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Abstract. We propose a new black-box complexity model for search
algorithms evaluating λ search points in parallel. The parallel unbiased
black-box complexity gives lower bounds on the number of function eval-
uations every parallel unbiased black-box algorithm needs to optimise a
given problem. It captures the inertia caused by offspring populations
in evolutionary algorithms and the total computational effort in parallel
metaheuristics. Our model applies to all unary variation operators such
as mutation or local search. We present lower bounds for the Leading-
Ones function and general lower bound for all functions with a unique op-
timum that depend on the problem size and the degree of parallelism, λ.
The latter is tight for OneMax; we prove that a (1+λ) EA with adaptive
mutation rates is an optimal parallel unbiased black-box algorithm.

1 Introduction

Black-box optimisation describes a challenging realm of problems where no al-
gebraic model or gradient information is available. The problem is regarded a
black box, and knowledge about the problem in hand can only be obtained by
evaluating candidate solutions. General-purpose metaheuristics like evolutionary
algorithms, simulated annealing, ant colony optimisers, tabu search, and parti-
cle swarm optimisers are well suited for black-box optimisation as they generally
work well without any problem-dependent knowledge.

A lot of research has focussed on designing powerful metaheuristics, yet it is
often unclear which search paradigm works best for a particular problem class,
and whether and how better performance can be obtained by tailoring a search
paradigm to the problem class in hand.

The black-box complexity of search algorithms captures the difficulty of prob-
lem classes in black-box optimisation. It describes the minimum number of func-
tion evaluations that every black-box algorithm needs to make to optimise a
problem from a given class. It provides a rigorous theoretical foundation through
capturing limits to the efficiency of all black-box search algorithms, providing a
baseline for performance comparisons across all known and future metaheuris-
tics as well as tailored black-box algorithms. Also it prevents algorithm designers
from wasting effort on trying to achieve impossible performance.

The first black-box complexity model by Droste et al. [6] makes no restric-
tion on the black-box algorithm. This leads to some unrealistic results, such
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as polynomial black-box complexities of NP-hard problems [6]. Subsequent re-
search introduced refined models that restrict the power of black-box algorithms,
leading to more realistic results [4–6, 18]. Lehre and Witt introduced the unbi-
ased black-box model [13] where black-box algorithms may only use operators
without a search bias (see Section 2). This model initially considered unary oper-
ators (such as mutation) and was later extended to higher arity operators (such
as crossover) [3] and more general search spaces [17]. It also led to the discovery
of more efficient EA variants [2].

A shortcoming of the above models is that they do not capture the implicit or
explicit parallelism at the heart of many common search algorithms. Evolution-
ary algorithms (EAs) such as (μ+λ) EAs or (μ,λ) EAs generate λ offspring in
parallel. Using a large offspring population in many cases can decrease the num-
ber of generations needed to find an optimal solution1. However, the number of
function evaluations may increase as evolution can only act on information from
the previous generation. A large offspring population can lead to inertia that
slows down the optimisation process. Existing black-box models are unable to
capture this inertia as they assume all search points being created in sequence.

The same goes for parallel metaheuristics such as island models evolving multi-
ple populations in parallel (see, e. g. [14]). Parallelisation can decrease the num-
ber of generations, or parallel time. But the overall computational effort, the
number of function evaluations across all islands, may increase. Lässig and Sud-
holt [11] used the following notion. Let Tλ be the random number of generations
an island model with λ islands (each creating one offspring) needed to find a
global optimum for a given problem. If using λ islands can decrease the parallel
time by a factor of order λ, compared to just one island, λ ·E (Tλ) = O(E (T1)),
this is called a linear speedup (with regards to the parallel time, the number of
generations). A linear speedups means that the total number of function evalu-
ations, λ · E (Tλ), does not increase beyond a constant factor.

Recent work [11,12,15] considered illustrative problems from pseudo-Boolean
optimisation and combinatorial optimisation, showing sufficient conditions for
linear speedups. However, the absence of matching lower bounds makes it impos-
sible to determine exactly for which parameters λ linear speedups are achieved.

