
Search-Evasion Path Planning for Submarines Using
the Artificial Bee Colony Algorithm

Bai Li
School of Control Science and

Engineering
Zhejiang University

Hangzhou, China
libai@zju.edu.cn

Raymond Chiong
School of Design, Communication and

Information Technology
The University of Newcastle

Callaghan, Australia
Raymond.Chiong@newcastle.edu.au

Li-gang Gong
School of Automation Science and

Electrical Engineering
Beihang University

Beijing, China
glgbh@aspe.buaa.edu.cn

Abstract—Submarine search-evasion path planning aims to
acquire an evading route for a submarine so as to avoid the
detection of hostile anti-submarine searchers such as helicopters,
aircraft and surface ships. In this paper, we propose a numerical
optimization model of search-evasion path planning for invading
submarines. We use the Artificial Bee Colony (ABC) algorithm,
which has been confirmed to be competitive compared to many
other nature-inspired algorithms, to solve this numerical
optimization problem. In this work, several search-evasion cases
in the two-dimensional plane have been carefully studied, in
which the anti-submarine vehicles are equipped with sensors
with circular footprints that allow them to detect invading
submarines within certain radii. An invading submarine is
assumed to be able to acquire the real-time locations of all the
anti-submarine searchers in the combat field. Our simulation
results show the efficacy of our proposed dynamic route
optimization model for the submarine search-evasion path
planning mission.

Keywords—artificial bee colony; numerical optimization;
search-evasion path planning; submarines

I. INTRODUCTION
A submarine is a watercraft capable of independent

operation underwater [1]. Submarines first appeared in large
scale during World War I for military usages [2], but now they
are widely used for many civilian purposes too. Military
missions of submarines include attacking the hostile
submarines or surface ships, aircraft carrier protection,
blockade running and underwater reconnaissance, among
others [3]. Due to their outstanding capability to lurk in the
deep sea and to launch a sudden attack, submarines have been
taken as a vital part of a nation’s military strength in the
modern world.

At the same time, anti-submarine technologies are well
developed to prevent the invasion of hostile submarines. In
order to prevent submarine invasion, the first step is to detect
the invading submarines successfully. To that end, three kinds
of methods are commonly used. The first is to lay passive
sonar in the sea [4]. However, such sensors will inevitably drift
with ocean streams. Moreover, the sea clutter (i.e., background
noise in the sea) places severe limits on detecting and tracking
the underlying submarines [5]. Also, this method is not
practical when the search scope becomes large. The second

method is to arrange anti-submarine aircraft or surface ships
bounded with sensors (e.g., radars, magnetic detectors or
infrared detectors) for the purpose of patrolling [6]. It is
currently a prevailing method due to the flexibility and
maneuverability of anti-submarine vehicles. The third way is to
dispatch autonomous underwater vehicles (AUVs) to patrol
under the sea [7], aiming to reduce the interference of sea
clutter. This may be a well-adopted approach in the future
when AUVs are becoming sufficiently intelligent. Many
research studies have been carried out on efficient search
strategies in this area (e.g., see [8-12]). Interested readers can
refer to [13] for a thorough review.

In contrast to the work done on the detection and search of
invading submarines, limited research has been devoted to
search-evasion path planning for the invading submarines. This
paper focuses on the route planning scheme for invading
submarines, which aims to avoid being detected by the anti-
submarine sensors. We assume that the searchers are equipped
with sensors with circular footprints that allow them to detect
invading submarines on the condition that the invading
submarines fall within the sensor’s radii [14]. In addition, we
assume that an invading submarine is able to acquire the real-
time locations of all anti-submarine searchers in the combat
field with the help of cooperative reconnaissance satellites or
intelligence aircraft. During the manoeuvre from the initial
location to a given destination, the invading submarine can
update its route dynamically according to the latest intelligent
information received regarding the anti-submarine searchers. In
this work, we attempt to transform the original search-evasion
route programming scheme into a numerical optimization
problem.

