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Abstract. We study the behaviour of evolution strategies applied to
a simple class of unimodal optimization problems on spherical mani-
folds. The techniques used are the same as those commonly employed
for the analysis of the behaviour of evolution strategies in Euclidean
search spaces. However, we find that there are significant differences in
strategy behaviour unless the vicinity of an optimal solution has been
reached. Experiments with cumulative step size adaptation reveal the
existence of metastable states associated with large step sizes, which can
preclude reaching optimal solutions.

1 Introduction

The vast majority of work on real-valued evolutionary optimization is concerned
with Euclidean search spaces. However, there are important applications where
the search domain is not Euclidean but a more general Riemannian manifold in-
stead. See [6] for an introduction to Riemannian geometry. Qi et al. [10] give two
broad classes of applications for optimization on manifolds: “equality-constrained
optimization problems where the constraints specify a submanifold of RN ; and
problems where the objective function has continuous invariance properties that
we want to eliminate for various reasons”. Our own interest in optimization
on manifolds is motivated by the need to optimize quaternion variables, which
commonly arises in 3D registration tasks where quaternion variables are used to
encode orientation.

Several applications of evolutionary algorithms to optimization on Riemann-
ian manifolds other than Euclidean spaces can be found in the literature. An
early instance is work by Kissinger et al. [9], who propose a variant of evolu-
tionary programming for optimization involving quaternion variables. Arguably
the most sophisticated evolutionary approach to optimization on general Rie-
mannian manifolds is that by Colutto et al. [5], who propose a variant of covari-
ance matrix adaptation evolution strategies (CMA-ES) [7] for optimization on
Riemannian manifolds. Their algorithm uses parallel transport, a tool for trans-
porting geometrical data along smooth curves, to transform search paths and
covariance matrices between iterations. They find that their approach more ef-
fectively solves a two-dimensional multimodal optimization problem than restart
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variants of gradient based and Newton-Armijo methods proposed by Yang [12]
for optimization on manifolds. However, they also observe that their strategy
can (infrequently) be observed to fail to locate the optimal solution to a simple
unimodal optimization problem on spherical manifolds.

The aim of this paper is to develop an analytically based understanding of
the behaviour of a simplified variant of the algorithm of Colutto et al. [5] that
adapts its global step size using cumulative step size adaptation, but does not
adapt the full covariance matrix. We derive results characterizing the behaviour
of the algorithm when applied to a class of unimodal optimization problems on
spherical manifolds, both providing an explanation for the observed inability to
converge to the optimal solution in some instances and suggesting how to avoid
this situation.

2 Problem and Algorithm

Let M be a Riemannian manifold with tangent space TpM at point p ∈ M .
We consider the case that M = SN−1 (i.e., the unit (N − 1)-sphere defined by
SN−1 = {x ∈ R

N | ‖x‖ = 1}). Note that the universal cover of the 3D rotation
group SO(3) is diffeomorphic to S3, and that problems on spherical manifolds
thus naturally arise in combination with the optimization of orientations in 3D.
We consider the class of optimization problems f : SN−1 → R that possess a
unique optimal solution and where objective function values depend only on the
distance from that solution and vary strictly monotonically with it. By choosing a
coordinate system such that the optimal solution is located at x = (1, 0, . . . , 0)T

and taking into account that evolution strategies perform selection based only
on comparisons of objective function values, we can without loss of generality
consider objective function

f(x) = x1 (1)

where x = (x1, x2, . . . , xN )T ∈ SN−1 and the task is maximization. Effectively
the same problem has been used by Colutto et al. [5] in the experimental evalua-
tion of their algorithm. Arguably, Eq. (1) constitutes the analogue of the “sphere
model” introduced by Rechenberg [11] for the study of the behaviour of evolution
strategies in Euclidean spaces.

