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Abstract. The fitness-level technique is a simple and old way to derive
upper bounds for the expected runtime of simple elitist evolutionary al-
gorithms (EAs). Recently, the technique has been adapted to deduce the
runtime of algorithms with non-elitist populations and unary variation
operators [2,8]. In this paper, we show that the restriction to unary vari-
ation operators can be removed. This gives rise to a much more general
analytical tool which is applicable to a wide range of search processes.
As introductory examples, we provide simple runtime analyses of many
variants of the Genetic Algorithm on well-known benchmark functions,
such as OneMax, LeadingOnes, and the sorting problem.

1 Introduction

The theoretical understanding of Evolutionary Algorithms (EAs) has advanced
significantly. A contributing factor for this success may have been the strategy
to analyse simple settings before proceeding to more complex scenarios, while
at the same time developing appropriate analytical techniques.

The fitness-level technique is one of the oldest techniques for deriving upper
bounds on the expected runtime of EAs. In this technique, the solution space is
partitioned into disjoint subsets called fitness-levels according to ascending val-
ues of the fitness function. The expected runtime can be deduced from bounds
on the probabilities of escaping the fitness levels. Applications of the technique
is widely known in the literature for classical elitist EAs [18]. Eremeev used a
fitness-level technique to obtain bounds on the expected proportion of the popu-
lation of a non-elitist EA above above a certain fitness level [5]. By generalising
results in [11], the first adaptation of the fitness-level technique to run-time anal-
ysis of non-elitist population-based EAs was made in [8], and refined in [2]. One
limitation of the approaches in [2,8] is that the partition must be fitness-based
and only unary variation operators are allowed, e.g. Genetic Algorithms (GAs)
are excluded. Runtime analysis of GAs has been subjected to increasing interest
in the recent years (e.g. see [3,10,12,13,15]).

We show that the above limitations can be removed from [2]. This gives rise
to a much more general tool which is applicable to a wide range of search pro-
cesses involving non-elitist populations. As introductory examples, we analyse
the runtime of variants of the Genetic Algorithm (GA) with different selection
mechanisms and crossover operators on well-known functions, such as OneMax
and LeadingOnes, and on the sorting problem.
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2 Algorithmic Scheme

We consider population-based algorithms at a very abstract level in which fitness
evaluations, selection and variation operations, which depending on the current
population P of size λ, are represented by a distribution D(P ) over a finite
set X . More precisely, D is a mapping from Xλ into the space of probability
distributions over X . The next generation is obtained by sampling each new
individual independently from D(P ). This scheme is summarised below.

Algorithm 1. Population-based algorithm with independent sampling

Require:
Finite state space X , and population size λ ∈ N,
Mapping D from X λ to the space of probability distributions over X .

1. P0 ∼ Unif(X λ)
2. for t = 0, 1, 2, . . . until termination condition met do
3. Sample Pt+1(i) ∼ D(Pt) independently for each i ∈ [λ]
4. end for

A similar scheme was studied in [17], where it was called Random Heuris-
tic Search with an admissible transition rule (see [17]). Some examples of such
algorithms are Simulated Annealing (more generally any algorithm with the
population composed of a single individual), Stochastic Beam Search [17], Esti-
mation of Distribution Algorithms such as the Univariate Marginal Distribution
Algorithm [1] and the Genetic Algorithm (GA) [6]. The previous studies of the
framework were often limited to some restricted settings [12] or mainly focused
on infinite populations [17]. In this paper, we are interested in finite populations
and develop a general method to deduce the expected runtime of the search
processes defined in terms of number of evaluations. We illustrate our methods
with runtime analysis of GAs under various settings (which are different to [12]).

