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Abstract. We show that simple mutation-only evolutionary algorithms
find a satisfying assignment on two similar models of random planted
3-CNF Boolean formulas in polynomial time with high probability in
the high constraint density regime. We extend the analysis to random
formulas conditioned on satisfiability (i.e., the so-called filtered distribu-
tion) and conclude that most high-density satisfiable formulas are easy
for simple evolutionary algorithms. With this paper, we contribute the
first rigorous study of randomized search heuristics from the evolutionary
computation community on well-studied distributions of random satisfi-
ability problems.

1 Introduction

Boolean satisfiability is an archetypical NP-complete problem with extensive
theoretical and practical relevance. Randomized search heuristics such as evo-
lutionary algorithms [6] and randomized local search techniques [10] are often
successfully applied to quickly identify satisfiable Boolean formula. Modern high-
performance heuristics can handle problems with millions of variables [13], but
the relationship between problem structure and computational cost is still poorly
understood from a rigorous perspective.

In the field of Boolean satisfiability, a significant amount of research has been
carried out on the runtime of algorithms over randomly generated formulas.
Theoretical and empirical work on uniform random satisfiability suggests that,
despite the hardness of the problem of determining whether or not a Boolean
formula has a satisfying assignment, a vast fraction of formulas are easy to
solve on average. Understanding the behavior of evolutionary algorithms with
respect to their runtime for this central problem pushes forward the theoretical
understanding of these algorithms on an NP-hard problem in the context of
randomly generated instances.

Extensive progress has already been made in runtime analysis of evolutionary
algorithms from a worst-case perspective [1,12]. However, still very little is known
about typical behavior on randomly generated instances of NP-hard problems.
The only study that we are aware of is the one of Witt [16] for makespan schedul-
ing. In this paper we study the behavior of simple evolutionary algorithms over
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uniform distributions of satisfiable 3-CNF formulas. We prove that the runtime
of the (1+1) EA is O(n2 logn) with high probability on almost all satisfiable
3-CNF formulas (except for a fraction that vanishes exponentially fast), as long
as their constraint density is Ω(n). Though this distribution is previously known
to be easy for classical algorithms [9], to our knowledge this constitutes the first
rigorous analysis of evolutionary algorithms on random satisfiability models.

1.1 3-CNF Distributions

A k-CNF formula F over a set of n Boolean variables {x1, x2, . . . , xn} is a con-
junction of exactly m clauses F = C1 ∧ C2 ∧ . . . ∧ Cm, where each clause is the
disjunction of exactly k literals, Ci = �i1 ∨ · · · ∨ �ik , and each literal �ij is either
an occurrence of a variable x or its negation x̄. A k-CNF formula is satisfiable
if and only if there is an assignment of variables to truth values so that every
clause contains at least one true literal. The constraint density of a formula is the
ratio of clauses to variables m/n. The constraint density quantifies the average
number of constraints (disjunctive clauses) in which a variable occurs.

The set of all assignments to a set of n Boolean variables is isomorphic to
{0, 1}n by interpreting each position of the string as the state of exactly one
Boolean variable xi (i.e., a 1 corresponds to xi = true; a 0 corresponds to
xi = false). Given a 3-CNF formula F with n variables, we represent candidate
solutions as length-n bitstrings and define the function f : {0, 1}n → N where
f(x) counts the clauses of F that are satisfied under the assignment correspond-
ing to x ∈ {0, 1}n. If F is satisfiable, the task of finding a satisfying assignment
is reduced to the task of optimizing a pseudo-Boolean function.

Uniform distributions of random Boolean formulas are similar to the Erdős-
Rényi model of random graphs. In the Un,m model, exactly m random clauses
are selected independently and uniformly with replacement1 from all possible
3-CNF clauses over n variables. In the Un,p model, each 3-CNF clause over n
variables is chosen for inclusion independently with probability p.

Stochastic search algorithms such as evolutionary algorithms and randomized
local search are generally incapable of proving a formula unsatisfiable, but are
often applied as incomplete heuristics and can be treated as Monte Carlo algo-
rithms when their runtime is fixed. Because of this, one is often interested in
their performance on satisfiable formulas.

