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Abstract. Fitness sharing is a popular diversity mechanism implement-
ing the idea that similar individuals in the population have to share re-
sources and thus, share their fitnesses. Previous runtime analyses of fit-
ness sharing studied a variant where selection was based on populations
instead of individuals. We use runtime analysis to highlight the benefits
and dangers of the original fitness sharing mechanism on the well-known
test problem TwoMax, where diversity is crucial for finding both op-
tima. In contrast to population-based sharing, a (2+1) EA in the original
setting does not guarantee finding both optima in polynomial time; how-
ever, a (μ+1) EA with μ ≥ 3 always succeeds in expected polynomial
time. We further show theoretically and empirically that large offspring
populations in (μ+λ) EAs can be detrimental as overpopulation can
make clusters of search points go extinct.

Keywords: Evolutionary computation, diversity mechanisms, fitness
sharing, runtime analysis.

1 Introduction

Diversity mechanisms are used in evolutionary computation to tackle multimodal
optimisation problems [7]. The main idea is to maintain dissimilar individuals
in the population such that different niches explore different peaks of the fitness
landscape. A popular diversity mechanism is fitness sharing [1,6]. In this scheme
niche formation is induced by using a sharing function that derates the fitness of
an individual by an amount related to its similarity to the rest of the population.
Different fitness sharing functions are obtained according to how the distance
between individuals is defined [7]. Genotypic sharing uses Hamming distance
and is generally employed when no phenotypic knowledge is available [7]. In
phenotypic sharing the distance is defined using problem specific knowledge.

Previous theoretical work on diversity mechanisms has concentrated on a
somewhat unusual implementation of the sharing mechanism. Let P denote the
union of parents and offspring. Rather than selecting individuals based on their
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shared fitness f(x, P ), selection was done on a level of populations, creating
a population that maximises the overall shared fitness of the population (i. e.,
creating P ∗ = argmax{∑x∈P ′ f(x, P ′) | P ′ ⊂ P, |P ′| = μ} [3,4,10,11]). The
drawback of this approach is that all the possible subsets of P of size μ need to
be examined. For large μ and λ, this is prohibitive.

In this paper we analyse the performance of the original fitness sharing ap-
proach used in many practical applications [5]. We consider a standard (μ+λ) EA
(see Algorithm 1) using the shared fitness values within the selection for re-
placement. We analyse the algorithm on the same TwoMax function used in
the literature for the analysis of the effectiveness of the previous approach for
multimodal optimisation [4].

TwoMax(x) := max {∑n
i=1 xi, n−∑n

i=1 xi} is a simple bimodal function
consisting of two different symmetric branches (i. e., OneMax and ZeroMax)
and we have defined both 0n and 1n to be global optima. Since we aim at
analysing the global exploration capabilities of the population-based EA, we call
a run successful if it manages to find both optima (i. e., a population is reached
that contains both 0n and 1n) efficiently. The expected number of generations for
this to happen is called expected running time. Apart from TwoMax being the
ideal benchmark function for the analysis (i. e., the simplest bimodal function),
its choice also allows comparisons with the previous approaches.

A (μ+1) EA using the unconventional approach (i. e., maximising the pheno-
typic shared fitness of the population) can efficiently optimise TwoMax for any
population size μ ≥ 2 [4]. The reason is that, in any population, the individuals
with the smallest and the largest number of ones are always accepted for the next
generation. Our analysis shows that using the conventional (phenotypic) sharing
approach leads to considerably different behaviours of evolutionary algorithms.
We illustrate this by using the analytical framework presented in Sect. 2.

