement and mutation of chromosomes from P*~!. For this reason, it is pos-
sible that a pair of chromosomes Pf, P/ € P' was generated by mutation of
the same parent reproduced from the population P?~!. Therefore random vari-
ables Py, ... P, which generate populations are not independent. Variance of the
population mean is then defined as

B 1 B 1 ® ) 9 p=1 p
Ve = | LSS rE| = | Ly e RS an
== - L
1 w—1 L. 1 w—1
= E[(PH+ E[P!Pli#j]= wvp+ rt 5)
JEP I+ CERR A5 = L P (

where E[|-] is the conditional expected value and 7% is the covariance coefficient
between any pair of variables P, P;.

In a pair of populations P* and P**!, any point P/*! will result from mutation
of a reproduced point, hence P/™' = R} + M}, where M} is the i-th mutation
in generation ¢ which is independent of all other mutations; therefore

ri = B (Rl + MY (R + M))] = E [R{R}] ©)

To derive value of rﬁj‘l consider a pair of distinct chromosomes Pit'*'1 and P;H‘
Observe that two scenarios are possible. In the first scenario, which holds with
probability a, both chromosomes will be mutants of the same reproduced chro-
mosomes R!. In the second scenario, their parents will be distinct:

Pl = aB [(RY] + (1-a)E [RRYi #], a=Y (p(k)® (7)
k=1

Symbol p,(k) stands for the selection probability of the k-th chromosome. Value
of E[(R")?] can be computed by observing that each chromosome from R’
results from sampling with replacement from P?!.Hence the variance of points
which are sampled from P! for reproduction can be derived from the weighted
variance formula:

> (ps(k)?(P?| = aB[(P")?] ®)

k=1

E[(R")=E
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Similar observations can be made for the covariance of points sampled from R:

p—=1 p
E [RIR}|i # j] = }ji} ()P{P)| =bE [PLPfk#1]  (9)
k=1 1=k
=25 pu(kps() (10)
k=1 l=k

Values of E[(P!)?] and E[P{P}|k # l] are the weighted sample variance and
covariance values with weights that are equal selection probabilities, hence

EI(PY] = (1 - a)h, E[PLP{k#1=(1—a)b (1)

where vl and 7l are the (theoretical) variance and covariance of a random
variable which generates the population P!. Then (7) can be rewritten as

ot = a?(1 — a)vlh + b(1 — a)*rl (12)

In the stable state it holds T}H = Ttp = rp which allows to define rp as

a’(1—a)
P 1 — a2’ (13)
Equation (5) can be transformed to
- 1 1-b(1—a)?
Pt = "= 14
VIPT= o = a2+ a2 — a)(u—1) (14)

Value of p’ will be called the effective population size since it leads to formula for
the variance of the population mean as if the chromosomes were independent.
Then the empirical variance is chi-square distributed with the p’ degrees of
freedom and its variance equals approximately

2(V[X])?

V[SQ(Pt)] ~ W

(15)

Example. Above considerations are validated with the following experiment for
the fitness function ¢(z) = exp(—2?) and the EA with binary tournament selec-
tion, population size p = 100 and Gaussian mutation with variance v,, = 1. The
EA was run 100 times, each run took 7' = 10* generations. Populations were ini-
tialized with standardized normal distribution. For each run, the series of states
ug = [P*, s%(P")], which describe dynamics of populations, was characterized
with their mean and empirical variance:

a=[PL(P]. W = [P, 2(2(PY) (16)
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For the binary tournament selection, values of ¢ and b can be computed observing
that ps(i) = (2u — 20 + 1)/ (p?) — see [1]:

a_i<2ﬂ—2i+1)2_4ﬂ21 y_ 3ut =8+ 1156
P MQ 3M3 ’ 3M4
which yields the approximate effective population size p’ = ip‘

