
Search-Evasion Path Planning for Submarines Using 
the Artificial Bee Colony Algorithm 

Bai Li 
School of Control Science and 

Engineering 
Zhejiang University 

Hangzhou, China 
libai@zju.edu.cn 

Raymond Chiong 
School of Design, Communication and 

Information Technology 
The University of Newcastle 

Callaghan, Australia 
Raymond.Chiong@newcastle.edu.au 

Li-gang Gong 
School of Automation Science and 

Electrical Engineering 
Beihang University 

Beijing, China 
glgbh@aspe.buaa.edu.cn

 
 

Abstract—Submarine search-evasion path planning aims to 
acquire an evading route for a submarine so as to avoid the 
detection of hostile anti-submarine searchers such as helicopters, 
aircraft and surface ships. In this paper, we propose a numerical 
optimization model of search-evasion path planning for invading 
submarines. We use the Artificial Bee Colony (ABC) algorithm, 
which has been confirmed to be competitive compared to many 
other nature-inspired algorithms, to solve this numerical 
optimization problem. In this work, several search-evasion cases 
in the two-dimensional plane have been carefully studied, in 
which the anti-submarine vehicles are equipped with sensors 
with circular footprints that allow them to detect invading 
submarines within certain radii. An invading submarine is 
assumed to be able to acquire the real-time locations of all the 
anti-submarine searchers in the combat field. Our simulation 
results show the efficacy of our proposed dynamic route 
optimization model for the submarine search-evasion path 
planning mission. 

Keywords—artificial bee colony; numerical optimization; 
search-evasion path planning; submarines 

I. INTRODUCTION 
A submarine is a watercraft capable of independent 

operation underwater [1]. Submarines first appeared in large 
scale during World War I for military usages [2], but now they 
are widely used for many civilian purposes too. Military 
missions of submarines include attacking the hostile 
submarines or surface ships, aircraft carrier protection, 
blockade running and underwater reconnaissance, among 
others [3]. Due to their outstanding capability to lurk in the 
deep sea and to launch a sudden attack, submarines have been 
taken as a vital part of a nation’s military strength in the 
modern world.  

At the same time, anti-submarine technologies are well 
developed to prevent the invasion of hostile submarines. In 
order to prevent submarine invasion, the first step is to detect 
the invading submarines successfully. To that end, three kinds 
of methods are commonly used. The first is to lay passive 
sonar in the sea [4]. However, such sensors will inevitably drift 
with ocean streams. Moreover, the sea clutter (i.e., background 
noise in the sea) places severe limits on detecting and tracking 
the underlying submarines [5]. Also, this method is not 
practical when the search scope becomes large. The second 

method is to arrange anti-submarine aircraft or surface ships 
bounded with sensors (e.g., radars, magnetic detectors or 
infrared detectors) for the purpose of patrolling [6]. It is 
currently a prevailing method due to the flexibility and 
maneuverability of anti-submarine vehicles. The third way is to 
dispatch autonomous underwater vehicles (AUVs) to patrol 
under the sea [7], aiming to reduce the interference of sea 
clutter. This may be a well-adopted approach in the future 
when AUVs are becoming sufficiently intelligent. Many 
research studies have been carried out on efficient search 
strategies in this area (e.g., see [8-12]). Interested readers can 
refer to [13] for a thorough review. 

In contrast to the work done on the detection and search of 
invading submarines, limited research has been devoted to 
search-evasion path planning for the invading submarines. This 
paper focuses on the route planning scheme for invading 
submarines, which aims to avoid being detected by the anti-
submarine sensors. We assume that the searchers are equipped 
with sensors with circular footprints that allow them to detect 
invading submarines on the condition that the invading 
submarines fall within the sensor’s radii [14]. In addition, we 
assume that an invading submarine is able to acquire the real-
time locations of all anti-submarine searchers in the combat 
field with the help of cooperative reconnaissance satellites or 
intelligence aircraft. During the manoeuvre from the initial 
location to a given destination, the invading submarine can 
update its route dynamically according to the latest intelligent 
information received regarding the anti-submarine searchers. In 
this work, we attempt to transform the original search-evasion 
route programming scheme into a numerical optimization 
problem. 