Finding the optimum for this kind of transformed numerical
optimization problem has been confirmed to be NP-hard [15].
Consequently, nature-inspired stochastic search and
optimization methods such as genetic algorithms, genetic
programming, differential evolution, ant colony optimization
and particle swarm optimization have to be used [16-17].
Although these stochastic approaches do not guarantee global
convergence, they are able to find quasi-optimal solutions
within a reasonable amount of computational time [18]. As a
matter of fact, stochastic search and optimization methods have
been well studied and investigated in various route planning
schemes [19-28].

528

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Artificial Bee Colony (ABC) is a relatively new swarm
intelligence algorithm inspired by the foraging behavior of
honey bees [29]. Various studies using different numerical
benchmark tests have confirmed that the ABC algorithm
possesses competitive advantages compared to some other
swarm intelligence and evolutionary algorithms [30-33] (in
regard to the question of what is an “evolutionary algorithm”,
see [34] for some interesting discussion). In addition, the
algorithm framework of ABC is relatively simple, thus making
it possible to acquire good results at a low computational cost
[35]. This brings about a range of modifications/improvements
made for the conventional ABC algorithm in recent years.
From the authors’ viewpoint, broadly speaking there are three
prevailing ways to improve the conventional ABC. The first is
to adopt some strategies or theories from the “outside world”.
The second is mainly about modifying the solution search
equations. While the third focuses on changing the framework
of the ABC algorithm. An incomplete collection of references
[28, 35-48] is used in Figure 1 to provide a quick overview of
possible modifications made to the conventional ABC
algorithm.

Type 1Type 2

Type 3

[36]

[37]

[42]

[39]

[43]

[38]
[44]

[41]
[48]

[28]

[46]

[40]

[35]
[47]

[45]

Fig. 1. An incomplete review of modifications made for the ABC algorithm.

In this work, we adopt the ABC algorithm to solve the
transformed numerical optimization problem of search-evasion
path planning for invading submarines. The remainder of this
paper is organized as follows. In the next section (i.e., Section
II), we briefly review a static route planning model that is
commonly used in many path programming schemes. Then, we
introduce our proposed dynamic search-evasion path planning
model, which is inspired by the conventional model introduced
in Section II, in Section III. The procedures of the ABC
algorithm are described in Section IV, followed by Section V
where experimental setups and results have been presented to
show the efficacy of our proposed dynamic model. Finally, the
strengths and limitations of this work are highlighted in the last
section.

II. A BRIEF REVIEW OF THE CONVENTIONAL PATH
PLANNING MODEL WITH STATIC THREATS

In this section, we briefly introduce the conventional route
planning model where only static anti-submarine settings (e.g.,
anti-submarine ships berthed in the sea) will be considered.

The detection scope of these static vehicles is presented by
circles of different radii. Besides that, a threat weight index is
associated with each of the static anti-submarine vehicles
thanks to the reliability of the equipped sensor. When an
invading submarine’s path falls within the scope of such a
static detection sensor, the invasion will be flagged.

Let us denote the starting point as S and the terminal point
as T. The search-evasion mission is to calculate an optimal
path from S to T, with all the fixed threat regions as well as
fuel consumption considered. First, we draw a segment ST
connecting S and T. After that, we divide ST into (1)D +
equal portions by D vertical dash lines kL (1, 2,..,)k D= as
illustrated in Figure 2. These lines are taken as the new axes.
Then, as many D points (see the small rectangles in Figure 2)
along these axes will be connected in sequence to form a
feasible path from S to T [28]. In this way, the vector

[]1 2, , , Dz z z=z … determines the shape of a feasible path
from S to T.

Fig. 2. A schematic diagram of the conventional path planning model with
fixed threats only.

Regarding the quality of a candidate search-evasion path,
the threat cost threatJ as well as the fuel consumption fuelJ are
taken into consideration as shown in (1) below:

0 0

(1)

 d (1) d ,

fuel threat

length length

threat fuel

J J J

w l w l

λ λ

λ λ

= ⋅ + − ⋅

= ⋅ + − ⋅∫ ∫
 (1)

where J is the weighted sum cost of this path, []0,1λ ∈ is a
weighting parameter, threatw and fuelw are variables related to
every instantaneous position on the path, and length denotes
the total length of this candidate path.