The CMA-ES for optimization on Riemannian manifolds proposed by Colutto
et al. [5] generates mutation vectors in the tangent space at the current popu-
lation centroid, and it uses the Riemannian exponential map to map them onto
the manifold. Parallel transport is used as a means for mapping search paths and
the covariance matrix of the mutation distribution from the tangent space at the
current population centroid to that at the next. The algorithm considered here
is in essence the same, with the single major difference that in order to admit
an analytically based investigation, rather than adapting the entire covariance
matrix, only the global step size is adapted. A single iteration of the algorithm
is given in Fig. 1. The population size parameters μ and λ are positive integers
with μ < λ. Cumulation parameter c ∈ (0, 1] and damping parameter D ∈ R

+
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Input: population centroid x ∈ M , mutation strength σ ∈ R
+, search path

s ∈ TxM

1. Generate offspring candidate solutions

y(i) = expx

(
σz(i)

)
i = 1, . . . , λ

where the mutation vectors z(i) are standard normally distributed in TxM
and expx(·) denotes the Riemannian exponential map.

2. Compute f(y(i)) for i = 1, . . . , λ. Let (k;λ) denote the index of the offspring
candidate solution with the kth largest objective function value and

z(avg) =
1

μ

μ∑
k=1

z(k;λ).

3. Update the search path according to

s← (1− c)s+
√

μc(2− c)z(avg).

4. Update the population centroid according to

x← expx

(
σz(avg)

)

and use parallel transport to transform the search path from the old popula-
tion centroid to the new one.

5. Update the mutation strength according to

σ ← σ exp

(‖s‖2 −N

2DN

)
.

Fig. 1. Single iteration of the strategy for optimization on Riemannian manifolds

are constants. After initialization (to be discussed below), the algorithm in Fig. 1
is iterated until a stopping condition is met.

Regarding the implementation of the algorithm for the case that M = SN−1,
sampling standard normally distributed mutation vectors in TxS

N−1 can be
accomplished by sampling standard normally distributed mutation vectors w in
R

N and projecting them onto the tangent space TxS
N−1 according to

z = w − 〈x,w〉x (2)

where 〈·, ·〉 denotes the inner product. The Riemannian exponential map expx(·) :
TxM → M for the case that M = SN−1 is described by

expx(σz) = x cos(σ‖z‖) + z
sin(σ‖z‖)

‖z‖ . (3)
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Finally, Huckemann et al. [8] show that parallel transport on spherical manifolds
is accomplished for x �= ±x′ by

w′ = w− 〈w,v〉 [(1− 〈x,x′〉)v + 〈v,x′〉x] (4)

where

v =
x′ − 〈x,x′〉x
‖x′ − 〈x,x′〉x‖ (5)

and w′ is the parallel transplant of w ∈ TxS
N−1 to Tx′SN−1.

3 Analysis

In order to analyze the behaviour of the algorithm thus described when applied
to the class of problems defined by Eq. (1) we first consider single iterations and
determine the expected step. In analogy to related work in Euclidean spaces [11,
2] we then obtain simpler expressions by making the assumption that the steps
that the strategy takes are small. It will be seen that that assumption is a valid
one to make only if the strategy has reached the vicinity of the optimal solution.
Finally, we consider the multi-iteration behaviour of the algorithm.

3.1 Large-Step Behaviour

Considering a single iteration of the algorithm described in Fig. 1, by choosing
the coordinate system appropriately we can without loss of generality assume
that x = (x1,

√
1− x2

1, 0, . . . , 0)
T. From Eq. (1) with Eq. (3), the objective

function value of offspring candidate solution y = expx(σz) is

f(y) = x1 cos(σ‖z‖) + z1
sin(σ‖z‖)

‖z‖ . (6)

The lengths ‖z‖ of mutation vectors are χN−1-distributed with mean lz =√
2Γ (N/2)/Γ ((N−1)/2), which for large N is well approximated by