We provide a parallel black-box model that captures and quantifies the inertia
caused by offspring populations of size λ and parallel EAs evaluating λ search
points in parallel. We present lower bounds on the black-box complexity for the
well known Lo problem and for the general class of functions with a unique
optimum, revealing how the number of function evaluations increases with the
problem size n and the degree of parallelism, λ. The results complement existing
upper bounds [11], allowing us to characterise the realm of linear speedups,
where parallelisation is effective.

Our lower bound for functions with a unique optimum is asymptotically tight:
we show that for the OneMax problem, a (1+λ) EA with an adaptive mutation
rate is an optimal parallel unbiased black-box algorithm. Adaptive mutation

1 This does not hold for all problems; De Jong, Jansen, and Wegener constructed prob-
lems where offspring populations drastically increase the number of generations [9].
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rates decrease the expected running time by a factor of ln lnλ, compared to the
(1+λ) EA with the standard mutation rate 1/n (see He, Chen, and Yao [7]).

2 A Parallel Black-Box Model

Following Lehre and Witt [13], we only use unary unbiased variation operators,
i. e., operators creating a new search point out of one search point. This includes
local search, mutation in evolutionary algorithms, but it does not include recom-
bination. Unbiasedness means that there is no bias towards particular regions
of the search space; in brief, for {0, 1}n, unbiased operators must treat all bit
values 0, 1 and all bit positions 1, . . . , n symmetrically (see [13, 17] for details).
This is the case for many common operators such as standard bit mutation.

Unbiased black-box algorithms query new search points based on the past
history of function values, using unbiased variation operators. We define a λ-
parallel unbiased black-box algorithm in the same way, with the restriction that
in each round λ queries are made in parallel (see Algorithm 1). These λ queries
only have access to the history of evaluations from previous rounds; they cannot
access information from queries made in the same round. We refer to these λ
search points as offspring to indicate search points created in the same round.

Algorithm 1. λ-parallel unbiased black-box algorithm

1. Let t := 0. Choose x1(0), . . . , xλ(0) uniformly at random, compute
f(x1(0)), . . . , f(xλ(0)), and let I(0) := {f(x1(0)), . . . , f(xλ(0))}.

2. repeat
3. for 1 ≤ i ≤ λ do
4. Choose an index 0 ≤ j ≤ t according to I(t).
5. Choose an unbiased variation operator pv(· | x(j)) according to I(t).
6. Generate xi(t+ 1) according to pv.
7. end for
8. for 1 ≤ i ≤ λ do
9. Compute f(xi(t)) and let I(t) := I(t) ∪ {f(xi(t))}.
10. end for
11. Let t := t+ 1.
12. until termination condition met

This black-box model includes offspring populations in evolutionary algo-
rithms, for example (μ+λ) EAs or (μ,λ) EAs (modulo minor differences in the
initialisation). It can further model parallel evolutionary algorithms such as cel-
lular EAs with λ cells, or island models with λ islands, each of which generates
one offspring in each generation.

The unbiased black-box complexity (uBBC) of a function class F is the min-
imum worst-case runtime among all unbiased black-box algorithms [13] (equiv-
alent to Algorithm 1 with λ = 1). The unbiased λ-parallel black-box complexity
(λ-upBBC) of a function class F is defined as the minimum worst-case number
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of function evaluations among all unbiased λ-parallel algorithms satisfying the
framework of Algorithm 1.

With increasing λ access to previous queries becomes more and more re-
stricted. It is therefore not surprising that the black-box complexity is non-
decreasing with growing λ. For every family of function classes Fn and all λ ∈ N,

uBBC(Fn) = 1-upBBC(Fn) ≤ 2-upBBC(Fn) ≤ 3-upBBC(Fn) . . . (1)

and uBBC(Fn) ≤ λ-upBBC(Fn) ≤ λ · uBBC(Fn) (2)

as any unbiased algorithm can be simulated by a λ-parallel unbiased black-box
algorithm using one query in each round. Due to (1), there is a cut-off point