The term Genetic Algorithm is often applied to EAs that use recombina-
tion operators. The GA is Algorithm 1 where the sampling y ∼ D(Pt) is the
following: (i) u ∼ psel(Pt), v ∼ psel(Pt) (selection); (ii) {x′, x′′} ∼ pxor(u, v),
x ∼ Unif({x′, x′′}) (crossover); (iii) y ∼ pmut(x) (mutation). The additional part
x ∼ Unif({x1, x2}) at crossover is to match Algorithm 1 that produces only one
resulting bitstring. We call this operator the one-offspring version of the stan-
dard crossover. In the rest of this paper, the two operations of the one-offspring
version will be denoted simply by x ∼ pxor(x, y). Here the standard operators of
GA are formally represented by transition matrices:

– psel : [λ] → [0, 1] represents a selection operator, where psel(i|Pt) is the
probability of selecting the i-th individual from population Pt.

– pmut : X ×X → [0, 1], where pmut(y|x) is the probability of mutating x ∈ X
into y ∈ X .

– pxor : X ×X 2 → [0, 1], where pxor(x|u, v) is the probability of obtaining x as
a result of crossover (or recombination) between u, v ∈ X
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3 Main Theorem

This section states a general technique for obtaining upper bounds on the ex-
pected runtime of any process that can be described in the form of Algo-
rithm 1. We use the following notation. For any positive integer n, define [n] :=
{1, 2, ..., n}. The natural logarithm is denoted by ln(·). The complement of an
event E is denoted by Ē . Suppose that for some m there is an ordered parti-
tion of X into subsets (A1, . . . , Am+1) called levels. For j ∈ [m] we denote by
A+
j := ∪m+1

i=j+1Ai, the union of all levels above level j. An example of partition
is the canonical partition, where each level regroups solutions having the same
fitness value (see e.g. [8]). This partition is classified as fitness-based, our main
theorem is not limited to this particular type of partition.

Lemma 1 (Lemma 5 and 6 in [2]). Let X ∼ Bin(λ, p) with p ≥ (i/λ)(1+ δ),
it holds that E

[
e−κX

] ≤ e−κi for any κ ∈ (0, δ). For i ≥ 1, it also holds that
E [ln ((1 + cX)/(1 + ci))] ≥ cε where ε = min{1/2, δ/2} and c = ε4/24.

Theorem 1. Given a partition (A1, . . . , Am+1) of X , define T := min{tλ |
|Pt ∩ Am+1| > 0} to be the first point in time that elements of Am+1 appear
in Pt of Algorithm 1. If there exist parameters z1, . . . , zm, z∗ ∈ (0, 1], δ > 0, a
constant γ0 ∈ (0, 1) and a function z0 : (0, γ0) → R such that for all j ∈ [m],
P ∈ X λ, y ∼ D(P ) and γ ∈ (0, γ0) we have

(G1) Pr
(
y ∈ A+

j | |P ∩ A+
j−1| ≥ γ0λ

) ≥ zj ≥ z∗
(G2) Pr

(
y ∈ A+

j | |P ∩ A+
j−1| ≥ γ0λ, |P ∩ A+

j | ≥ γλ
) ≥ z0(γ) ≥ (1 + δ)γ

(G3) λ ≥ 2

a
ln

(
16m

acεz∗

)
with a =

δ2γ0
2(1 + δ)

, ε = min{δ/2, 1/2} and c = ε4/24

then E [T ] ≤ 2
cε

(
mλ(1 + ln(1 + cλ)) +

∑m
j=1

1
zj

)

Informally, the two first conditions require a relationship between P and the
distribution D(P ): (G1) demands a certain probability zj of creating an individ-
ual at level j + 1 when some fixed portion of the population is already at level
j (or higher); (G2) requires that in the fixed portion, the number of individuals
at levels strictly higher than j (if those exist) tends to increase, e.g. by a mul-
tiplicative factor of 1 + δ. Finally, (G3) requires a sufficiently large population
size. The proof follows the same ideas as those in [2].