We first concentrate on the effects of the parent population in Sect. 3. A
population of size μ = 2 is not sufficient to guarantee that the (μ+1) EA finds
both optima in polynomial time. If the two individuals are initialised on the same
branch, then there is a high probability that they will both find the same local
optimum. Furthermore, there is a chance that the algorithm fails also when the
two individuals are initialised on opposite branches. This leads to a worse failure
probability than that of a simple crowding algorithm or that of a (1+1) EA that
is restarted twice. On the other hand Sect. 4 shows that for μ ≥ 3, once the
population is close enough to one optimum, individuals descending the branch
heading towards the other optimum are accepted. This threshold, that allows
successful runs with probability 1, lies further away from the local optimum as
the population size increases.

Concerning the effects of the offspring population, in Sect. 5 we show that
large values of λ can be detrimental. We rigorously prove that increasing the
offspring population of a (μ+1) EA to a (μ+λ) EA, with μ = 2 and λ ≥ 2 a
constant, results in an overcrowding that can make a (sub-)population go extinct.
For the special case of λ = 2 we also prove an increased failure probability.
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Algorithm 1. (μ+λ) EA with fitness sharing

1. Choose μ individuals uniformly at random from {0, 1}n.
2. repeat
3. for each 1 ≤ i ≤ λ do
4. Select a parent x uniformly at random from the population.
5. Let xi := x. Flip each bit in xi independently with probability 1/n.
6. end for
7. Create a new population by selecting the μ best individuals according to their

shared fitness, breaking ties towards favouring offspring over parents, breaking
remaining ties uniformly at random.

8. until stopping criterion met

We complement this result with an empirical analysis that suggests that the
(μ+1) EA is successful if λ < �μ/2� and that it almost always fails for λ ≥ μ.

In this extended abstract, some proofs are omitted due to space limitations.

2 Analytical Framework

Throughout this work, |x| denotes the number of 1-bits in x. The shared fitness

of an individual x in population P is f(x, P ) := f(x)∑
y∈P sh(x,y) and the sharing

function is sh(x, y) := max{0, 1− (d(x, y)/σ)α}. Here, d is the distance between
the two individuals, σ is the sharing distance beyond which individuals do not
share fitness and α is a constant, typically set to 1, that regulates the shape
of the sharing function. We consider fitness sharing with phenotypic sharing as
in [4], where the distance between individuals is based on the number of ones.
We use σ = n/2 (as in [4]) and the standard value α = 1 and obtain

f(x, P ) :=
f(x)

∑
y∈P max

{
0, 1− ||x|−|y||

n/2

} .

Let P := {x1, x2, . . . , xs} denote the extended population of current search
points and the new offspring, labelled such that |x1| ≤ |x2| ≤ · · · ≤ |xs|. Let
Dj :=

∑s
i=1 min{||xj |− |xi||, n/2} denote the sum of phenotypic distances to all

other members of the extended population. Individual distances are capped at
the sharing distance n/2 so that the shared fitness can be written as

f(xi, P ) =
f(xi)

s− 2Di/n
.

Phenotypic fitness sharing, along with the shape of the TwoMax function,
implies that a unique best individual will always survive, as it has a better
fitness than the individual with the closest number of ones, and it has a larger
phenotypic distance to other individuals. This means that in a (μ+1) EA the
current best fitness never decreases; this also holds if multiple individuals have
the same current best fitness, as only one individual is removed by selection.
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Lemma 1. Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs|. If f(x1) > f(x2) then
f(x1, P ) > f(x2, P ). Likewise, if f(xs−1) < f(xs) then f(xs−1, P ) < f(xs, P ).

As a result, the (μ+1) EA never decreases its current best fitness and finds
at least one optimum in expected time O(μn logn).

The time bound follows from standard arguments, as used in [4]. The symmetry
between f(x1, P ) vs. f(x2, P ) and f(xs−1, P ) vs. f(xs, P ) follows from swapping
the meaning of zeros and ones. This also applies to further statements, where
for simplicity we omit symmetric statements.

The following Main Lemma gives sufficient and necessary conditions on when
the shared fitness of one individual is better than another.