λ∗ := sup{λ | ∃c > 0, n0 ∀n ≥ n0 : λ-upBBC(Fn) ≤ c · uBBC(Fn)}
such that c is a constant and for all λ ≤ λ∗ the λ-parallel unbiased black-
box complexity of F is asymptotically equal to the regular unbiased black-box
complexity. In this realm, parallelisation is most effective as the number of func-
tion evaluations does not increase (beyond constant factors). The number of
rounds for an optimal black-box algorithm, uBBC(Fn)/λ, corresponds to the
parallel time if all λ evaluations are performed on parallel processors. By (2)
uBBC(Fn)/λ is non-increasing with λ, and for λ ≤ λ∗ it decreases by a factor
of Θ(λ). Such speedups were called linear speedups in [11].

The (1+λ) EA maintains the current best search point x and creates λ off-
spring by flipping each bit in x independently with probability p (with default
p = 1/n). The best offspring replaces its parent if it has fitness at least f(x).

3 Parallel Black-Box Complexity of LeadingOnes

We consider the function Lo(x) :=
∑n

i=1

∏i
j=1 xj , counting the number of lead-

ing ones in x. Similarly, Lz(x) counts the number of leading zeros in x. We first
provide a tool for estimating the progress made by λ trials, which may or may
not be independent. It is based on moment-generating functions (mgf).

Lemma 1. Given X1, . . . , Xλ ∈ N, where Xis are random variables, not nec-
essarily independent. Define X(λ) := maxi∈[λ] Xi, if there exists η,D ≥ 0, such

that for all i ∈ [λ], it holds E
(
eηXi

) ≤ D, then E
(
X(λ)

) ≤ (ln(Dλ) + 1)/η.

Proof. Note first that for any i ∈ [λ] and j ∈ N, it follows from Markov’s
inequality that Pr(Xi ≥ j) = Pr(eηXi ≥ eηj) ≤ e−ηjE

(
eηXi

) ≤ e−ηjD. Now, let
k := ln(Dλ)/η. It then follows by a union bound that

E
(
X(λ)

)
=

∞∑

i=1

Pr(X(λ) ≥ i) ≤ k +

∞∑

i=1

Pr(X(λ) ≥ k + i)

≤ k +

∞∑

i=1

λ∑

j=1

Pr(Xj ≥ k + i) ≤ k +

∞∑

i=1

λe−η(k+i)D

= k + e−ηk Dλ

eη − 1
≤ k + e−ηkDλ/η = (ln(Dλ) + 1)/η.
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For the Lo function, the λ-parallel black-box complexity is as follows.

Theorem 1. The λ-parallel unbiased black-box complexity of Lo is

Ω

(
λn

ln(λ/n)
+ n2

)

and O
(
λn+ n2

)
.

The cut-off point is λ∗
Lo = n. The corresponding parallel time for an optimal

algorithm is Ω
(

n
ln(λ/n) +

n2

λ

)
and O

(
n+ n2

λ

)
.

This result solves an open problem from [11], confirming that the analysis of the
realm of linear speedups for Lo from [11] is tight.

Proof (of Theorem 1). The upper bound follows from Lässig and Sudholt [12,
Theorem 1] for a (1+λ) EA, as within the context of this bound the (1+λ) EA
is equivalent to an island model with complete communication topology.

A lower bound Ω(n2) follows from [13], hence the statement holds for the
case λ = O(n). In case that λ = ω(n), we proceed by drift analysis. Let the
“potential” of a search point x be max0≤j≤t,1≤i≤λ{Lo(xi(j)),Lz(xi(j)), n/2},
and define the potential of the algorithm, Pt at time t to be the largest potential
among all search points produced until time t.

Assume that the potential in generation t is Pt = k. In any generation t, let
Xi for i ∈ [λ] be the indicator variable for the event that all of the first k+1 bit-
positions in individual i are 1-bits (or 0-bits). Furthermore, let Yi be the number
of consecutive 1-bits (respectively 0-bits) from position k + 2 and onwards, ie.,
the number of “free riders”.