√
N , and a

coefficient of variation that goes to zero as N increases. The impact of variations
in ‖z‖ on offspring objective function values thus decreases with increasing di-
mensionN . The ordering of the offspring by objective function values in Step 2 of
the algorithm in Fig. 1 will thus increasingly be an ordering by values of z1. From
Eq. (2), z1 = (1 − x2

1)w1 −
√
1− x2

1x1w2, where w1 and w2 are independently
standard normally distributed. Mutation vector component z1 is thus normally
distributed with mean zero and variance 1 − x2

1. The selected z1-components
are the μ largest order statistics of a sample of normally distributed random
variates, and their expected average according to [2] equals

E
[
z
(avg)
1

]
= sgn (sin(σ‖z‖))

√
1− x2

1cμ/μ,λ (7)

where cμ/μ,λ denotes the progress coefficient. Defining the progress rate

ϕ = E
[
f
(
expx

(
σz(avg)

))]
− f(x) (8)
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as the expected improvement in objective function value in a single iteration, it
follows from Eq. (7) that for large N

ϕ = sgn (sin(σ‖z‖)) sin(σ‖z
(avg)‖)

‖z(avg)‖
√
1− x2

1cμ/μ,λ −
[
1− cos(σ‖z(avg)‖)

]
x1 (9)

approximately holds. As z(avg) is the average of μ vectors N − 2 of the N − 1
components of which are random and uncorrelated, for large N the expected
length of z(avg) can be approximated by lz/

√
μ [2].

The left hand side of Fig. 2 compares predictions from Eq. (9) with ‖z‖
and ‖z(avg)‖ replaced with their expected values with measurements made in
one-iteration experiments of the algorithm for several values of N . Values of
x1 ∈ {−0.5, 0.2, 0.9} have been chosen as representatives of situations where
the search is at a great distance, an intermediate distance, and in relative prox-
imity to the optimal solution and thus of different stages in the optimization
process. Clearly, the accuracy of the predictions improves with increasing N
and decreases with increasing σ. The primary reason for the inaccuracies are
variations in the length of mutation vectors. In low dimensions and for large
mutation strengths, selection is increasingly on the basis of the length of the
mutation vectors. Nonetheless, it is clear from the figure that the dependence
of the progress rate on the mutation strength differs markedly from that for
the Euclidean sphere model, where the progress rate after an initial increase
monotonically decreases to negative infinity [11, 2]. On the spherical manifold,
multiple modes can be observed that result from the Riemannian exponential
map tracing out geodesic paths. Additionally, the curves exhibit discontinuities
that stem from the lengths of the average of the selected mutation vectors being
reduced compared to those of the mutation vectors themselves. Mutation vectors
of a length resulting in the sine function in Eq. (6) being positive may result in
negative values of the sine function in the numerator in Eq. (9) and vice versa.

3.2 Small-Step Behaviour

All of the curves in the graphs on the left hand side of Fig. 1 have in common
that for small mutation strengths they initially increase. More often than never,
the first mode encountered yields optimal or near optimal performance. To inves-
tigate the behaviour of the strategy for small mutation strengths, we replace ‖z‖
and ‖z(avg)‖ in Eq. (9) with

√
N and

√
N/μ, respectively, expand the sine and co-

sine functions into Taylor series at zero and abort after the linear and quadratic
terms, respectively, and for x1 �= ±1 introduce normalized mutation strength
σ∗ = N |x1|σ/

√
1− x2

1 and normalized progress rate ϕ∗ = N |x1|ϕ/(1 − x2
1),

resulting in

ϕ∗ = σ∗cμ/μ,λ − sgn(x1)
σ∗2

2μ
. (10)