Lemma 2 (Main Lemma). Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs| and
fix 1 ≤ i ≤ s− 1. If f(xi)− f(xi+1) = |xi+1| − |xi| > 0 and |xs| − |x1| ≤ n/2,

f(xi+1, P ) ≥ f(xi, P ) ⇔ f(xi) · (2i− s) +Di ≥ s · n/2
⇔ f(xi+1) · (2i− s) +Di+1 ≥ s · n/2.

The same holds if all inequalities “≥” are replaced by strict inequalities “>”.
Moreover, for i = s− 1

f(xs, P ) > f(xs−1, P ) ⇔ |xs| >
s−1∑

i=1

|xi| − n/2 · (s− 4).

Proof. Note that |xs| − |x1| ≤ n/2 implies that all pairs of individuals do share
fitness. Comparing Di and Di+1, for the latter the distance to x1, . . . , xi−1 is
higher by |xi+1| − |xi|, and the distance to xi+2, . . . , xs is lower by |xi+1| − |xi|:

Di+1 = Di + (i− 1) · (|xi+1| − |xi|) + (s− i− 1) · (|xi| − |xi+1|)
= Di + (2i− s) · (|xi+1| − |xi|).

Using the shorthand h := |xi+1| − |xi|,

f(xi+1, P ) =
f(xi+1)

s− Di+1

n/2

=
f(xi)− h

s− Di+(2i−s)h
n/2

.

Now f(xi+1, P ) ≥ f(xi, P ) is equivalent to

f(xi)− h

s− Di+(2i−s)h
n/2

≥ f(xi)

s− Di

n/2

⇔ (f(xi)− h) · (sn/2−Di) ≥ f(xi) · (sn/2−Di − (2i− s)h)

⇔ f(xi) · (2i− s)h+ h ·Di ≥ h · sn/2
⇔ f(xi) · (2i− s) +Di ≥ sn/2.

In the last step we used h > 0. The same calculations hold if “≥” is replaced by
“>” throughout. The second equivalence from the statement follows from

f(xi) · (2i− s) +Di = (f(xi+1) + h) · (2i− s) +Di+1 − h(2i− s)

= f(xi+1) · (2i− s) +Di+1.

The last statement follows from simple manipulations. �	
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The Main Lemma gives a condition for the individual of lowest raw fitness
(i. e., xs) to be accepted by selection. Concerning the (μ+1) EA, the condition
clearly shows that for μ = 2 at least n/2 bits have to flip (i. e., |x3|−|x2| ≥ n/2).
On the other hand, for μ ≥ 3 offspring with lower fitness values are accepted once
the population is close enough to the optimum 0n. This threshold is further away
from the optimum as the population size increases. If mutation was only allowed
to flip one bit and μ = 3, then it is necessary that both x1 and x2 reach the local
optimum before decreasing moves are accepted (i. e., |x1|+ |x2| = 0). For μ = 4
the sum of 1-bits in the first 4 individuals can be up to |x1|+|x2|+|x3|+|x4| ≤ n/2
for any decreasing move to be accepted by the (μ+1) EA.

In general, the conditions from Lemma 2 are true for xs−1 and xs if |xs−1| <
n/2 and two individuals are in the optimum 0n as then

f(xs−1)(s− 2) +Ds−1 ≥ (n− |xs−1|)(s− 2) + (s− 2)|xs−1| −
s−2∑

i=1

|xi|

> n(s− 2)− (s− 4)n/2 = sn/2.

Lemma 3. If P = {x1, . . . xs}, |x1| ≤ · · · ≤ |xs|, with |xs−1| < n/2 and |x1| =
|x2| = 0 then f(xs−1, P )(s− 2) +Ds−1 > sn/2.

3 Population Size μ = 2 Is Not Enough

We first investigate the (2+1) EA, showing that a population size of μ = 2 is
not sufficient to guarantee finding both optima.