One way to generate random satisfiable formulas is to condition the distri-
bution Un,m on satisfiability. This results in the filtered uniform model USAT

n,m .
The filtered uniform model is difficult to analyze, and potentially hard to sample
from (since it requires solving an NP-hard problem to check whether a formula is
satisfiable). To circumvent this, uniform planted models attempt to “hide” a sat-
isfiable assignment in an instance. In this model, a planted assignment x� is first
selected uniformly at random from {0, 1}n, and clauses are selected uniformly
from the set of all clauses that are satisfied by x�. In the Pn,m model, exactly

1 Generating the clause set with replacement is easier in practice, and facilitates our
analysis later in the paper.
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m random clauses are selected independently and uniformly with replacement
from the set of clauses satisfied by x�. Similarly, in the Pn,p model, each 3-CNF
clause over n variables that is satisfied by the planted assignment is selected in-
dependently with probability p. Other conditional distributions have also been
studied, for example see Krivelevich et al. [8].

1.2 Background

The (1+1) EA has been the subject of the first analyses of worst-case expected
runtime for pseudo-Boolean functions. Droste et al. [5] showed that the expected
runtime of the (1+1) EA is bounded above by O(nn) steps over all pseudo-
Boolean functions. Moreover, they showed that linear pseudo-Boolean polyno-
mials are optimized in O(n log n) steps in expectation by the (1+1) EA. More
recently, Witt [17] has derived an en lnn+O(n) bound for the (1+1) EA opti-
mizing linear functions, which is tight up to lower order terms.

The case of general functions over {0, 1}n is currently less clear. The class
of pseudo-Boolean polynomial functions of degree at most k ≥ 2 is already
NP-hard since it contains maximum k-satisfiability. Some theoretical analyses
have been carried out to investigate large-scale search space properties for k-
satisfiability [14,15]. To our knowledge, no results connecting the k-satisfiability
search space to EA runtime analysis have yet been carried out.

In this paper, we reduce the problem of finding a satisfying assignment to a 3-
CNF formula to finding the maximum of a degree-3 pseudo-Boolean polynomial.
Koutsoupias and Papadimitriou [7] showed that the Pn,p distribution has desir-
able search space properties for a greedy algorithm. Using similar techniques, we
extend this analysis to the Pn,m distribution, and prove that the (1+1) EA can
also exploit these properties to solve high-density formulas efficiently. For each
distribution Pn,m, Pn,p, and USAT

n,m in the high density regime, we prove that the
(1+1) EA can find a satisfying assignment in polynomial time with probability
1 − o(1) on every formula, except for a set of measure vanishing exponentially
fast in n. We also give a corresponding lower bound that suggests our upper
bounds are tight up to a factor of O(n) and conjecture that our upper bounds
can be improved by a linear factor.

2 Preliminaries

A sequence of events {En} is said to hold with high probability if limn→∞ Pr(En) =
1. We will often make use of the following theorem. A proof can be found, for
example, in the text by Motwani and Raghavan [11].

Theorem 1 (Chernoff Bounds). Let X1, X2, . . . Xn be independent Poisson
trials such that for 1 ≤ i ≤ n, Pr(Xi = 1) = pi, where 0 < pi < 1. Let X =
∑n

i=1 Xi, μ = E(X) =
∑n

i=1 pi. Then for 0 < δ ≤ 1, Pr(X ≥ (1+δ)μ) ≤ e−μδ2/3

and Pr(X ≤ (1 − δ)μ) ≤ e−μδ2/2.
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Chernoff bounds provide sharp bounds for tail probabilities in situations where
we can estimate the expected number of successes from a series of independent
trials. We will need the following two definitions.

Definition 1. For any arbitrary x ∈ {0, 1}n, we define a pair of sets Sx and Ux

that partition the set of all possible 3-CNF clauses on n variables as follows. Sx

is the set of all 3-CNF clauses on n variables that are satisfied by x. Similarly,
Ux is the set of all 3-CNF clauses on n variables that are not satisfied by x.