Finding the optimum for this kind of transformed numerical 
optimization problem has been confirmed to be NP-hard [15]. 
Consequently, nature-inspired stochastic search and 
optimization methods such as genetic algorithms, genetic 
programming, differential evolution, ant colony optimization 
and particle swarm optimization have to be used [16-17]. 
Although these stochastic approaches do not guarantee global 
convergence, they are able to find quasi-optimal solutions 
within a reasonable amount of computational time [18]. As a 
matter of fact, stochastic search and optimization methods have 
been well studied and investigated in various route planning 
schemes [19-28]. 
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Artificial Bee Colony (ABC) is a relatively new swarm 
intelligence algorithm inspired by the foraging behavior of 
honey bees [29]. Various studies using different numerical 
benchmark tests have confirmed that the ABC algorithm 
possesses competitive advantages compared to some other 
swarm intelligence and evolutionary algorithms [30-33] (in 
regard to the question of what is an “evolutionary algorithm”, 
see [34] for some interesting discussion). In addition, the 
algorithm framework of ABC is relatively simple, thus making 
it possible to acquire good results at a low computational cost 
[35]. This brings about a range of modifications/improvements 
made for the conventional ABC algorithm in recent years. 
From the authors’ viewpoint, broadly speaking there are three 
prevailing ways to improve the conventional ABC. The first is 
to adopt some strategies or theories from the “outside world”. 
The second is mainly about modifying the solution search 
equations. While the third focuses on changing the framework 
of the ABC algorithm. An incomplete collection of references 
[28, 35-48] is used in Figure 1 to provide a quick overview of 
possible modifications made to the conventional ABC 
algorithm. 

Type 1Type 2

Type 3

[36]

[37]

[42]

[39]

[43]

[38]
[44]

[41]
[48]

[28]

[46]

[40]

[35]
[47]

[45]

 

Fig. 1. An incomplete review of modifications made for the ABC algorithm. 

In this work, we adopt the ABC algorithm to solve the 
transformed numerical optimization problem of search-evasion 
path planning for invading submarines. The remainder of this 
paper is organized as follows. In the next section (i.e., Section 
II), we briefly review a static route planning model that is 
commonly used in many path programming schemes. Then, we 
introduce our proposed dynamic search-evasion path planning 
model, which is inspired by the conventional model introduced 
in Section II, in Section III. The procedures of the ABC 
algorithm are described in Section IV, followed by Section V 
where experimental setups and results have been presented to 
show the efficacy of our proposed dynamic model. Finally, the 
strengths and limitations of this work are highlighted in the last 
section. 

II. A BRIEF REVIEW OF THE CONVENTIONAL PATH 
PLANNING MODEL WITH STATIC THREATS 

In this section, we briefly introduce the conventional route 
planning model where only static anti-submarine settings (e.g., 
anti-submarine ships berthed in the sea) will be considered. 

The detection scope of these static vehicles is presented by 
circles of different radii. Besides that, a threat weight index is 
associated with each of the static anti-submarine vehicles 
thanks to the reliability of the equipped sensor. When an 
invading submarine’s path falls within the scope of such a 
static detection sensor, the invasion will be flagged. 

Let us denote the starting point as S and the terminal point 
as T. The search-evasion mission is to calculate an optimal 
path from S to T, with all the fixed threat regions as well as 
fuel consumption considered. First, we draw a segment ST  
connecting S and T. After that, we divide ST  into ( 1)D +  
equal portions by D  vertical dash lines kL  ( 1, 2,.., )k D=  as 
illustrated in Figure 2. These lines are taken as the new axes. 
Then, as many D  points (see the small rectangles in Figure 2) 
along these axes will be connected in sequence to form a 
feasible path from S  to T  [28]. In this way, the vector 

[ ]1 2, , , Dz z z=z …  determines the shape of a feasible path 
from S to T. 