If a search-evasion path falls into a threat region during the
sub-route from point PLi on iL to point 1PLi+ on 1iL + , some
form of detection penalty will be calculated. Equation (2)
shows a general function of detection probability, assumed to
be supplied through the radars on the anti-submarine searchers
[5], where Prob denotes the detection probability, d refers to
the distance between the detecting radar and the invading
submarine, C is a performance parameter of the radar, and

sσ denotes the radar cross section of the target. Since C and

sσ are typically taken as constant parameters [13], we have

529

4
1Prob d∝ , which also holds when the surface anti-

submarine ships are equipped with other kinds of sensors for
detection in general.

4() sC
Prob d

d
σ⋅

= (2)

To simplify the integral operation in (1), we calculate

()1 1 1

1
, ,S ,1 i i

D
threat L L threat L threat L Di

w w w
+

−
→ → →=

+ +∑ instead of

0
d

length

threatw l∫ in practice. The detection cost
1, i ithreat L Lw

+→ from

PLi to 1PLi+ is calculated at five sample points in-between,
as illustrated in Figure 3, using (3):

1,

4 4 4 4 41
0.1, , 0.3, , 0.5, , 0.7, , 0.9, ,

5

1 1 1 1 1 ,

i i

t

i
threat L L

N
kk

i k i k i k i k i k

length
w

t
d d d d d

+→

=

= ⋅

⎡ ⎤⎛ ⎞
⋅ + + + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑
 (3)

where tN denotes the number of threatening circles the sub-
route falls into, ilength refers to the length of the thi sub-
path, 0.1, ,i kd stands for the distance between the 1/10 point on
the path and the thk threat center, and kt is regarded as the
threat grade of the thk threat. It is a common practice to
assume that the fuel consumption fuelJ is proportional to
length , which means fuelw will be a constant [28]. There is no
problem if we set 1fuelw ≡ because the polynomial (1)λ− in
(1) is always attached with fuelw .

Fig. 3. A schematic diagram of route cost calculation in a simplified way to
avoid the integral operation.

As a brief summary, adjusting the elements in the vector
[]1 2, , , Dz z z=z … will lead to different paths from S to T.

Each feasible path corresponds with a path cost value
calculated using (1). We seek for the very *z that makes

*()J z minimized. In this way, it is notable that the original
search-evasion path planning scheme is transformed into a
numerical optimization problem. The optimal vector *z can be
achieved through the ABC algorithm, which will be presented
in Section IV.

III. THE NOVEL DYNAMIC SEARCH-EVASION PATH
PLANNING MODEL

We have reviewed the route planning model with only
fixed anti-submarine threats considered in the previous section.
In this section, we will take mobile anti-submarine searchers
into consideration. Our assumption is that the invading
submarine can get the real-time locations of all the anti-
submarine vehicles in the combat field by means of
cooperative reconnaissance satellites or intelligence aircraft.
Such assumption is considered to be feasible and practical [49,
50]. In this work, we propose a locally look-ahead strategy for
the real-time route planning scheme.

Assuming that the invading submarine is currently located
at point PLi that is on the line iL . Different from the static
model in Section II, here we will program as many aheadN
points 1PLi+ , …, PL

aheadi N+ , which are on the coordinate axes

1iL + , …,
aheadi NL + respectively. Thereafter, we will calculate the

cost of the sub-route qPL PL
aheadi i N+… rather than that of the

whole route. An example is shown in Figure 4. We assume that
the invading submarine is now located at 2PL , and that

2aheadN = . At this moment, the submarine concerns only of

the sub-route q2 3 4PL PL PL , making it an -dimensionalaheadN
numerical optimization sub-problem. This sub-problem is
solved by optimizing only the elements 1iz + ,…,

aheadi Nz + in the
vector z . Now that the submarine is located at PLi , the
elements 1z ,…, iz will always remain as historical data.
Similarly, the elements 1aheadi Nz + + ,…, Dz will be temporarily
fixed because we do not worry about them at this moment.

Fig. 4. A schematic diagram of the dynamic path planning model with fixed
and mobile threats considered. According to our proposed locally look-ahead
strategy, the invading submarine concerns only about a sub-route from 2PL to

4PL .