Notice that for x1 > 0 Eq. (10) has the same form as the progress rate law for
the Euclidean sphere model [2].
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Fig. 2. Left: Progress rate ϕ plotted against mutation strength σ for μ = 3 and λ = 10,
parent locations x1 ∈ {−0.5, 0.2, 0.9}, and, from top to bottom, search space dimensions
N = 4, 40, and 400. Right: Normalized progress rate ϕ∗ plotted against normalized
mutation strength σ∗ for search space dimensions N ∈ {4, 40, 400} and, from top to
bottom, parent locations x1 = −0.5, 0.2, and 0.9. The lines represent predictions from
Eqs. (9) and (10), respectively. The points mark values obtained by averaging over
20,000 one-iteration experiments for each data point shown.
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The right hand side of Fig. 2 compares predictions from Eq. (10) with mea-
surements made in one-iteration experiments of the algorithm. For x1 = −0.5
Eq. (10) predicts that the normalized progress rate increases indefinitely with in-
creasing normalized mutation strength. This is of course impossible for finite N ,
and the solid curve fails to correctly predict the experimental data if the mu-
tation strength is too large for the truncated Taylor series to well represent
the trigonometric functions. However, as increasing σ results in tracing out a
geodesic path, the hemisphere with x1 > 0 can always be reached in a single
step. For x1 = 0.2 the accuracy of the predictions increases significantly with
increasing N . The truncated Taylor series become poor approximations to the
trigonometric functions for σ‖z‖ ≈ π/2 and thus for σ∗ ≈ π|x1|

√
N/(2

√
1− x2

1),
and the maxima of the experimental data for N = 4 and N = 40 quite closely
correspond to those values. Finally, for x1 = 0.9 the qualitative behaviour of the
algorithm is captured quite well for N as small as 4. If the mutation strength of
the strategy is controlled properly, values of x1 in excess of 0.9 can be reached
in a relatively small number of iterations, and much of the computational effort
will be incurred where the predictions from Eq. (10) are quite accurate.

3.3 Step Size Adaptation

To analyze the performance of cumulative step size adaptation on spherical man-
ifolds, we employ the same approach as in Euclidean spaces [1]. The state of the
strategy is determined by the population centroid x, the mutation strength σ,
and the search path s. The parallel transport in Step 4 of the algorithm Fig. 1
uses vector v, which can be computed from Eq. (5) as z(avg)/‖z(avg)‖. Using
primes to indicate values of a quantity after an iteration of the algorithm, it fol-
lows that 〈x,x′〉 = cos(σ‖z(avg)‖) and 〈v,x′〉 = sin(σ‖z(avg)‖). Omitting terms
that disappear in the limit N → ∞ and using the small-step approximation
from Sect. 3.2, the update of the search path in Steps 3 and 4 of the algorithm
in Fig. 1 is thus described by

s′ = (1− c)s+
√
μc(2 − c)

[
z(avg) cos(σ‖z(avg)‖)− x‖z(avg)‖ sin(σ‖z(avg)‖)

]

(11)

where it is assumed that c = 1/
√
N and D = 1/c.1

Due to the symmetry inherent in the problem at hand, the location of the
population centroid is adequately described by x1, and the search path is char-

acterized by its components s1 and s� =
∑N

i=2 xisi/

√∑N
i=2 x

2
i , along with its

squared length ‖s‖2. Iterating the algorithm in Fig. 1 generates a Markov pro-
cess in a five-dimensional state space with variables x1, σ, s1, s�, and ‖s‖2. We
compute an approximation to the average values characterizing the search path

1 Detailed calculations cannot be reproduced here due to space limitations, but can
be found at http://www.cs.dal.ca/~dirk/PPSN2014addendum.pdf instead.
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by requiring that an iteration of the algorithm results in no change in expec-
tation. That is, we require that E[s′1] = s1, E[s

′
�] = s�, and E[‖s′‖2] = ‖s‖2.