 

Fig. 2. A schematic diagram of the conventional path planning model with 
fixed threats only. 

Regarding the quality of a candidate search-evasion path, 
the threat cost threatJ  as well as the fuel consumption fuelJ  are 
taken into consideration as shown in (1) below: 

0 0

(1 )

 d (1 ) d ,

fuel threat

length length

threat fuel

J J J

w l w l

λ λ

λ λ

= ⋅ + − ⋅

= ⋅ + − ⋅∫ ∫
 (1) 

where J  is the weighted sum cost of this path, [ ]0,1λ ∈  is a 
weighting parameter, threatw  and fuelw  are variables related to 
every instantaneous position on the path, and length  denotes 
the total length of this candidate path. 

If a search-evasion path falls into a threat region during the 
sub-route from point PLi  on iL  to point 1PLi+  on 1iL + , some 
form of detection penalty will be calculated. Equation (2) 
shows a general function of detection probability, assumed to 
be supplied through the radars on the anti-submarine searchers 
[5], where Prob  denotes the detection probability, d  refers to 
the distance between the detecting radar and the invading 
submarine, C  is a performance parameter of the radar, and 

sσ  denotes the radar cross section of the target. Since C  and 

sσ  are typically taken as constant parameters [13], we have 
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4
1Prob d∝ , which also holds when the surface anti-

submarine ships are equipped with other kinds of sensors for 
detection in general. 

4( ) sC
Prob d

d
σ⋅

=          (2) 

To simplify the integral operation in (1), we calculate 

( )1 1 1

1
, ,S ,1 i i

D
threat L L threat L threat L Di

w w w
+

−
→ → →=

+ +∑ instead of 

0
d

length

threatw l∫  in practice. The detection cost 
1, i ithreat L Lw

+→  from 

PLi  to 1PLi+  is calculated at five sample points in-between, 
as illustrated in Figure 3, using (3): 

1,

4 4 4 4 41
0.1, , 0.3, , 0.5, , 0.7, , 0.9, ,

5

1 1 1 1 1   ,

i i

t

i
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w

t
d d d d d

+→

=

= ⋅

⎡ ⎤⎛ ⎞
⋅ + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑
 (3) 

where tN  denotes the number of threatening circles the sub-
route falls into, ilength  refers to the length  of the thi  sub-
path, 0.1, ,i kd  stands for the distance between the 1/10  point on 
the path and the thk  threat center, and kt  is regarded as the 
threat grade of the thk  threat. It is a common practice to 
assume that the fuel consumption fuelJ  is proportional to 
length , which means fuelw  will be a constant [28]. There is no 
problem if we set 1fuelw ≡  because the polynomial (1 )λ−  in 
(1) is always attached with fuelw . 

 

Fig. 3. A schematic diagram of route cost calculation in a simplified way to 
avoid the integral operation. 

As a brief summary, adjusting the elements in the vector 
[ ]1 2, , , Dz z z=z …  will lead to different paths from S to T. 

Each feasible path corresponds with a path cost value 
calculated using (1). We seek for the very *z  that makes 

*( )J z  minimized. In this way, it is notable that the original 
search-evasion path planning scheme is transformed into a 
numerical optimization problem. The optimal vector *z  can be 
achieved through the ABC algorithm, which will be presented 
in Section IV. 

III. THE NOVEL DYNAMIC SEARCH-EVASION PATH 
PLANNING MODEL 

We have reviewed the route planning model with only 
fixed anti-submarine threats considered in the previous section. 
In this section, we will take mobile anti-submarine searchers 
into consideration. Our assumption is that the invading 
submarine can get the real-time locations of all the anti-
submarine vehicles in the combat field by means of 
cooperative reconnaissance satellites or intelligence aircraft. 
Such assumption is considered to be feasible and practical [49, 
50]. In this work, we propose a locally look-ahead strategy for 
the real-time route planning scheme. 