Following the same arguments as in [13], the probability that Xi = 1 is no

more than 1/(k + 1) = O(1/n). Defining M :=
∑λ

i=1 Xi, we therefore have
E (M) = O(λ/n). Each random variable Yi, i ∈ [λ], is stochastically dominated
by a geometric random variable Zi with parameter 1/2. The expected progress
in potential is therefore

E
(
Δ(λ)

)
= E

(

max
i∈[λ]

XiYi

)

≤ E

(

max
i∈[M ]

Zi

)

.

The mgf of the geometric random variable Zi is MZi(η) = 1/(2− eη). The tower
property of the expectation and Lemma 1 with η := ln(3/2) and D := 2 give

E
(
Δ(λ)

) ≤ E

(

E

(

max
i∈[M ]

Zi | M
))

≤ E ((log(DM) + 1)/η) ≤ (log(E (DM)) + 1)/η = O(log(λ/n)),

where the last inequality follows from Jensen’s inequality and the last equality
follows from log(λ/n) = Ω(1). With overwhelmingly high probability, the initial
potential is at least n/2. Hence, by classical additive drift theorems [8], the
expected number of rounds to reach the optimum is Ω(n/ log(λ/n)). Multiplying
by λ gives the number of function evaluations.
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4 Parallel Black-Box Complexity of Functions with
Unique Optimum

De Jong, Jansen, and Wegener [9] considered the (1+λ) EA and established a
cut-off point for λ where the running time increases from Θ(n logn) to ω(n logn):

λ∗
(1+λ) EA on OneMax = Θ((lnn)(ln lnn)/(ln ln lnn)) (3)

Recently, He, Chen, and Yao [7] presented the following tight bound for all λ:

Theorem 2 (He, Chen, Yao [7]). The expected optimisation time of the
(1+λ) EA on OneMax for λ ≥ 3 is

Θ

(

n · λ ln lnλ
lnλ

+ n logn

)

.

We show that the parallel black-box complexity is lower than the bound from
Theorem 2 for large λ by a factor of ln lnλ.

Theorem 3. For any λ ≤ e
√
n the λ-parallel unbiased unary black-box complex-

ity for any function with a unique optimum is at least

Ω

(
λn

lnλ
+ n logn

)

.

This bound is tight for OneMax, where the cut-off point is

λ∗
OneMax = Θ(log(n) · log logn).

The corresponding parallel time for an optimal algorithm is Ω
(

n
lnλ + n logn

λ

)
.

Note that the cut-off point is higher than the cut-off point for the (1+λ) EA
with the standard mutation rate p = 1/n from (3) and [9].

For the proof we consider the progress made during a round of λ variations.
Let the 0-“potential” of a search point x be min{|x|0, n/(8e)}, where |x|0 is the
number of 0-bits in x. Similarly, define the 1-“potential” of a search point x as
min{|x|1, n/(8e)}. Let s be the minimum 0-potential among all search points
queried in past rounds. Let r be the number of flipped bits during a varia-
tion, then for any search point with m number of zeros, denote the progress by
Δ(s,m, r). The progress is the difference between s and the potential of the new
generated point, there is no progress if this difference is negative. Let Z be the
number of 0-bits that flipped to 1, then there are r − Z new 0-bits that were
originally 1. Therefore, the number of 0-bits in the new generated search point
is m−Z +(r−Z) where Z can be described by the hypergeometric distribution
with parameters n,m and r. We only make progress if the number of 0-bits in
the new search point is less than s. Hence the progress (decrease in potential) is

Δ(s,m, r) = max{Z − (r − Z) + (s−m), 0} = max{2Z − r + s−m, 0}.
We show a tail inequality for hypergeometric variables that is more precise than
Chvátal’s bound [1] and use this to derive a progress bound. A proof of the
former is omitted due to space restrictions.
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Lemma 2. Let Z be a hypergeometrically distributed random variable with pa-
rameters n (number of balls), m (number of red balls), and r (number of balls
drawn). If m < n/(2e) then for any z ≥ r/2, Pr (Z = z) ≤ (2em/n)

z
.