A question that would arise is, why is it making sense to
look merely several steps locally ahead? Since there may be
some drastic changes in the combat field as time goes by, the
global route computed in an earlier step can be of no use in a
subsequent step when the situation differs. On the contrary, if
we only solve a sub-problem at each step the optimization
dimension will be reduced significantly (because aheadN D<

530

in general). This eases the real-time computation burden as
well.

IV. THE ARTIFICIAL BEE COLONY ALGORITHM
In the preceding section, a description of the route planning

model with both fixed and mobile anti-submarine threats
considered has been presented. This section focuses on how to
find an optimal vector *z with the minimum path cost function
value using the ABC algorithm.

The conventional ABC algorithm employs three kinds of
“bees”: scout bees searching for nectar sources randomly,
employed bees associated with specific nectar sources, and
onlooker bees who keep watch on the employed bees. Half of a
bee colony would consist of the employed bees, and the other
half the onlooker bees [29]. At an initial stage, scout bees are
set out to randomly search for nectar sources. Soon after, they
become the employed bees responsible for sharing
information (e.g., nectar source quality and their current
locations) with other employed bees as well as the onlooker
bees by means of “dancing”. The onlooker bees will then
randomly select the locations of the employed bees to exploit.
It is worth pointing out that the locations with relatively higher
quality nectar sources are more likely to be chosen by the
onlooker bees for exploitation. The employed bees, on the
other hand, will also randomly share their locations with
others to explore possible new locations. If an employed bee
finds no better nectar source than one that it has previously
discovered within a certain time length, it turns into a scout
bee again. Its position will be a randomly initialized location
in the search space.

A location of a nectar source represents a feasible solution
to the problem, and the nectar quantity is reflected by the
objective function value [30]. Let 1 2(, , ,)DX X X=X "
represent a solution in the feasible solution space, ()fun ⋅ be
the objective function that needs to be minimized, (,)rand m n
be a random number between m and n obeying the uniform
distribution, and SN be the population size of a bee swarm.
As aforementioned, the number of onlooker bees in a bee
colony is 2

SN , equaling that of the employed bees.

At first, as many as 2
SN scout bees are randomly

initialized in the feasible solution space. Equation (5) shows
how the thj element of the thi scout bee’s location iX is
calculated:

min max min(0,1) (),

 1, 2,..., , 1, 2,..., ,2

j j j j
iX X rand X X

SNi j D

← + ⋅ −

= =
 (5)

where min
jX and max

jX denote the lower and upper boundaries
of this thj element, and D denotes the dimension of a

feasible solution. Thereafter, the 2
SN scout bees will

become the employed bees and an iterated process begins
from here.

In each cycle of iteration, an employed bee will share
information with a randomly chosen companion and change
one randomly chosen element of its location vector from j

iX
to * j

iX using the following equation:

{ } { }

* (1,1) (),

 1, 2, , , 1, 2, , , .2

j j j j
i i k iX X rand X X

SNk j D k i

← + − ⋅ −

∈ ∈ ≠… …
 (6)

It is necessary to note that j and k are both randomly
selected integers. When all the employed bees arrive at their
new nectar sources { }* , 1,2, , 2i

SNi =X … , they evaluate the

quality of these new nectars and then decide whether to stay at
the new location or the previous one by means of a greedy
selection strategy. Specifically, if the thi employed bee finds
that *() ()i ifun fun<X X , it will go to the new location *

iX ,
i.e., *

i i←X X ; otherwise, it remains at the previous location

iX .

When all the employed bees have decided on their
locations, a roulette selection strategy will direct the onlooker
bees to select “qualified” employed bees to follow. A
probability index P is calculated according to (7) and (8) to
reflect the relative qualification of nectar sources at which the
employed bees are located.