Assuming that the invading submarine is currently located 
at point PLi  that is on the line iL . Different from the static 
model in Section II, here we will program as many aheadN  
points 1PLi+ , …, PL

aheadi N+ , which are on the coordinate axes 

1iL + , …, 
aheadi NL +  respectively. Thereafter, we will calculate the 

cost of the sub-route qPL PL
aheadi i N+…  rather than that of the 

whole route. An example is shown in Figure 4. We assume that 
the invading submarine is now located at 2PL , and that 

2aheadN = . At this moment, the submarine concerns only of 

the sub-route q2 3 4PL  PL  PL , making it an -dimensionalaheadN  
numerical optimization sub-problem. This sub-problem is 
solved by optimizing only the elements 1iz + ,…, 

aheadi Nz +  in the 
vector z . Now that the submarine is located at PLi , the 
elements 1z ,…, iz  will always remain as historical data. 
Similarly, the elements 1aheadi Nz + + ,…, Dz  will be temporarily 
fixed because we do not worry about them at this moment. 

 

Fig. 4. A schematic diagram of the dynamic path planning model with fixed 
and mobile threats considered. According to our proposed locally look-ahead 
strategy, the invading submarine concerns only about a sub-route from 2PL  to 

4PL . 

A question that would arise is, why is it making sense to 
look merely several steps locally ahead? Since there may be 
some drastic changes in the combat field as time goes by, the 
global route computed in an earlier step can be of no use in a 
subsequent step when the situation differs. On the contrary, if 
we only solve a sub-problem at each step the optimization 
dimension will be reduced significantly (because aheadN D<  
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in general). This eases the real-time computation burden as 
well. 

IV. THE ARTIFICIAL BEE COLONY ALGORITHM 
In the preceding section, a description of the route planning 

model with both fixed and mobile anti-submarine threats 
considered has been presented. This section focuses on how to 
find an optimal vector *z  with the minimum path cost function 
value using the ABC algorithm. 

The conventional ABC algorithm employs three kinds of 
“bees”: scout bees searching for nectar sources randomly, 
employed bees associated with specific nectar sources, and 
onlooker bees who keep watch on the employed bees. Half of a 
bee colony would consist of the employed bees, and the other 
half the onlooker bees [29]. At an initial stage, scout bees are 
set out to randomly search for nectar sources. Soon after, they 
become the employed bees responsible for sharing 
information (e.g., nectar source quality and their current 
locations) with other employed bees as well as the onlooker 
bees by means of “dancing”. The onlooker bees will then 
randomly select the locations of the employed bees to exploit. 
It is worth pointing out that the locations with relatively higher 
quality nectar sources are more likely to be chosen by the 
onlooker bees for exploitation. The employed bees, on the 
other hand, will also randomly share their locations with 
others to explore possible new locations. If an employed bee 
finds no better nectar source than one that it has previously 
discovered within a certain time length, it turns into a scout 
bee again. Its position will be a randomly initialized location 
in the search space. 

A location of a nectar source represents a feasible solution 
to the problem, and the nectar quantity is reflected by the 
objective function value [30]. Let 1 2( , , , )DX X X=X "  
represent a solution in the feasible solution space, ( )fun ⋅  be 
the objective function that needs to be minimized, ( , )rand m n  
be a random number between m  and n  obeying the uniform 
distribution, and SN  be the population size of a bee swarm. 
As aforementioned, the number of onlooker bees in a bee 
colony is 2

SN , equaling that of the employed bees. 

At first, as many as 2
SN  scout bees are randomly 

initialized in the feasible solution space. Equation (5) shows 
how the thj  element of the thi  scout bee’s location iX  is 
calculated: 

min max min(0,1) ( ),   

                         1, 2,..., ,  1, 2,..., ,2

j j j j
iX X rand X X

SNi j D

← + ⋅ −

= =
 (5) 

where min
jX  and max

jX  denote the lower and upper boundaries 
of this thj  element, and D  denotes the dimension of a 

feasible solution. Thereafter, the 2
SN  scout bees will 

become the employed bees and an iterated process begins 
from here. 