Proof. We use the following notation. The number of individuals in Aj ∪A+
j at

generation t is denoted by Xj
t . The current level of the population at generation

t is denoted by Zt, where Zt := � iff X�
t ≥ 	γ0λ
 and X�+1

t < γ0λ. Note that Zt
is uniquely defined, as it is the level of the γ0-ranked individual at generation
t. We also use qj to denote the probability to generate at least one individual
at a level strictly greater than j in the next generation, knowing that there are
at least 	γ0λ
 individuals of the population at level j or higher in the current
generation. Because of (G1), we have qj ≥ 1− (1 − zj)

λ ≥ zjλ/(zjλ+ 1).
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The theorem can now be proved using the additive drift theorem with respect
to the potential function g(t) := g1(t) + g2(t), where

g1(t) := (m− Zt) ln(1 + cλ)− ln(1 + cXZt+1
t )

and g2(t) :=
1

qZte
κX

Zt+1
t

+

m−1∑

j=Zt+1

1

qj
with κ ∈ (0, δ)

The above components originated from the drift analysis of [8], then later im-
proved by [2]. Function g is bounded from above by, g(t) ≤ m ln(1 + cλ) +∑m

j=1
1
qj

≤ m(1+ln(1+cλ))+ 1
λ

∑m
j=1

1
zj
. At generation t, we use R = Zt+1−Zt

to denote the random variable describing the next progress in terms of lev-
els. To simplify further writing, let us put � = Zt, i = X�

t , X = X�
t+1, then

Δ = g(t)− g(t+ 1) = Δ1 +Δ2 with

Δ1 := g1(t)− g1(t+ 1) = R ln(1 + cλ) + ln

(
1 +X�+R+1

t+1

1 + ci

)

Δ2 := g2(t)− g2(t+ 1) =
1

q�eκi
− 1

q�+Re
κX�+R+1

t+1

+

l+R∑

j=�+1

1

qj

Let us denote by Et the event that the population in the next generation does
not fall down to a lower level, Et : Zt+1 ≥ Zt. We first compute the conditional
forward drift E [Δ|Ft, Et], here Ft is the filtration induced by Pt. Under Et, R
is a non-negative random variable and Δ is a random variable indexed by R,
noted as Δ = YR. We can show that Yr≥1 ≥ Y0 for fixed indexes.

Y0 = ln

(
1 + cX

1 + ci

)
+

1

q�eκi
− 1

q�eκX
≤ ln

(
1 + cλ

1 + ci

)
+

1

q�eκi

Yr≥1 = r ln(1 + cλ) + ln

(
1 +X�+r+1

t+1

1 + ci

)

+
1

q�eκi
− 1

q�+re
κX�+r+1

t+1

+
�+r∑

j=�+1

1

qj

≥ ln(1 + cλ) + ln

(
1

1 + ci

)
+

1

q�eκi
− 1

q�+r
+

�+r∑

j=�+1

1

qj

= ln

(
1 + cλ

1 + ci

)
+

1

q�eκi
+

�+r−1∑

j=�+1

1

qj
≥ ln

(
1 + cλ

1 + ci

)
+

1

q�eκi
≥ Y0

It is then clear (or see Lemma 7 in [2]) that E [Δ|Ft, Et] = E [YR|Ft, Et] ≥
E [Y0|Ft, Et], so we only focus on r = 0 to lower bound the drift. We separate two
cases, i = 0, the event is denoted by Zt, and i ≥ 1 (event Z̄t). Recall that each
individual is generated independently from each other, so during Z̄t we have that
X ∼ Bin(λ, p) where p ≥ z0(i/λ). From (G2), we also get z0(i/λ) ≥ (i/λ)(1+ δ).
Hence p ≥ (i/λ)(1 + δ) and by Lemma 1, it holds for i ≥ 1 (event Z̄t) that

E
[
Δ1|Ft, Et, Z̄t

] ≥ E

[
ln

(
1 + cX

1 + ci

)
|Ft, Et, Z̄t

]
≥ cε
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E
[
Δ2|Ft, Et, Z̄t

] ≥ 1

q�
(e−κi − E

[
e−κX |Ft, Et, Z̄t

]
) ≥ 0

For i = 0, we get E [Δ1|Ft, Et,Zt] ≥ E [ln(1)|Ft, Et,Zt] = 0 because X ≥ 0.
Recall that q� = Pr (X ≥ 1|Ft, Et,Zt), so

E [Δ2|Ft, Et,Zt] ≥ Pr (X ≥ 1|Ft, Et,Zt)E
[

1

q�eκi
− 1

q�eκX
|Ft, Et,Zt, X ≥ 1

]

≥ q�(1/q�)(e
−κ·0 − e−κ·1) = 1− e−κ

So the conditional forward drift is E [Δ|Ft, Et] ≥ min{cε, 1 − e−κ}. Further-
more, κ can be picked in the non-empty interval (− ln(1−cε), δ) ⊂ (0, δ), so that
1− e−κ > cε and E [Δ|Ft, Et] ≥ cε. Next, we compute the conditional backward
drift, which can be done for the worst case.