Definition 2. The hypercube graph of order n is the undirected graph G =
(V,E) where V = {0, 1}n and {x, y} ∈ E ⇐⇒ |{i : xi 
= yi}| = 1.

Let F be a satisfiable 3-CNF formula on n variables. Denote as x� ∈ {0, 1}n an
assignment (possibly unique) that satisfies F . We define the potential function
ϕ(x) = |{i : xi 
= x�

i }|. F induces an orientation and an edge labeling on G in
the following way. Let GF,x� be the directed, edge-labeled graph such that the
directed edge (x, y) appears in E(GF,x�) if and only if x and y are neighbors in
G and ϕ(y) < ϕ(x). Furthermore, (x, y) is labeled deceptive if x satisfies at least
as many clauses in F as y.

3 Random Planted Formulas

In this section, we study the distribution of graphs GF,x� where F is a formula
constructed by a random planted model and x� is the planted assignment. We
will rely on these results to apply multiplicative drift theorems that bound the
runtime of the (1+1) EA for all but a vanishing fraction of high-density formula.

Definition 3. An assignment x is bad if, for any constant ε > 0, ϕ(x) >
(1/2 + ε)n. An assignment x is good if it is not bad.

Definition 4. The directed graph G′
F,x� is the subgraph of GF,x� induced by the

set of all good assignments.

For a particular 3-CNF distribution, we want to derive the probability of
deceptive edges appearing in the hypercube graph induced by formulas drawn
from that distribution. If a region of the search space contains no deceptive edges,
then the local gradient is consistent with the distance to a solution since every
strictly improving Hamming neighbor of a solution in that region is also strictly
closer to x�. This is obviously a nice property to have in the search space, and
we call formulas well-structured that have this property.

Definition 5. A planted 3-CNF formula F is said to be well-structured if there
are no deceptive edges in G′

F,x� where x� is the planted assignment.

Koutsoupias and Papadimitriou [7] studied the Pn,p distribution, and the next
theorem follows from their work.
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Theorem 2 (Koutsoupias and Papadimitriou [7]). Suppose F is a 3-CNF
formula constructed by the Pn,p model. The probability that F is well-structured

is bounded below by 1− e−cpn2+Θ(n) for some constant c > 0.

We extend this analysis to the Pn,m distribution. In this model, we first choose
an assignment x� uniformly at random, then choose exactly m clauses with
replacement from the set of (23 − 1)

(
n
3

)
clauses that satisfy x�.

Lemma 1. Suppose (x, y) is a directed edge in G′
F,x�. Then,

|Sx� ∩ (Ux ∩ Sy)| =
(
n− 1

2

)

, and, |Sx� ∩ (Sx ∩ Uy)| ≤ γ(n)

(
n− 1

2

)

where γ(n) = (1 + o(1))(3/4 + ε− ε2) for any constant ε > 0.

Proof. Without loss of generality, suppose x� = (1, 1, . . . , 1). In this case, Sx�

is the set of all clauses with at least one positive literal. Since x and y are
Hamming neighbors, they differ by exactly one bit i which is set to zero in x
and set to 1 in y. Thus Sx� ∩ (Ux ∩Sy) contains clauses where (1) xi appears as
a positive literal, and (2) the polarity of the remaining two literals in the clause
are uniquely determined by their state in x. There are

(
n−1
2

)
ways to choose

these remaining two literals. Similarly, Sx� ∩ (Sx ∩ Uy) contains clauses in which
the literal x̄i appears and the polarity of the remaining two literals again are
uniquely determined. However, we cannot choose all

(
n−1
2

)
such literals, because

some of these correspond to clauses where all three literals are negative (and
hence do not belong to Sx�). These literals correspond to the elements in x that
are set to 1 since all such literals must be negative if they appear in any clause
not satisfied by y. There are n − ϕ(x) such elements. By subtracting out the
(
n−ϕ(x)

2

)
ways to choose two negative literals, we obtain

|Sx� ∩ (Sx ∩ Uy)| =
(
n− 1

2

)

−
(
n− ϕ(x)

2

)

≤
(
n− 1

2

)

−
(
n(1/2− ε)

2

)

.