Fig. 2 contains box-and-whisker plots of mean and variance of population
empirical moments. Expected values of moments that have been predicted in
previous section are given in corresponding plots. Mean relative error of pre-
diction variance of moments equals 0.97% for V[(P*)] and 5.58% for V[s*(P?)].
If independence of chromosomes in populations were assumed then the corre-
sponding error values would equal 24% for V[(P?)] and 21% for V[s?(P?)].
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Fig. 2. Box and whisker plots of mean and variance values of population mean and
variance

4 Quasi-Stability of Finite Populations

For a realistic EA it is impossible to expect its stability in a strict sense since
each state is affected by mutation. For this reason it is impossible to find a
combination of population mean and variance values which will not be changed
in the next generation. The quasi-stability discussed here is defined as follows.

Consider a set of EA states U(u*, p), which is characterized by a state u*, and
a p-value p. The set U(u*, p) is quasi-stable when the condition is satisfied

Vue € U(u®,p)  Elug1] € U(u™, p) (17)

where Eluiq1] = [E[P'™!], E[s?(P'1)]] is the vector of expected values of the
next state. In other words, if the EA population is characterized by the state
ut € U(u*,p) then the next state should not tend to leave the set U(u*,p).
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Bounds on Quasi-Stable Population State. Equations (4), (14) and (15)
can be used to define the set U(u*, p) by defining ranges of values of population
mean and variance where their actual values can be found with certain proba-
bility. If the population distribution is normal then values of Pt are normally
distributed and s%(P?) is chi-square distributed with ' — 1 degrees of freedom.
For each population state [Pt s*(P')] € U(u*,p) it holds

m* —a(v*, i,p) < Pt <m* +a(v*, 1/, p) (18)
Bo*, 1,p) < s*(P') < v(v*, 1, p) (19)
where p is the probability of observing values of population mean or variance

outside the set U(u*, p). Values of a, 8, v are defined as upper and lower quantiles
of normal and chi-square distributions for the probability p/2:

o) =/ (1 4p) (20)

v - Qc (épnu'* 1)
w—1
'U'Qc(lf ;paﬂfl)
w—1
where @, Q.(-, k) represent the quantile generation functions for the normal
and chi-square distribution with k& degrees of freedom, respectively.

B(v, p,p) = (21)

v(v, p,p) = (22)

Testing Quasi-Stability for Finite Populations. For finite populations,
if the population state u; = [P?, s?(P")] is known then it is possible to predict
expected values of the next population state, Efu;y1], without knowing the exact
contents of P*. The prediction is based on an assumption that P**! contains
points which are generated randomly with expectation P* and variance s2(P?):

E[P"™] = P!+ /s*(P) - ¢(w) (23)
E[SQ(PHI)] = sQ(Pt) <O(ug) + v, (24)

Symbol ¢(u) is called the Response to Selection in Mean (RSM) and indicates
the expected change of the population mean in effect of selection

1 o0
o) = [ = mela)da (25)
where c(z) stands for the p.d.f. of chromosomes reproduced from a popula-
tion which is normally distributed with expectation m, variance v and density
gmw(x). Symbol 0(u) denotes the Response to Selection in Variance (RSV) which
is the degree of the population variance reduction after selection

O(u) = / (@ = m)?e(a)dz (26)

— 00

Note that RSM and RSV depend on selection since ¢(x) depends on it.
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Response to selection, which has been originally defined as the expected
change in fitness of individuals before and after selection, is a concept which
has been introduced to the evolutionary computation field by Muehlenbein [7]
who adopted it from the breeding science in order to define the Breeder Genetic
Algorithm. Here, instead of analyzing fitness of individuals, we concentrate on
changes of mean and variance of chromosomes processed by the EA to analyze
selection effects on the level of genotypes rather than fitness.