The following lemma gives sufficient and necessary conditions for a single
individual on a branch to survive. For |x3| = |x2| the statement implies that x1

survives if the distance from n/2 to x2 is less than around 3/2 the distance from
n/2 to x1. The condition for survival sharpens when |x3| > |x2|; however, as x2

and x3 result from a mutation of one another, |x3| − |x2| is bounded from above
by the number of bits flipped in that mutation.

Lemma 4. Let μ = 2 and P = {x1, x2, x3} with |x1| < n/2 < |x2| ≤ |x3| and
|x3| − |x1| ≤ n/2. Let d1 := n/2− |x1| and d2 := |x2| − n/2, then

f(x1, P ) > f(x2, P ) ⇔

d2 <

(
3

2
+

7d1
n+ 6|x1|

)

· d1 +
(|x3| + |x2|)(f(x2)− f(x1))

n/2 + 3|x1| .

The following theorem states that with a probability greater than 1/2, the
(2+1) EA will end up with both individuals in the same optimum, leading to
an exponential running time from there. This performance is worse than having
two independent runs of a (1+1) EA, as in deterministic crowding, for which the
probability of finding both optima is exactly 1/2 [4].

Theorem 1. The (2+1) EA with fitness sharing with probability 1/2 + Ω(1)
will reach a population with both members in the same optimum, and then the
expected time for finding both optima from there is Ω(nn/2).
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Proof. Using that 2−n
(
n
i

) ≤ 2−n
(

n
n/2

)
= Θ(1/

√
n) for any 0 ≤ i ≤ n, it is easy

to show that with probability 1−O(n1/3/
√
n) = 1− o(1) for both initial search

points x1, x2 we have |x1|, |x2| /∈ [n/2 − n1/3, n/2 + n1/3]. By symmetry, with
probability 1/2 − o(1), x1 and x2 are on the same branch. The probability of
a mutation jumping from one branch to the other is then at most 1/(n1/3!) =

2−Ω(n1/3 logn), and the probability of this happening in expected polynomial
time is still of the same order. This implies that w. o. p. no individuals on the
opposite branch will be created in polynomial time as long as no offspring of
decreasing fitness are ever accepted on the branch. In the following we prove by
contradiction that such offspring are always rejected.

Assuming both search points and the offspring are all on the same branch,
w. l. o. g. the left branch, by Lemma 2

f(x3, P ) ≥ f(x2, P ) ⇔ f(x2) +D2 ≥ 3 · n
2

(1)

where D2 = (|x2| − |x1|) + (|x3| − |x2|) = |x3| − |x1|. Then f(x2) + D2 =
n − |x2| + |x3| − |x1| ≤ n + |x3| − |x2|. This implies that (1) only holds if
|x3| − |x2| ≥ n/2, which is a contradiction since there are no points on the left
branch differing in more than n/2 one-bits. Hence, the claim that no offspring
on the left branch of worse fitness than x2 are ever accepted, is proved. By
Lemma 1, 0n will be reached in expected time O(n log n). In a further expected
2 · (1− 1/n)n = O(1) generations, the extended population will contain a clone
of 0n, and from then on any offspring x3 with 0 < |x3| ≤ n/2 will be rejected.
Then the expected time to create an individual on the other branch is Ω(nn/2)
since at least n/2 bits need to flip.

The claimed probability 1/2 + Ω(1) follows from considering the following
additional event, which is disjoint from the above. The algorithm also fails if,
using the notation from Lemma 4, 3

√
n/4 ≤ d2 ≤ √

n (probability at least 0.02)
and

√
n/3 ≥ d1 ≥ 0 (probability at least 0.21). If then in the first generation a

clone of x2 is generated (probability at least 1/2 · (1− 1/n)n > 1/8), we have
(
3

2
+

7d1
n+ 6|x1|

)

·d1 +
(x3 + x2)(f(x2)− f(x1))

n/2 + 3x1
≤

√
n

3
· 3
2
+O(1) <

3
√
n

4
≤ d2

if n is large enough. Now Lemma 4 implies f(x1, P ) < f(x2, P ) = f(x3, P ),
hence x1 will be removed. Then we are in the same situation as when initialising
two individuals on the same branch. �	

However, there is still a constant probability that the (2+1) EA finds both
optima in polynomial expected time. This holds if the EA is initialised with its
two search points on different branches, and if these two search points maintain
similar fitness values throughout the run.