The final inequality holds since x is good, so ϕ(x) ≤ n(1/2 + ε). Setting

γ(n) = 1−
(
n(1/2− ε)

2

)

/

(
n− 1

2

)

completes the proof since limn→∞ γ(n) = 3/4 + ε− ε2. �
Theorem 3. Suppose F is a 3-CNF formula constructed by the Pn,m model.
The probability that F is well-structured is bounded below by 1 − e−cm/n+Θ(n)

for some constant c > 0.

Proof. Let (x, y) be an arbitrary edge in G′
F,x� . We define the following random

variables that count clauses in F .

Z1 = |{clauses C in F : C ∈ (Sx� ∩ (Ux ∩ Sy))}| ,
Z2 = |{clauses C in F : C ∈ (Sx� ∩ (Sx ∩ Uy))}| .
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Since the m clauses are chosen independently with replacement, the probability
of choosing a clause from (Sx� ∩ (Ux ∩ Sy)) is, by Lemma 1,

(
n−1
2

)
/
(
7
(
n
3

))
=

3/(7n). Similarly, the probability of choosing a clause from (Sx� ∩ (Sx ∩ Uy)) is
at most 3γ(n)/(7n). Hence Z1 and Z2 are binomially distributed independent
random variables, both with m trials, and their expected values are E(Z1) =
3m/(7n) and E(Z2) ≤ γ(n)3m/(7n).

The event that (x, y) is labeled deceptive under F is equivalent to the event
Z1 ≤ Z2, and thus the probability that (x, y) is labeled deceptive is Pr(Z1 ≤
Z2) ≤ Pr(Z1 ≤ t) + Pr(Z2 ≥ t) for any t > 0. Appealing to Theorem 1, this is
at most

exp

(

− (t− E(Z1))
2

2E(Z1)

)

+ exp

(

− (t− E(Z2))
2

3E(Z2)

)

≤ exp

(

− (t− E(Z1))
2

3E(Z1)

)

+ exp

(

− (t− E(Z2))
2

3E(Z2)

)

.

Setting t =
√
E(Z1)E(Z2), the probability is at most

2 exp

⎛

⎜
⎝−

(√
E(Z1)−

√
E(Z2)

)2

3

⎞

⎟
⎠ ≤ 2 exp

⎛

⎜
⎝−

m
(
1−√

γ(n)
)2

7n

⎞

⎟
⎠ < 2e−cm/n,

by substituting the value bounds on the expectations of Z1 and Z2 from above.

Here 0 < c <
(
1−√

γ(n)
)2

/7 is a positive constant following from the asymp-

totic bound on γ(n).
Finally, by applying the union bound, the probability that any edge in G′

F,x�

is deceptive is at most |E|2e−cm/n. The claim then follows from the fact that
the number of edges in G′

F,x� is at most n2n−1. �
The uniform filtered 3-CNF distribution USAT

n,m is the conditional distribution
generated by conditioning Un,m on satisfiability. For dense enough formulas, the
uniform filtered distribution is statistically close to the planted distribution.

Theorem 4 (Ben-Sasson et al. [2]). The 3-CNF distributions Pn,m and USAT
n,m

coincide in the regime m/n = Ω(log n) in the following sense.
There exists a constant c > 0 such that when m ≥ cn lnn, then with high

probability, a formula constructed by the Pn,m or the USAT
n,m model has exactly

one satisfying assignment. Moreover, if F is an arbitrary formula with m clauses
and n variables, such that F has a unique satisfying assignment, the probability
of constructing F from Pn,m is equal to the probability of constructing F from
USAT
n,m .

Hence for m/n = Ω(log n), except for a set of measure that tends to zero,
formulas constructed by the planted model or the filtered model have the same
probability. It follows that the claim of Theorem 3 also applies to USAT

n,m in the
high-density regime (m/n ≥ cn for a constant c > 0 sufficiently large).
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4 Runtime Analysis

The runtime analysis of randomized search heuristics on randomly constructed
instances involves two sources of randomness. We must deal with random inputs,
in this case, the random formula, and also with the random decisions of the
algorithm at the same time. To handle this, we assume the formula has the well-
structured property and derive tail bounds on the runtime conditioned on that
property. We then use the results of the previous section to bound the probability
that the formula is well-structured in a given density regime.