Equations (14), (18) and (19) allow for formulating the test of quasi-stability
of a set of states. An area U(u*,p) is quasi-stable with mean m* and variance v*
when for each population P characterized by the state u = (P, s?(P)) € U(u*, p)
it holds

— (v p) < P—m* + 6(u) - Vo < a(v 4t p) (27)
B i p) < O(u) - $*(P) + vy < (v, 4 p)) (28)

Example. Consider a fitness function which is defined as a composition of two
Gaussian hills'— see Fig. 3.

q(z) = 5exp(—x?/2) + 4exp(—(z — 9)?/8) (29)

)

Fig. 3. Plot of the Galar function

Consider binary tournament selection. From [1] it follows that ¢(x) is given by

c(z) = moo(VAY © G o (x 30
() /(y)q(z)g,(y)yg,() (30)

which allows to define «, 5 and ~.

Typical dynamics of the population mean and variance of single run of an EA
with 4 = 100 chromosomes which optimizes the Galar functions is illustrated
in Fig. 4 for few characteristic values of the mutation variance v,,. In all cases
the population was initialized with clones of the point 0 and the EA was run
for 10* generations. In each plot a point represents state u; of a population P
and a rectangle is the set U(up, p) which is a candidate for the quasi-stability
area whose limits have been computed putting the stable variance prediction vp

! This function was introduced by R.Galar and discussed e.g. in [8].
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yielded by the infinite population model [1] into formulas (27), (28). Value m}
has been determined by solving the equation ¢(u) = 0 with respect to m, as-
suming that v = vp.

When v, = 0.01, states of populations stay, except in a few observations, in
the quasi-stability rectangle that relates to the global maximum mp ~ 0. For
vy, = 1.18 the population state mean makes incidental “excursions” from this
quasi-stability area towards states characterized with larger mean and variance,
but then it returns.

When v, = 1.3, the population state remains for a number of generations
in the quasi-stability area around mp = 0. Then the population state shifts
towards the quasi-stability area corresponding to the second local maximum of
the fitness at mp ~ 9. There it remains stable for the rest of the simulation.
Note that in this case, populations changed their position despite of the fact that
the first quasi-stability area corresponds with the global maximum of the fitness
function. This is an illustration of the “survival of the flattest” effect [9] which
consists in preference to chromosomes whose fitness values are little sensitive to
changes of their position in the chromosomes space.

For v,, = 10 a single quasi-stable area exists and then mp ~ 7. Note that
this value differs significantly from position of any local maximum. Note that al-
though the assumption about unimodality of the fitness function is not satisfied,
the population variance values, which have been predicted in [1], yield correct
stability margins and properly explain quasi-stability of populations.
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T T T T T T T
-0.006 -0.004 -0.002 0000 0002 0.004 0.006 0 1 2 3 4

a) m b) =

Fig. 4. Plots of the states of populations which were started at 0 and were run for
10* generations for the following mutation variance values: a)um = 0.01, b)v, = 1.18,
¢)vm = 1.3, d) v, = 10; rectangles represent quasi-stability areas for p-value p = 107°
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5 Closing Remarks

In many engineering applications stability of a system is usually a desired fea-
ture. For the EA, quasi-stability is a mixed blessing. On one hand, quasi-stability
allows for better exploitation of area U(up, p) which may contain some local op-
timum nearby its middlepoint. On the other hand, if populations are quasi-stable
for a very low p-value in an area that relates to an optimum of the fitness func-
tion, then it is hardly possible for the EA to switch to some other quasi-stability
area that relates to another local optimum. Such quasi-stability is undesired
since the resulting EA will be a poor global optimizer. This suggests that a
method that tracks populations to detect quasi-stability and to break it may be
considered as a yet another adaptation method.

It is interesting how the presented results will generalize in real space with
many dimensions. Intuitively, response to selection functions are equivalents of
derivatives and they may be generalized to a for of a “gradient” by computing
the RSM and RSV values for each dimension separately. Then the quasi-stability
margins would be defined for each dimension separately, provided that a proper
infinite population model to predict the stable variance is developed. These di-
rections of research define the scope of future work.
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