In each cycle of iteration, an employed bee will share 
information with a randomly chosen companion and change 
one randomly chosen element of its location vector from j

iX  
to * j

iX  using the following equation: 

{ } { }

* ( 1,1) ( ),  

       1, 2, , ,  1, 2, , ,  .2

j j j j
i i k iX X rand X X

SNk j D k i

← + − ⋅ −

∈ ∈ ≠… …
 (6) 

It is necessary to note that j  and k  are both randomly 
selected integers. When all the employed bees arrive at their 
new nectar sources { }* ,  1,2, , 2i

SNi =X … , they evaluate the 

quality of these new nectars and then decide whether to stay at 
the new location or the previous one by means of a greedy 
selection strategy. Specifically, if the thi  employed bee finds 
that *( ) ( )i ifun fun<X X , it will go to the new location *

iX , 
i.e., *

i i←X X ; otherwise, it remains at the previous location 

iX . 

When all the employed bees have decided on their 
locations, a roulette selection strategy will direct the onlooker 
bees to select “qualified” employed bees to follow. A 
probability index P  is calculated according to (7) and (8) to 
reflect the relative qualification of nectar sources at which the 
employed bees are located. 

2
1

( ) ,  1,2, , ,2SN

j

fitness i SNP i i
fitness j

=

= =
∑

…( )

( )
 (7) 

1             if ( ) 0
1 ( )( ) .
1 ( )            if ( ) 0

i
i

i i

fun
funfitness i
fun fun

⎧ ≥⎪ += ⎨
⎪ + <⎩

X
X
X X

       (8) 

Each onlooker bee will search locally around an employed 
bee. For some thi  onlooker bee, a comparison is made 
between a random number (0,1)rand  and (1)P . If 

(1) (0,1)P rand≥ , this onlooker bee will search around the 1st 
employed bee; otherwise, a comparison between (0,1)rand  

and (2)P  will be made. If any { }( ),  1,2, , 2
SNP j j ∈ …  

happened to be smaller than (0,1)rand , such process is 
repeated until a larger ( )P j  is found. Then, the corresponding 

thj  employed bee will be chosen. The following equation 
(i.e., Equation (9)) shows the location of the thi  onlooker bee 

( )1 1 1, , , , , ,k k k D
i j j i j jX X Y X X− +=Y … …  that searches locally 

around the selected -thj  employed bee. 

{ } { }
( 1,1) ( ),  

         1, 2, , ,  1, 2, , , .2

k k k k
i j m jY X rand X X

SNm k D m j

← + − ⋅ −

∈ ∈ ≠… …
 (9) 

Note that in this equation m  and k  are randomly selected 
integers as well. When all the 2

SN  onlooker bees have 
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determined their locations, a greedy selection strategy is 
implemented. This time, however, a comparison is made 
between ( )jfun X  and ( )ifun Y  1, 2, , 2

SNi = … . If ( )ifun Y  

is smaller than ( )jfun X , the thj  employed bee will abandon 
the current location jX  and go to iY , i.e., j i←X Y ; 
otherwise, the thj  employed bee remains at jX . 

It is interesting to note that every time the greedy selection 
is implemented, it involves one central employed bee. In the 
ABC algorithm, besides the probability index P  there is 
another index that is associated with each of the employed 
bees, namely trial , which memorizes inefficient information 
that is relevant to the employed bees. Specifically, ( )trial i  
records the number of times an inefficient search is performed 
by the thi  employed bee or any onlooker bee that searches 
around the thi  employed bee. That is to say, ( )trial i  is 
incremented by one each time when the condition 

*( ) ( )i ifun fun≥X X  or ( ) ( )j ifun fun≥Y X  is satisfied. At the 
beginning, each ( )trial i  is set to zero. As the iteration process 
goes on, when ( )trial i  reaches a predefined threshold Limit  
the thi  employed bee will turn into a scout bee again with a 
randomly initialized location in the search space (based on 
(5)). 