We analyze the runtime of the standard (1+1) EA (Algorithm 1) searching for
a satisfying assignment to a formula F by optimizing the corresponding pseudo-
Boolean function f that counts the satisfied clauses in F .

Algorithm 1. The (1+1) EA

choose x ∈ {0, 1}n uniformly at random;
repeat forever

y ← x;
flip each bit of y independently with prob. 1/n;
if f(y) ≥ f(x) then x← y

Following the typical approach to runtime analysis, we view each run of the
(1+1) EA as an infinite stochastic process (x(1), x(2), . . . , x(t), . . .), where x(t) ∈
{0, 1}n denotes the assignment generated in iteration t of the algorithm. The run-
time T of an algorithm is the random variable T = inf{t ∈ N : x(t) satisfies F}.
The main result of this section is stated in the following theorem.

Theorem 5. Suppose F is a well-structured formula. Then with probability 1−
o(1), the time until the (1+1) EA finds a satisfying assignment for F is bounded
by O(n2 logn).

To prove Theorem 5, we will rely on the favorable search space properties
of well-structured formulas. In particular, we will show that, as long as the
(1+1) EA remains in the good region, its drift towards the planted assignment
can be bounded below by a positive term.

Lemma 2. Suppose F is a well-structured formula and that ϕ(x(t)) ≤ (1/2 +
ε/2)n. Then the probability that x(t+1) is a bad assignment is at most e−Ω(n logn).

Moreover, if ϕ(x(1)) ≤ (1/2 + ε/2)n, then with probability 1 − o(1), after
t ≤ p(n) iterations, where p is a polynomial in n, the (1+1) EA never generates
a bad assignment.

Proof. In each step, the probability that at least k bits are changed is at most

(
n

k

)(
1

n

)k

≤ 1

k!
≤

( e

k

)k

= e−Ω(k log k).

The assignment x(t) is at Hamming distance at least nε/2 from any bad assign-
ment. Thus, for x(t+1) to be bad, mutation must change at least k = nε/2 bits.
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The second part of the claim follows from the fact that the probability of no bad
assignment generated in p(n) iterations is at least

(
1− e−Ω(n logn)

)p(n)

≥ 1− p(n) · e−Ω(n logn) = 1− o(1),

where we have applied Bernoulli’s inequality. We remark here that even after any
polynomial number of steps, the probability that the (1+1) EA never generates
a bad assignment is going to one exponentially fast. �
Lemma 3. We consider the execution of the (1+1) EA on a well-structured
formula F . Define the sequence of random variables {Xt : t > 0} as Xt = ϕ(x(t)).
We bound the drift of the stochastic process described by this sequence from below.
Suppose that ϕ(x(t)) ≤ (1/2+ ε/2)n, then E (Xt −Xt+1 | Xt) ≥ cXt/n

2 where c
is a positive constant.

Proof. Without loss of generality, let x� = (1, 1, . . . , 1). We consider the contri-
bution to the drift from different events. Let y be the intermediate offspring pro-
duced by mutating x(t). Note that by the dynamics of the (1+1) EA, x(t+1) = y
if and only if f(y) ≥ f(x(t)).

Let A denote the event that ϕ(y) > (1/2 + ε)n. In this event, the drift can
be negative if f(y) is no worse than f(x(t)). By the law of total expectation, the
drift can be written as

E(Xt −Xt+1 | Xt ∩ ¬A)(1 − Pr(A)) + E(Xt −Xt+1 | Xt ∩A) Pr(A).