2
1

() , 1,2, , ,2SN

j

fitness i SNP i i
fitness j

=

= =
∑

…()

()
 (7)

1 if () 0
1 ()() .
1 () if () 0

i
i

i i

fun
funfitness i
fun fun

⎧ ≥⎪ += ⎨
⎪ + <⎩

X
X
X X

 (8)

Each onlooker bee will search locally around an employed
bee. For some thi onlooker bee, a comparison is made
between a random number (0,1)rand and (1)P . If

(1) (0,1)P rand≥ , this onlooker bee will search around the 1st
employed bee; otherwise, a comparison between (0,1)rand

and (2)P will be made. If any { }(), 1,2, , 2
SNP j j ∈ …

happened to be smaller than (0,1)rand , such process is
repeated until a larger ()P j is found. Then, the corresponding

thj employed bee will be chosen. The following equation
(i.e., Equation (9)) shows the location of the thi onlooker bee

()1 1 1, , , , , ,k k k D
i j j i j jX X Y X X− +=Y … … that searches locally

around the selected -thj employed bee.

{ } { }
(1,1) (),

 1, 2, , , 1, 2, , , .2

k k k k
i j m jY X rand X X

SNm k D m j

← + − ⋅ −

∈ ∈ ≠… …
 (9)

Note that in this equation m and k are randomly selected
integers as well. When all the 2

SN onlooker bees have

531

determined their locations, a greedy selection strategy is
implemented. This time, however, a comparison is made
between ()jfun X and ()ifun Y 1, 2, , 2

SNi = … . If ()ifun Y

is smaller than ()jfun X , the thj employed bee will abandon
the current location jX and go to iY , i.e., j i←X Y ;
otherwise, the thj employed bee remains at jX .

It is interesting to note that every time the greedy selection
is implemented, it involves one central employed bee. In the
ABC algorithm, besides the probability index P there is
another index that is associated with each of the employed
bees, namely trial , which memorizes inefficient information
that is relevant to the employed bees. Specifically, ()trial i
records the number of times an inefficient search is performed
by the thi employed bee or any onlooker bee that searches
around the thi employed bee. That is to say, ()trial i is
incremented by one each time when the condition

*() ()i ifun fun≥X X or () ()j ifun fun≥Y X is satisfied. At the
beginning, each ()trial i is set to zero. As the iteration process
goes on, when ()trial i reaches a predefined threshold Limit
the thi employed bee will turn into a scout bee again with a
randomly initialized location in the search space (based on
(5)).

The pseudo-code of the ABC algorithm is given as
follows:

Algorithm 1 The Artificial Bee Colony Algorithm
1. Set the population size SN , and maximum cycle number

MCN . Set the inefficient trial time counter () 0trial i ←

(1,2, ,)2
SNi = … .

2. Randomly initialize locations of 2
SN scout bees using

Eq. (5)
3. For 1iter = to MCN , do
4. For 1item = to 2

SN , do % employed bee phase

5. Generate *
itemX for the -thitem employed bee to

search according to Eq. (6)
6. If *() ()item itemfun fun<X X , then % implementation

of the greedy selection
7. *

item item←X X , and set () 0trial item ←
8. Else
9. () () 1trial item trial item← +
10. End if
11. End for
12. For 1i = to 2

SN , do % preparation for the roulette
selection

13. Calculate ()P i using Eq. (7) and Eq. (8)
14. End for
15. Set 1j = % implementation of the roulette selection

16. For 1item = to 2
SN , do

17. If () (0,1)P j rand> , then % onlooker bee phase
18. Choose the thj employed bee to follow, and then

generate itemY using Eq. (9)
19. If () ()item jfun fun<Y X , then % implementation

of the greedy selection
20. j item←X Y , and set () 0trial j ←
21. Else
22. () () 1trial j trial j← +
23. End if
24. End if
25. 1j j← +

26. If 2
SNj > , then

27. Set 1j ←
28. End if
29. End for
30. Collect item that satisfy ()trial item Limit> in an

index set Ω % scout bee phase
31. If Ω ≠ ∅ , then
32. Randomly choose k ∈ Ω
33. Re-initialize the location of the thk employed bee

using Eq. (5)
34. Set () 0trial k ←
35. End if
36. Memorize the best-ever solution
37. End for
38. Output the best-ever solution

V. EXPERIMENTS AND RESULTS
We have conducted a number of simulation experiments to

verify the efficacy of our proposed dynamic search-evasion
path planning model. All the experiments were done in a
MATLAB R2010a environment and executed on an Intel Core
2 Duo CPU with 2 GB RAM running at 2.53 GHz under
Windows XP. The population size was set constant at 40SN =
and 10

MCNLimit = for the ABC algorithm.