The pseudo-code of the ABC algorithm is given as 
follows: 

 

Algorithm 1 The Artificial Bee Colony Algorithm  
1. Set the population size SN , and maximum cycle number  

MCN . Set the inefficient trial time counter ( ) 0trial i ←  

( 1,2, , )2
SNi = … . 

2. Randomly initialize locations of 2
SN scout bees using 

Eq. (5) 
3. For 1iter =  to MCN , do  
4.     For 1item =  to 2

SN , do % employed bee phase 

5.         Generate *
itemX  for the -thitem  employed bee to 

search according to Eq. (6) 
6.         If *( ) ( )item itemfun fun<X X , then % implementation 

of the greedy selection 
7.             *

item item←X X , and set ( ) 0trial item ←  
8.         Else 
9.             ( ) ( ) 1trial item trial item← +  
10.         End if 
11.     End for 
12.     For 1i =  to 2

SN , do % preparation for the roulette 
selection 

13.         Calculate ( )P i  using Eq. (7) and Eq. (8) 
14.     End for 
15.     Set 1j =  % implementation of the roulette selection 

16.     For 1item =  to 2
SN , do  

17.         If ( ) (0,1)P j rand> , then % onlooker bee phase 
18.             Choose the thj  employed bee to follow, and then 

generate itemY  using Eq. (9) 
19.             If ( ) ( )item jfun fun<Y X , then % implementation 

of the greedy selection 
20.                 j item←X Y , and set ( ) 0trial j ←  
21.             Else 
22.                 ( ) ( ) 1trial j trial j← +  
23.             End if 
24.         End if 
25.         1j j← +  

26.         If 2
SNj > , then 

27.             Set 1j ←  
28.         End if 
29.     End for 
30.     Collect item  that satisfy ( )trial item Limit>  in an 

index set Ω  % scout bee phase 
31.     If Ω ≠ ∅ , then 
32.         Randomly choose k ∈ Ω  
33.         Re-initialize the location of the thk  employed bee 

using Eq. (5) 
34.         Set ( ) 0trial k ←  
35.     End if 
36.     Memorize the best-ever solution 
37. End for 
38. Output the best-ever solution 
 

V. EXPERIMENTS AND RESULTS 
We have conducted a number of simulation experiments to 

verify the efficacy of our proposed dynamic search-evasion 
path planning model. All the experiments were done in a 
MATLAB R2010a environment and executed on an Intel Core 
2 Duo CPU with 2 GB RAM running at 2.53 GHz under 
Windows XP. The population size was set constant at 40SN =  
and 10

MCNLimit =  for the ABC algorithm. 

In the first experiment, we investigated the route 
programming ability of our proposed method to handle static 
anti-submarine threats (see Figure 5). The starting location was 
set to (11, 11), and the destination was pre-defined as (75, 75). 
Some other parameters were set as: 30MCN = , 15D = , 

2aheadN =  and 0.7λ = . 

The second experiment focused on the existence of moving 
anti-submarine aircraft in the combat field (see Figure 6), while 
other settings remained the same as in the previous static case. 
In this experiment, an anti-submarine aircraft flew from (63, 56) 
to (58.50, 73.25). 

Figures 5 and 6 confirm that our proposed approach is 
capable of handling both static and dynamic anti-submarine 
threats. In both cases, we repeated the simulations for as many 
as 30 times. From Figure 5, we see that most of the optimized 
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routes share similar trends, i.e., they are able to avoid the static 
threat regions. In Figure 6, when some of the anti-submarine 
vehicles can move, we observe that most of the programmed 
routes are still able to avoid the moving threat efficiently. 
Nevertheless, we acknowledge that there exist a few imperfect 
routes among the 30 runs in both cases, as can be seen in 
Figures 5 and 6. This means there is still room for 
improvement in the optimization process of this ABC-based 
dynamic path planning model. 

 

Fig. 5. Simulation results of search-evasion paths (30 runs) optimized by the 
ABC algorithm when only static anti-submarine threats have been considered. 