E
[
Δ|Ft, Ēt

] ≥ −(m− 1) ln(1 + cλ)− ln(1 + cλ)−
m∑

j=1

1/qj ≥ −m (cλ+ 2/z∗)

The probability that event Et does not occur is computed as follows. Recall
thatX�

t ≥ 	γ0λ
 andX�
t+1 is binomially distributed random variable with proba-

bility at least z0(γ0) ≥ (1+δ)γ0 by condition (G2), so E
[
X�
t+1|Ft

] ≥ (1+δ)γ0λ.
The event Ēt happens when the number of individuals at level � is strictly less
than 	γ0λ
 in the next generation. By a Chernoff bound (see [4]), we have

Pr
(Ēt|Ft

)
= Pr

(
X�
t+1 < 	γ0λ
|Ft

) ≤ Pr
(
X�
t+1 ≤ γ0λ|Ft

)

= Pr
(
X�
t+1 ≤ (1− δ/(1 + δ)) (1 + δ)γ0λ|Ft

)

≤ Pr
(
X�
t+1 ≤ (1− δ/(1 + δ))E

[
X�
t+1|Ft

] |Ft

)

≤ exp

(

−δ
2E

[
X�
t+1|Ft

]

2(1 + δ)2

)

≤ exp

(
−δ

2(1 + δ)γ0λ

2(1 + δ)2

)
= e−aλ

Recall condition (G3) that λ ≥ (2/a) ln ((16m)/(acεz∗)). This implies that

(8m)/(acεz∗) ≤ e
aλ
2 /2 ≤ eaλ/(aλ), or e−aλ ≤ cεz∗/(8mλ). The drift is therefore

E [Δ|Ft] = (1− Pr
(Ēt|Ft

)
)E [Δ|Ft, Et] + Pr

(Ēt|Ft

)
E
[
Δ|Ft, Ēt

]

= E [Δ|Ft, Et]− Pr
(Ēt|Ft

)
(E [Δ|Ft, Et]− E

[
Δ|Ft, Ēt

]
)

≥ cε− cεz∗
8mλ

(
cε+m

(
cλ+

2

z∗

))

≥ cε− cε

8

(
cεz∗
λm

+ z∗c+
2

λ

)
≥ cε− 4cε

8
=
cε

2

By additive drift [7], E [T ] ≤ 2
cε

(
mλ(1 + ln(1 + cλ)) +

∑m
j=1

1
zj

)
. �


In the special case of unary variation operators Theorem 1 becomes analogous
to the main results of [2,8]. It is an open problem whether the upper bound in
Theorem 1 is tight. The lack of general tools make this problem hard. The
family tree technique [19], the population drift theorem [9], and the fitness level
technique in [16], provide lower bounds for population-based algorithms, however
only for less general settings than Algorithm 1.
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4 Runtime Analysis of Genetic Algorithms

This section provides a version of Theorem 1 tailored to the GAs described
in Section 2. The selective pressure of a selection mechanism psel is defined
as follows. For any γ ∈ (0, 1) and population P of size λ, let β(γ, P ) be the
probability of selecting an individual from P that is at least as good as the
individual with rank 	γλ
 (see [2] or [8] for a formal definition). We assume that
psel is monotone with respect to fitness values [8], ie for all P ∈ X λ and pairs
i, j ∈ [λ], psel(i | P ) ≥ psel(j | P ) if and only if f(P (i)) ≥ f(P (j)).