Theorem 2. The (2+1) EA with fitness sharing with probability Ω(1) will find
both optima in time O(n logn).

Due to space restrictions, we only sketch the proof. Let x1, x2 be the two initial
search points and d1 := n/2− |x1| and d2 := |x2| − n/2. With probability Ω(1),
x1 and x2 are on opposite branches and have similar fitness: 3

4

√
n ≤ d1, d2 ≤ √

n.
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Now, assume w. l. o. g. that when a new offspring is created and the population
contains x1, x2, x3 in order of their numbers of ones, that x2 and x3 are on the
same branch. If f(x1) > f(x2), Lemma 1 implies that f(x1, P ) > f(x2, P ) and
f(x2, P ) < f(x3, P ) if |x3| > |x2|. Then x1 is guaranteed to survive.

Now assume f(x1) ≤ f(x2). It is easy to derive from Lemma 4 and further
arguments for |x3|−|x1| > n/2 that f(x1, P ) > f(x2, P ) follows if d1 ≥ (2/3)·d2.

For a current population P = {x1, x2} define a potential g(P ) := min{d1, d2}
−(2/3) ·max{d1, d2}. Intuitively, the potential indicates a distance to a popula-
tion where the lower-fitness individual is at risk of dying. For d1 ≤ d2 we have,
using Lemma 4,

g(P ) ≥
√
n

24
⇔ d1 ≥ 2

3
· d2 ⇒ f(x1, P ) > f(x2, P ).

For the initial population P0 we have g(P0) ≥ 3/4 · √n− 2/3 · √n ≥ √
n/12. If

d1 ≤ d2 − k for some k ∈ N, the potential increases by k if d1 increases by k.
However, the potential only decreases by 2/3 · k if d2 increases by k. Moreover,
increasing d1 is easier than increasing d2 as the former contains more “incorrect”
bits (cf. Lemma 13 in [2]). This shows that, whenever the potential changes, it
increases in expectation by 1/3.

A straightforward application of the simplified drift theorem [8,9] shows that
with probability 2−Ω(

√
n) the potential never decreases below

√
n/24 in 2Ω(

√
n)

steps. So, with overwhelming probability x1 survives until both optima are
reached.

4 Population Size μ ≥ 3 Succeeds

A population of size μ = 2 may fail, but we show that a (μ+1) EA with μ ≥ 3
always finds both optima in expected time O(μn logn).

The following lemma is an extension of the Main Lemma to the case where an
individual xμ+1 is on the other branch compared to the rest of the population.
In particular, a stronger condition is given such that xμ+1 will survive selection
when f(xμ) > f(xμ+1). The proof is similar to the one for the Main Lemma.

Lemma 5. Let |xμ| < n/2, |xμ+1| > n/2 and f(xμ) > f(xμ+1). Also let hμ :=
n/2− |xμ| and hμ+1 := |xμ+1| − n/2. Then

f(xμ) · (μ− 1) · hμ

hμ − hμ+1
+Dμ ≥ (μ+ 1) · n/2 ⇒ f(xμ+1, P ) ≥ f(xμ, P ).

The following lemma states that if there is a bounded number r of individuals
in one optimum then they will have better shared fitness than the next sub-
optimal individual. This implies that r such individuals survive in the (μ+1) EA;
the same holds if there are more than r such individuals in the extended popu-
lation as only one individual is being removed.

Lemma 6. Let P = {x1, . . . , xs} with |x1| ≤ · · · ≤ |xs|. Assume |x1| = · · · =
|xr| = 0 < |xr+1| and |xs| < n. If r ≤ 2 or if both |xr+1| ≥ n/2 and r ≤ s/2,
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then for all 1 ≤ i ≤ r we have f(xi, P ) > f(xr+1, P ). In particular, if the
current population of the (μ+1) EA contains at least two individuals 0n, two
such individuals always survive.