Lemma 3. Let Δ(λ) = Δ(λ)(s,mi, ri) be the maximum of λ random variables
Δ(s,mi, ri) for arbitrary s ≤ mi ≤ n/2 and ri, 1 ≤ i ≤ λ. For s ≤ n/(8e) we
have E

(
Δ(λ)

)
= O(log(λ)).

Proof. If n
4e < mi ≤ n/2 then we use Chvátal’s tail bound [1]: Pr (Z≥E (Z)+rδ)

≤ exp(−2δ2r), where E (Z) = rm
n , then:

Pr (Δ(s,mi, ri) > 0) = Pr

(

Z ≥ ri +mi − s

2

)

= Pr

(

Z ≥ rimi

n
+ ri ·

(
ri +mi − s

2ri
− mi

n

))

≤ Pr

(

Z ≥ E (Z) + ri · n

8eri

)

≤ exp

(

− n2

32e2ri

)

This means that the probability of making any progress is exponentially small,
for any ri. Thus we assume that mi ≤ n

4e for all i in the following. Applying
Lemma 2 to a hypergeometric random variable Zi with parameters mi and ri
we have, for all z ∈ N0,

Pr (Δ(s,mi, ri) = z)

= Pr

(

Zi =
z + ri +mi − s

2

)

≤
(
2emi

n

)(z+ri+mi−s)/2

≤
(
1

2

)z/2

hence E
(
eηZi

) ≤ D for η := ln(4/3) and D := 9 + 6
√
2. Applying Lemma 1

proves E
(
Δ(λ)

)
= O(logλ).

Proof (of Theorem 3). The upper bound for OneMax will be shown later in
Theorem 4. The lower bound Ω(n logn) follows from unbiased unary black-box
complexity [13]. Hence, it suffices to prove the lower bound Ω(λn/ lnλ).

Without loss of generality, we assume that the search point 1n is the optimum.
Following [13], we assume a “mirrored” sampling process, where every time a bit
string x is queried (including in the initial generation), the algorithm queries the
complement bit string x for “free”. Hence, the 1-potential and the 0-potential (as
defined above) are the same after each generation, and we apply drift analysis
with respect to this potential. Variation of a search point with m 1-bits is sym-
metric to a variation of a search point with n−m 1-bits, hence we can assume
m ≤ n/2. By a Chernoff bound, the initial potential is n/(8e) with overwhelm-
ingly high probability. Let Δ0 be the progress due to reduction of the 0-potential,
and Δ1 be the progress due to reduction of the 1-potential. By Lemma 3, the ex-
pected change in potential per round is no more than max{Δ0, Δ1} = O(log λ).
Hence, by the additive drift theorem [8], the expected number of rounds until
one of the search points 0n or 1n is obtained is Ω(n/ logλ). Multiplying by λ
proves the claim.
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5 An Optimal Parallel Black-Box Algorithm for OneMax

The following theorem shows that the lower bound on the black-box complexity
from Theorem 3 is tight. We show that the (1+λ) EA has a better optimisation
time if the mutation rate is chosen adaptively, according to the current best
fitness. This is similar to common ideas from artificial immune systems, par-
ticularly the clonal selection algorithm. Adaptive mutation rates for OneMax
have been studied by Zarges [19], however the standard parameters for the clonal
selection algorithm were too drastic to even obtain polynomial running times.
Better results were obtained when using a population-based adaptation [20].

The following result reveals an optimal choice for the mutation rate of the
(1+λ) EA, depending on n and λ.

Theorem 4. On OneMax, the expected number of function evaluations of the
(1+λ) EA with an adaptive mutation rate p = max{ln(λ)/(n ln(en/i)), 1/n},
where i is the number of zeros in the current search point, for any λ ≤ e

√
n, is

at most

O

(
λn

lnλ
+ n logn

)

.

The parallel time (number of generations) is O
(

n
lnλ + n logn

λ

)
.