Corollary 1. Given a function f : X → R and a partition (A1, . . . , Am+1)
of X , let T := min{tλ | |Pt ∩ Am+1| > 0} be the runtime of the non-elitist
Genetic Algorithm, as described in Section 2, on f . If there exist parameters
s1, . . . , sm, s∗, p0, ε1 ∈ (0, 1], δ > 0, and a constant γ0 ∈ (0, 1) such that for all
j ∈ [m], P ∈ Xλ, and γ ∈ (0, γ0)

(C1) pmut(y ∈ A+
j | x ∈ A+

j−1) ≥ sj ≥ s∗
(C2) pmut(y ∈ A+

j | x ∈ A+
j ) ≥ p0

(C3) pxor(x ∈ A+
j | u ∈ A+

j−1, v ∈ A+
j ) ≥ ε1

(C4) β(γ, P ) ≥ γ
√

1+δ
p0ε1γ0

(C5) λ ≥ 2

a
ln

(
32mp0

(δγ0)2cs∗ψ

)
with a :=

δ2γ0
2(1 + δ)

, ψ := min{ δ2 , 12} and c := ψ4

24

then E [T ] ≤ 2
cψ

(
mλ(1 + ln(1 + cλ)) + p0

(1+δ)γ0

∑m
j=1

1
sj

)
.

Proof. We show that conditions (C1-5) imply conditions (G1-3) in Theorem 1.
We first show that condition (G1) is satisfied for zj = γ0(1 + δ)sj/p0. Assume
that |P ∩ A+

j−1| ≥ γ0λ. Remark that (C3) written for one level below, which is

pxor(x ∈ A+
j−1 | u ∈ A+

j−2, v ∈ A+
j−1) ≥ ε1, implies pxor(x ∈ A+

j−1 | u ∈ A+
j−1, v ∈

A+
j−1) ≥ ε1. To sample an individual in A+

j , it suffices that the selection operator

picks two individuals u and v from A+
j−1, that the crossover operator produces

an individual x in A+
j−1 from u and v, and the mutation operator produces an

individual y in A+
j from x. By conditions (C4), (C3) as the remark, and (C1),

the probability of this event is at least β(γ0)β(γ0)ε1sj ≥ γ0(1 + δ)sj/p0 = zj.
We then show that condition (G2) is satisfied. Assume that |P ∩A+

j−1| ≥ γ0λ

and |P ∩ A+
j | ≥ γλ. To produce an individual y in A+

j , it suffices that the

selection operator picks an individual u in A+
j−1 and an individual v in A+

j , that

the crossover operator produces an individual x in A+
j from u and v, and the

mutation operator produces an individual y in A+
j from x. By conditions (C4),

(C3), and (C2), the probability of this event is at least β(γ0)β(γ)ε1p0 ≥ (1+δ)γ.
Finally, to see that condition (G3) is satisfied, it suffices to note that az∗ =

(δγ0)
2s∗/(2p0). Hence, the statement now follows from Theorem 1. �




918 D. Corus et al.

4.1 Runtime of GAs on Simple pseudo-Boolean Functions

We apply Corollary 1 to bound the expected runtime of the non-elitist GA on
the functions OneMax(x) :=

∑n
i=1 xi (also written shortly as |x|1 or Om) and

LeadingOnes(x) :=
∑n

i=1

∏i
j=1 xj (shortly as Lo).

We first show how to parameterise three standard selection mechanisms such
that condition (C4) is satisfied. In k-tournament selection, k individuals are
sampled uniformly at random with replacement from the population, and the
fittest of these individuals is returned. In (μ, λ)-selection, parents are sampled
uniformly at random among the fittest μ individuals in the population. A func-
tion α : R → R is a ranking function [6] if α(x) ≥ 0 for all x ∈ [0, 1], and∫ 1

0
α(x)dx = 1. In ranking selection with ranking function α, the probability

of selecting individuals ranked γ or better is
∫ γ
0
α(x)dx. We define exponential

ranking parameterised by η > 0 as α(γ) := ηeη(1−γ)/(eη − 1). 1

Lemma 2. For any constant δ > 0, there exists a constant γ0 ∈ (0, 1) such that

1. k-tournament selection with k ≥ 4(1 + δ)/(ε1p0) satisfies (C4)
2. (μ, λ)-selection with λ/μ ≥ (1 + δ)/(ε1p0) satisfies (C4)
3. exponential ranking selection with η ≥ 4(1 + δ)/(ε1p0), satisfies (C4).