Dropping terms that disappear for large N and solving for ‖s‖2 yields

‖s‖2 = N + 2
μcμ/μ,λ

c

[
cμ/μ,λ − sgn(x1)

σ∗

μ

]
(12)

for the squared length of the search path.
As in [1] we refer to the mutation strength for which no change in step size is

expected as the target mutation strength of the strategy. For x1 > 0, from the
update of the mutation strength in Step 5 of the algorithm in Fig. 1 with Eq. (12),
the target mutation strength is σ∗

target = μcμ/μ,λ, which is optimal according
to Eq. (10). However, the normalized mutation strength actually attained by
the strategy differs from the target mutation strength as the distance from the
optimal solution decreases simultaneously with the step size and adaptation is
not instantaneous. Calculations equivalent to those in [1] yield

σ∗ = μcμ/μ,λ

[
(
1− x2

1

)
sgn(x1) +

√
1 + x4

1

]
(13)

for the mutation strength attained by the strategy. That is, normalized mutation
strengths generated by cumulative step size adaptation for x1 � 1 exceed optimal
ones by a factor of

√
2, resulting in a 17% loss of performance (compare [3]).

For x1 � 0 Eq. (13) suggests that mutation strengths generated by cumulative
step size adaptation are nearly twice as large as optimal, resulting in near zero
progress and thus stagnation of the strategy. However, as seen above, the small-
step predictions are highly inaccurate for x1 ≈ 0 and the validity of the findings
needs to be confirmed experimentally.

Figure 3 shows partial traces from typical runs of the evolution strategy for
different search space dimensions. For each combination of parameter settings,
99 runs were conducted until either a solution with an objective function value
within 10−6 of optimal was generated or 20,000 iterations were reached. The
runs shown in the figure are those with the median number of iterations until
termination, where ties were broken arbitrarily. Each run was initialized with
x1 = 0 and an initial mutation strength σ0 ∈ {0.1, 1.0, 10.0}. It can be seen that
the behaviour of the algorithm depends qualitatively on the initial mutation
strength. Too large a value of σ0 (where what is “too large” depends onN) results
in the strategy operating past the first mode observed in Fig. 2. Cumulative
step size adaptation in that situation either does not decrease the step size or
decreases it only very slowly. The graphs on the right hand side of Fig. 3 show
that the strategy in this situation jumps about apparently symmetrically about
x1 = 0, without reaching a point in the vicinity of the optimal solution. It can
also be seen that once a point in the vicinity of the optimal solution is reached,
cumulative step size adaptation controls the mutation strength as expected,
and Eq. (13) quite closely predicts the further behaviour of the strategy. The
observed metastable states characterized by relatively large mutation strengths
and expected x1 values of zero are more easily broken out of for small values
of N , where the variance of the observed x1 values is larger.
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Fig. 3. Left: Mutation strength σ generated using cumulative step-size adaptation
plotted against iteration number t for typical runs with μ = 3 and λ = 10, initial step
sizes in {0.1, 1.0, 10.0}, and, from top to bottom, search space dimensions N = 4, 40,
and 400. Right: Normalized mutation strength σ∗ from the same runs as shown on the
left plotted against the transformed location 1 − x1 of the population centroid. The
bold solid lines on the right hand side represent predictions from Eq. (13).
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4 Discussion

We have presented a small-step approximation to the behaviour of a simplified
variant of the algorithm of Colutto et al. [5] applied to a class of unimodal opti-
mization problems on spherical manifolds. The approximation quite accurately
describes the behaviour of the strategy in the vicinity of the optimal solution,
but it is insufficient as a model in greater distance from that solution. In the
latter case, large mutation strengths can result in the strategy operating in a
metastable state rather than converging to the optimal solution. The analysis
also suggests an approach for avoiding such metastable states: limiting the step
size to at most σ ≈ π/(2

√
N) ensures that the strategy does not operate sig-

nificantly past the first mode in Fig. 2 and effectively prevents the long periods
of stagnation observed in Fig. 3. In future work, we will attempt to derive an
equivalent cap in the case of general Riemannian manifolds and compare the per-
formance of the resulting algorithm with that of the approaches in Manopt [4].
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