Proof. Let i be the current number of zeros and p be the mutation rate. The
probability of decreasing the number of zeros by any k ∈ N with k ≤ i is at least

Pr (Δ ≥ k) ≥
(
i

k

)

· pk · (1− p)n−k

≥ ik

kk
· pk · (1− p)n−k = (1− p)n−k ·

(
ip

k

)k

.

Then the probability that one of λ offspring will decrease the number of zeros by
at least k is at least, using 1−(1−p)λ ≥ 1−e−pλ ≥ 1−1/(1+pλ) = pλ/(1+pλ),

Pr
(
Δ(λ) ≥ k

) ≥ 1− (1− Pr (Δ ≥ k))λ ≥ λ(1 − p)n−k · (ip/k)k
1 + λ(1− p)n−k · (ip/k)k .

Hence for any k ≤ i the expected drift is at least

E
(
Δ(λ)

) ≥ k · λ(1− p)n−k · (ip/k)k
1 + λ(1 − p)n−k · (ip/k)k .

For i > en/ lnλ, which implies pn > 1, we set k := pn = ln(λ)/ ln(en/i). We
have k ≤ i since k ≤ ln(λ) ≤ √

n ≤ en/ lnλ. We use k := 1 for i ≤ en/ lnλ, the
realm where p = 1/n. This results in the following drift function h:

h(i) :=

{
λ(1−1/n)n−1·i/n

1+λ(1−1/n)n−1·i/n if i ≤ en/ lnλ

pn · λ(1−p)n−pn·(i/n)pn
1+λ(1−p)n−pn·(i/n)pn otherwise
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We estimate the number of function evaluations by multiplying the number of
generations by λ. The number of generations is estimated using Johannsen’s
variable drift theorem [10] in the variant from [16], with the above function h.
This gives an upper bound of

λ

h(1)
+

∫ n

1

λ

h(i)
di =

1 + λ(1 − 1/n)n−1 · 1/n
(1− 1/n)n−1 · 1/n + λ

∫ n

1

1

h(i)
di

≤ λ+ en+ λ

∫ en/ lnλ

1

1

h(i)
di+ λ

∫ n

en/ lnλ

1

h(i)
di.

The first terms are at most

λ+ en+ λ

∫ en/ lnλ

1

1 + λ(1 − 1/n)n−1 · i/n
λ(1 − 1/n)n−1 · i/n di

≤ λen

lnλ
+ en

(

1 +

∫ en/ lnλ

1

1

i
di

)

≤ λen

lnλ
+ en · (2 + lnn).

The second integral is bounded as

∫ n

en/ lnλ

1 + λ(1− p)n−pn · (i/n)pn
pn · (1− p)n−pn · (i/n)pn di

≤
∫ n

0

λ ln(en/i)

lnλ
di+

1

lnλ

∫ n

en/ lnλ

ln(en/i)

e−pn · (i/n)pn di

=
2λn

lnλ
+

1

lnλ

∫ n

en/ lnλ

ln(en/i) · (en/i)pn di

=
2λn

lnλ
+

1

lnλ

∫ n

en/ lnλ

ln(en/i) · λ di ≤ 3λn

lnλ
.

Together, we get an upper bound of (3 + e)λn/ ln(λ) + en · (2 + lnn).

6 Conclusions

We have introduced the parallel unbiased black-box complexity to quantify the
limits on the performance of parallel search heuristics, including offspring popu-
lations. We proved that every λ-parallel unbiased black-box algorithm needs at
least Ω(λn/ log(λ)+n log n) function evaluations on every function with unique
optimum, and at least Ω(λn/(log(λ/n)) + n2) function evaluations on Lo. Cor-
responding parallel times are by a factor of λ smaller. For Lo and OneMax we
identified the cut-off point for λ, above which the asymptotic number of function
evaluations increases, compared to non-parallel algorithms (λ = 1). All smaller λ
allow for linear speedups with regard to the parallel time. For OneMax this cut-
off point is higher than that for the standard (1+λ) EA; optimal performance
for all λ is achieved by a (1+λ) EA with an adaptive mutation rate.
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