Lemma 3 shows that two standard crossover operators satisfy (C3) for ε1 = 1
2 .

Lemma 3. If x ∼ pxor(u, v), where pxor is one-point or uniform crossover, then

1. If Lo(u) = Lo(v) = j, then Pr (Lo(x) ≥ j) = 1.
2. If Lo(u) �= Lo(v), then Pr (Lo(x) > min{Lo(u),Lo(v)}) ≥ 1/2.
3. Pr (Om(x) ≥ 	(Om(u) +Om(v))/2
) ≥ 1/2.

Theorem 2. Assume that the GA with one-point or uniform crossover, bitwise
mutation with mutation rate χ/n for a constant χ > 0, and either k-tournament
selection with k ≥ 8(1 + δ)eχ, or (μ, λ) selection with λ/μ ≥ 2(1 + δ)eχ or the
exponential ranking selection with η ≥ 8(1 + δ)eχ, for a constant δ > 0. Then
there exists a constant c > 0, such that the GA with population size λ ≥ c lnn,
has expected runtime O(nλ ln λ + n2) on LeadingOnes, and expected runtime
O(nλ ln λ) on OneMax.

Proof. Let f be either Om or Lo. We apply Corollary 1 with the canonical
partition of the search space into n + 1 levels Aj := {x | f(x) = j − 1}, for
j ∈ [n + 1]. We use p0 := (1 − χ/n)n the probability of not flipping any bit
position by mutation, and for all j ∈ [n], define

sj :=

{
(χ/n)(1− χ/n)n−1 if f = Lo, and

(n− j + 1)(χ/n)(1− χ/n)n−1p0 if f = Om.

Considering condition (C1), when x ∈ Aj it suffices to upgrade x to a higher
level, the probability of such an event is at least sj for Lo and sj/p0 > sj for Om.

1 The proofs of Lemmas 2 and 3 are omitted due to space restrictions.
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When x ∈ A+
j , it suffices to not modify x, the probability of such an event is

at least p0 ≥ sj with sufficiently large n for Lo and p0 > (n − j + 1)(χ/n)(1 −
χ/n)n−1p0 = sj for Om. So, condition (C1) is satisfied for both functions with
the given sj . In addition, condition (C2) is trivially satisfied for the given p0 and
condition (C3) is satisfied for the parameter ε1 := 1/2 by Lemma 3.

We now look at condition (C4), and remark that p0 = (1 − χ/n)(n/χ−1)χ(1 −
χ/n)χ ≥ e−χ(1−χ/n)χ. So eχ ≥ (1−χ/n)χ/p0 and with the given condition for k-
tournament, we get k ≥ 8(1+δ)eχ = 4(1+δ)eχ/(1/2) ≥ 4(1+δ)(1−χ/n)χ/(ε1p0).
Then for any constant δ′ ∈ (0, δ) and sufficiently large n, literally n ≥ χ/(1−((1+
δ′)/(1 + δ))1/χ), it holds that k ≥ 4(1 + δ′)/(ε1p0). So condition (C4) is satisfied
with the constant δ′ for k-tournament by Lemma 2. The same reasoning can be
applied so that (C4) is also satisfied for the other selection mechanisms.

Finally, s∗ := minj∈[n] sj = Ω(1/n). So assuming λ ≥ c lnn for a sufficiently
large constant c, condition (C5) is satisfied as well. Note that the p0 part in
sj of Lo only removes the p0 from p0/(1 + δ)γ0 in the runtime of Corollary 1.
Therefore, the upper bounds O(nλ ln λ + n2) and O(nλ ln λ) on the expected
runtime are proven for Om and Lo respectively. �


Note that the upper bounds in Theorem 2 match the upper bounds obtained
in [2] for EAs without crossover.