With these lemmas we are ready to prove the main result of this section.

Theorem 3. Let μ ≥ 3. The (μ+1) EA with fitness sharing will find both optima
of TwoMax with probability 1 in expected time O(μn log n).

Proof. By Lemma 1, in expected time O(μn log n) one of the two optima is
found. W. l. o. g. we assume the 0n optimum is found. In expected time O(μ)
a clone of 0n is created (i. e., |x2| = 0) and by Lemma 6 x1 and x2 (or clones
thereof) will survive for the rest of the run.

We show that then the individual with the largest number of ones, xμ+1

(or a clone thereof), will always survive. If |xμ| = |xμ+1| then xμ+1 or a clone
survive. If n/2 ≤ |xμ| < |xμ+1| then f(xμ+1) > f(xμ) and the claim follows from
Lemma 1. If |xμ| < n/2 then Lemma 3 implies f(xs−1)(s − 2) +Ds−1 > sn/2
(where s = μ + 1). If |xμ+1| ≤ n/2, by the Main Lemma this condition is
equivalent to f(xμ+1, P ) > f(xμ, P ). Otherwise, the same conclusion follows
from Lemma 5 as hμ/(hμ − hμ+1) > 1. So, in all cases xμ+1 survives. The
expected time for xμ+1 reaching 1n is again O(μn log n) as in [4]. �	

Our analysis has revealed two very different behaviours. It is possible that
the whole population climbs up one branch. But once a sufficiently large overall
fitness value has been obtained – at the latest when two individuals have found an
optimum – then the population expands towards lower fitness values as then the
individuals with the smallest and the largest numbers of 1-bits always survive.

5 Too Large Offspring Population Sizes

Fitness sharing works for the (μ+1) EA, but for larger offspring populations it
can have undesirable effects: if a cluster of individuals creates too many offspring,
sharing decreases the shared fitness of all individuals in the cluster, and the
cluster may go extinct. We consider this problem of overpopulation for μ = 2
and λ ≥ μ with λ = O(1). In this setting we cannot guarantee convergence to
populations with both optima any more, i. e., depending on λ we can lose one
or even both optima.

Assume that all individuals are in the same optimum. With probability Ω(1),
we create λ − 1 copies and one point with distance 1 to the optimum. Then,
f(x1, P ) = . . . = f(xλ+1, P ) = n/((λ+2)−2/n) and f(xλ+2, P ) = (n−1)/((λ+
2)− (λ + 1) · 2/n). We see that f(xi, P ) < f(xλ+2, P ) for all i ∈ {1, . . . , λ + 1}
and λ ≥ 2. Thus, selection picks xλ+2 and one of the optimal points. Follow-
ing the same argumentation, we lose both optima if λ ≥ 6: If mutation creates
λ − 2 copies and two points with distance 1 to the optimum (also with prob-
ability Ω(1)), we have f(x1, P ) = . . . = f(xλ, P ) = n/((λ + 2) − 2 · 2/n) <
(n− 1)/((λ+ 2)− λ · 2/n) = f(xλ+1, P ) = f(xλ+2, P ) for λ ≥ 6. In exactly the
same way we show that both optima are lost with probability Ω(1) if λ ≥ 6 even
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if they are on different branches, i. e., we create �λ/2� offspring on the left branch
and λ/2� on the right branch where exactly one offspring on each branch has
distance 1 to the optimum and the remaining offspring are copies.

Offspring populations can also decrease diversity in the following way.

Lemma 7. With probability 1− o(1) the (2 +λ) EA with fitness sharing, λ ≥ 2
and λ = O(1) will, at some point of time before an optimum is reached, obtain
a population with both members on the same branch.