Moreover, we have assumed that ϕ(x(t)) ≤ (1/2+ε/2)n so Pr(A) can be bounded
by Lemma 2, and we thus have

E(Xt −Xt+1 | Xt) ≥ (1 − o(1))E(Xt −Xt+1 | Xt ∩ ¬A)− ne−Ω(n logn). (1)

For the remaining cases of the proof, we assume that the event ¬A has oc-
curred. This is equivalent to the assumption that y lies in the good region. Let
B be the event that at least one of the ϕ(x(t)) zero-bits flip. Since we assume
that both x(t) and y are in the good region, we now argue that if the event
¬B occurs, then either y = x(t), or f(y) < f(x(t)). Under this event, if none of
the n − ϕ(x(t)) one-bits flip to zero, then obviously y and x(t) are equivalent.
On the other hand, if some one-bits flip, by transitivity of non-deceptive edges
in GF,x� , y must satisfy strictly fewer clauses than x(t). In either case, after
selection x(t) = x(t+1). By the law of total probability we have

E(Xt −Xt+1 | Xt ∩ ¬A) = Pr(B)E(Xt −Xt+1 | Xt ∩ ¬A ∩B)

since the drift is zero under the event ¬B. Since each one-bit flips with probability
1/n, by linearity of expectation,

E(Xt −Xt+1 | Xt ∩ ¬A ∩B) ≥
(

1− n− ϕ(x(t))

n

)

=
Xt

n
.

Finally, since ϕ(x(t)) ≥ 1 (otherwise, a satisfying assignment has been found)
Pr(B) ≥ 1/n. The claim is then proved by applying Equation (1) and choosing
a sufficiently small constant c. �
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Proof of Theorem 5. By Theorem 1, with high probability ϕ(x(1)) ≤ (1/2+ε/2)n.
Lemma 3 ensures that the drift of the stochastic process defined by the potential
function is multiplicative by a factor bounded by Ω(1/n2). Applying the well-
known Multiplicative Drift Theorem [4], as long as the (1+1) EA never jumps
out of the good region, it has reduced the potential to zero in O(n2 log n) steps.
Furthermore, this bound holds with probability 1− o(1) over the run [3].

Appealing to Lemma 2, after O(n2 logn) iterations, the (1+1) EA generates
any bad assignment only with probability o(1) (and this term is even vanishing
exponentially fast), hence the claim is proved. �
Corollary 1. There exist positive constants c1 and c2 such that if F is a 3-
CNF formula constructed from (1) the Pn,p model with p ≥ c1/n, or (2) the
Pn,m model (and, due to Theorem 4, the USAT

n,m model) with m ≥ c2n
2, then the

(1+1) EA has found a satisfying assignment in O(n2 logn) steps with probability
1− o(1).

As we have already seen in the claim of Theorem 4, high density satisfiable
random formulas are likely to have exactly one satisfying assignment. In such
a case, it is straightforward to derive a lower bound on the expected runtime
of the (1+1) EA. In particular, with probability 1/2, the randomly generated
initial solution differs from the unique assignment in at least half the bits. Each
such bit must flip at least once during the run until the satisfying assignment
is found, and the expected number of steps before this event occurs is bounded
below by Ω(n log n). This bound is derived in Lemma 10 of the paper by Droste
et al. [5] and immediately proves the following theorem.

Theorem 6. If F is a random planted 3-CNF formula constructed as in Corol-
lary 1, then with high probability F has exactly one satisfying assignment. In this
case, the expected runtime of the (1+1) EA on F is bounded below by Ω(n logn).

5 Conclusion

In this paper, we have proved that all but a vanishing fraction of high-density
random planted 3-CNF formulas can be solved efficiently by the (1+1) EA.
We have shown that in the high-density regime, constraints impose favorable
structure on the search space explored by such algorithms so that they run in
polynomial time. In particular, we proved that the (1+1) EA finds a satisfying
assignment in O(n2 logn) iterations with probability 1− o(1) on the Pn,p model
when p ≥ c1/n and on the Pn,m model when m/n ≥ c2n for sufficiently large
positive constants c1 and c2. Since, at high densities, the Pn,m distribution is
statistically close to the uniform filtered USAT

n,m distribution, our results carry over
to this case as well.

Additionally, we have presented a rigorous argument that the (1+1) EA takes
at least Ω(n logn) steps in expectation to solve all but a o(1) fraction of random
satisfiable 3-CNF formulas at high densities. We conjecture that the upper bound
can be tightened to match this lower bound, and leave this as an open problem.
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