4.2 Runtime of GAs on the Sorting Problem

Given n distinct elements from a totally ordered set, we consider the problem of
finding an ordering of them so that some measure of sortedness is maximised.
Scharnow et al. [14] considered several sortedness measures in the context of
analysing the (1+1) EA. One of those is INV (π) which is defined to be the
number of pairs (i, j) such that 1 ≤ i < j ≤ n, π(i) < π(j) (i.e. pairs in correct
order). We show that with the methods introduced in this paper, analysing GAs
on INV (π) is not much harder than analysing the (1+1) EA.

As mutation operator, we consider the Exchange(π) operator, which consec-
utively applies N pairwise exchanges between uniformly selected pairs of indices,
where N is a random number drawn from a Poisson distribution with parameter
1. We consider a crossover operator, denoted by pxor(pc), which returns one of the
parents unchanged with probability 1−pc. For example, pxor(pc) is built up from
any standard crossover operator so that with probability pc the standard opera-
tor is applied and the offspring is returned, otherwise with probability 1−pc one
of the parents is returned in place of the offspring. This construction corresponds
to a typical setting (see [6]) where there is some crossover probability pc of ap-
plying the crossover before the mutation. As selection mechanism, we consider
k-tournament selection, (μ, λ)-selection, and exponential ranking selection.

Theorem 3. If the GA uses a pxor(pc) crossover operator with pc being any con-
stant in [0, 1), the Exchange mutation operator where the number of exchanges N
is drawn from a Poisson distribution with parameter 1, k-tournament selection
with k ≥ 8e(1 + δ)/(1 − pc), or (μ, λ)-selection with λ/μ ≥ 2e(1 + δ)/(1 − pc),
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or exponential ranking selection with η ≥ 8e(1 + δ)/(1− pc), then there exists a
constant c > 0 such that if the population size is λ ≥ c lnn, the expected time to
obtain the optimum of INV is O(n2λ logλ).

Proof. Define m :=
(
n
2

)
. We apply Corollary 1 with the canonical partition,

Aj := {π | INV (π) = j} for j ∈ [m]. The probability that the exchange operator
exchanges 0 pairs is 1/e. Hence, condition (C2) is trivially satisfied for p0 := 1/e.

To show that condition (C1) is satisfied, define first sj := (m− j)p0/(em). In
the case that x ∈ Aj , then the probability that the exchange operator exchanges
exactly one pair is 1/e, and the probability that this pair is incorrectly ordered in
x, is (m− j)/m. In the other case that, x ∈ A+

j , it is sufficient that the exchange
operator exchanges 0 pairs, which by condition (C2) occurs with probability at
least p0 ≥ sj . Hence, in both cases, y ∈ A+

j with probability at least sj , and
condition (C1) is satisfied.

Condition (C3) is trivially satisfied for ε1 := (1−pc)/2, because the crossover
operator returns one of the parents unchanged with probability 1− pc, and with
probability 1/2, this parent is v. Condition (C4) is satisfied for some constant
γ0 ∈ (0, 1) by Lemma 2. Finally, since γ0, δ, and p0 are constants, there exists a
constant c > 0 such that condition (C5) is satisfied for any λ ≥ c ln(n).

It therefore follows that the expected runtime of the GA on INV is upper
bounded by O(n2λ log λ). �


5 Conclusion

Most results in runtime analysis of evolutionary algorithms concern relatively
simple algorithms, e.g. the (1+1) EA, which do not employ populations and
higher-arity variation operators, such as crossover. This paper introduces a new
tool, akin to the fitness-level technique, that easily yields upper bounds on the ex-
pected runtime of complex, non-elitist search processes. The tool is illustrated on
Genetic Algorithms. Given an appropriate balance between selection and varia-
tion operators, we have shown that GAs optimise standard benchmark functions,
as well as combinatorial optimisation problems, efficiently. Future applications of
the theorem might consider the impact of the crossover operator more in detail,
e.g. by a more precise analysis of the population diversity.
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