Proof (Proof sketch). The proof mainly uses that in a single iteration with prob-
ability Ω(1) only copies of x1 and x2 are created. We show that if f(x1) �= f(x2)
and if we have a surplus of offspring on the branch with smaller fitness (also
probability Ω(1)), this branch goes extinct. If f(x1) = f(x2) in iteration t we
have f(x1) �= f(x2) in iteration t+1 with probability Ω(1) and if f(x1) �= f(x2)
in iteration t we still have f(x1) �= f(x2) in iteration t+1 with probability Ω(1).
Thus, with probability 1− 2−Ω(n) there are Ω(n) iterations with f(x1) �= f(x2)
before an optimum is reached and consequently, with probability 1−2−Ω(n), one
branch will take over the whole population before an optimum is reached. �	

In order to show that the (2 + λ) EA also reaches a population with both
members in the same optimum we additionally need to show that the population
will not be stuck somewhere on the branch and that individuals cannot traverse
back to the other branch. We consider this for the special case of λ = 2.

Theorem 4. With probability 1−o(1) the (2+2) EA with fitness sharing will, at
some point of time, reach a population with both members in the same optimum.
The expected time for finding both optima from there is Ω

(
nn/2

)
.

Proof (Proof sketch). Due to Lemma 7 both individuals are on the same branch
with probability 1− o(1) before an optimum is reached.

We show that a current best individual is never lost. Due to Lemma 1 f(x1, P ) >
f(x2, P ) holds. We apply Lemma 2 and have f(x3, P ) ≥ f(x2, P ) ⇔ D2 ≥ 2n
whereD2 = d2,1 + d2,3 + d2,4 since d2,2 = 0. Since all individuals are on the same
branch di,j ≤ n/2. This implies that D2 ≤ 3n/2 and thus, f(x3, P ) < f(x2, P ) <
f(x1, P ). Thus, a single best individual will always survive. Moreover, in case of 2
best individuals at least one of them will be selected for the next iteration. Since
μ = 2we are guaranteed to select at least one of the best individuals if there are 3 or
4 best. Following the same argumentation, we see that a single improved offspring
of a best individual will always be accepted. Thus, we will reach a population with
both members in the same optimum. The claim about the expected time to find
both optima follows as in Theorem 1. �	

6 Experiments

Our final contribution is a set of experiments, shown in Table 1, where we ran
(μ+λ) EAs for n = 100 bits and varying values of 2 ≤ μ ≤ 12 and 1 ≤ λ ≤ 12.
We recorded the success rate as the number of runs where both optima were
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Table 1. Success rates of the (μ+λ) EA with fitness sharing on TwoMax in 1000
runs, stopped after 100000 generations, and once both optima were found

μ λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7 λ = 8 λ = 9 λ = 10 λ = 11 λ = 12

2 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 1.0 0.277 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 1.0 0.602 0.32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 1.0 0.793 0.644 0.025 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 1.0 1.0 0.824 0.687 0.261 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 1.0 1.0 0.936 0.861 0.768 0.156 0.0 0.0 0.0 0.0 0.0 0.0
8 1.0 1.0 1.0 0.926 0.874 0.816 0.064 0.0 0.0 0.0 0.0 0.0
9 1.0 1.0 1.0 0.996 0.957 0.894 0.828 0.039 0.0 0.0 0.0 0.0
10 1.0 1.0 1.0 1.0 0.972 0.957 0.918 0.843 0.032 0.0 0.0 0.0
11 1.0 1.0 1.0 1.0 1.0 0.98 0.945 0.929 0.805 0.02 0.001 0.0
12 1.0 1.0 1.0 1.0 1.0 0.99 0.978 0.972 0.945 0.738 0.029 0.0

found within 100000 generations. The table shows a clear distinction between
efficient and inefficient behaviour: for λ < �μ/2� runs were always successful,
whereas runs for λ ≥ μ always failed (except for one run with λ = μ = 11).
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