 

Fig. 6. Simulation results of search-evasion paths (30 runs) optimized by the 
ABC algorithm when both static and dynamic anti-submarine 
threats/searchers have been considered. 

In addition to the above two experiments, we have also 
carried out a sensitivity analysis on the parameters of the 

proposed model. Due to space constraints, only the results for 
the parameters aheadN , λ  and D  are presented. 

First, we investigated how the selection of aheadN  would 
affect the search-evasion route in a complicated case (see 
Figure 7). In this case, one anti-submarine aircraft flew from 
(63, 56) to (58.50, 73.25), another anti-submarine aircraft flew 
from (12, 48) to (10.5, 28.5), while the third anti-submarine 
aircraft flew from (30, 70) to (28.95, 65.20) when the invading 
submarine attempted to move from the starting point to the 
terminal destination. Figure 7 shows a number of optimized 
routes obtained when aheadN  = 1, 2, 3 and 5 respectively, with 

0.7λ ≡  and 15D ≡ . 

 

Fig. 7. Simulation results concerning the sensitivity analysis of aheadN . 

 

Fig. 8. Simulation results concerning the sensitivity analysis of λ . 
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As can be seen from Figure 7, when the value of the 
parameter aheadN  is relatively small, the three routes obtained 
for aheadN  = 1, 2 and 3 are very close to each other. When 

5aheadN = , however, the route goes from S to T in a 
completely different direction to the right. These results 
indicate that our proposed model is robust with different 
selection of aheadN , although one may ask why the route with 
a larger aheadN  value turns out to be so different? Here, it is 
interesting to point out that when the invading submarine is set 
to “look” 5 steps ahead, it has the tendency to veer right in an 
attempt to keep itself away from the detectors. However, since 
the situation of the combat field changes all the time, to look 
far ahead makes no sense. Therefore, we suggest that the 
selected aheadN  value should never be too large. 

Second, we investigated how the selection of λ  would 
affect the search-evasion route. Figure 8 shows the routes when 
λ  = 0.05, 0.5 and 0.95 respectively, with 2aheadN ≡  and 

15D ≡ . As we can see from the figure, the larger the value of 
λ , the better the optimized route is in avoiding the threat 
zones. When the value of λ  is smaller, it concerns more about 
the length of the planned route from S to T. 

 

Fig. 9. Simulation results concerning the sensitivity analysis of D . 

Finally, we also investigated how the selection of D  
would affect the search-evasion route. Figure 9 shows the 
routes when D  = 5, 10 and 30 respectively, with 3aheadN ≡  
and 0.95λ ≡ . In general, an optimized route turns out to be 
more exquisite with a larger D  value. Again, one may find 
that the route goes to the destination from the right side when 
D  is small in Figure 9. It is necessary to point out here that 
the submarine will go as many D  steps as possible from S  to 
T . When D  is small, each step will generally be bigger. 
Besides that, it also looks aheadN  steps ahead. Therefore, when 
D  is smaller, the submarine looks farther in advance, making 
it a preferable choice to veer to the right side. In this regard, a 

relatively small D  value has somewhat a similar effect to a 
large aheadN  value as discussed previously. Some readers may 
point out that the invading submarine can only plan a 
subsequent route when it reaches one coordinate axis iL . This 
is true, however, when D  is set to be sufficiently large we 
believe that this will not be a critical problem. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we have applied the ABC algorithm for 

optimizing the route of an invading submarine based on a 
proposed dynamic path planning model. Our simulation results 
clearly demonstrated that the proposed method is a viable 
approach for submarine search-evasion path planning. 

Despite the positive results, this route planning model still 
has its limitations. For example, the model is formulated in a 
two-dimensional plane, which basically assumes that all the 
underwater vehicles lay at a same depth below the sea level. 
This is obviously not realistic when a real-world application of 
this kind is pursued.  

For future work, we may consider the formulation of a 
model in a three-dimension space. Besides that, given that our 
optimized paths are composed of line segments we may also 
investigate ways to smooth the final paths in order to remove 
discontinuities in the velocity. 
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