In the first experiment, we investigated the route
programming ability of our proposed method to handle static
anti-submarine threats (see Figure 5). The starting location was
set to (11, 11), and the destination was pre-defined as (75, 75).
Some other parameters were set as: 30MCN = , 15D = ,

2aheadN = and 0.7λ = .

The second experiment focused on the existence of moving
anti-submarine aircraft in the combat field (see Figure 6), while
other settings remained the same as in the previous static case.
In this experiment, an anti-submarine aircraft flew from (63, 56)
to (58.50, 73.25).

Figures 5 and 6 confirm that our proposed approach is
capable of handling both static and dynamic anti-submarine
threats. In both cases, we repeated the simulations for as many
as 30 times. From Figure 5, we see that most of the optimized

532

routes share similar trends, i.e., they are able to avoid the static
threat regions. In Figure 6, when some of the anti-submarine
vehicles can move, we observe that most of the programmed
routes are still able to avoid the moving threat efficiently.
Nevertheless, we acknowledge that there exist a few imperfect
routes among the 30 runs in both cases, as can be seen in
Figures 5 and 6. This means there is still room for
improvement in the optimization process of this ABC-based
dynamic path planning model.

Fig. 5. Simulation results of search-evasion paths (30 runs) optimized by the
ABC algorithm when only static anti-submarine threats have been considered.

Fig. 6. Simulation results of search-evasion paths (30 runs) optimized by the
ABC algorithm when both static and dynamic anti-submarine
threats/searchers have been considered.

In addition to the above two experiments, we have also
carried out a sensitivity analysis on the parameters of the

proposed model. Due to space constraints, only the results for
the parameters aheadN , λ and D are presented.

First, we investigated how the selection of aheadN would
affect the search-evasion route in a complicated case (see
Figure 7). In this case, one anti-submarine aircraft flew from
(63, 56) to (58.50, 73.25), another anti-submarine aircraft flew
from (12, 48) to (10.5, 28.5), while the third anti-submarine
aircraft flew from (30, 70) to (28.95, 65.20) when the invading
submarine attempted to move from the starting point to the
terminal destination. Figure 7 shows a number of optimized
routes obtained when aheadN = 1, 2, 3 and 5 respectively, with

0.7λ ≡ and 15D ≡ .

Fig. 7. Simulation results concerning the sensitivity analysis of aheadN .

Fig. 8. Simulation results concerning the sensitivity analysis of λ .

533

As can be seen from Figure 7, when the value of the
parameter aheadN is relatively small, the three routes obtained
for aheadN = 1, 2 and 3 are very close to each other. When

5aheadN = , however, the route goes from S to T in a
completely different direction to the right. These results
indicate that our proposed model is robust with different
selection of aheadN , although one may ask why the route with
a larger aheadN value turns out to be so different? Here, it is
interesting to point out that when the invading submarine is set
to “look” 5 steps ahead, it has the tendency to veer right in an
attempt to keep itself away from the detectors. However, since
the situation of the combat field changes all the time, to look
far ahead makes no sense. Therefore, we suggest that the
selected aheadN value should never be too large.

Second, we investigated how the selection of λ would
affect the search-evasion route. Figure 8 shows the routes when
λ = 0.05, 0.5 and 0.95 respectively, with 2aheadN ≡ and

15D ≡ . As we can see from the figure, the larger the value of
λ , the better the optimized route is in avoiding the threat
zones. When the value of λ is smaller, it concerns more about
the length of the planned route from S to T.

Fig. 9. Simulation results concerning the sensitivity analysis of D .

Finally, we also investigated how the selection of D
would affect the search-evasion route. Figure 9 shows the
routes when D = 5, 10 and 30 respectively, with 3aheadN ≡
and 0.95λ ≡ . In general, an optimized route turns out to be
more exquisite with a larger D value. Again, one may find
that the route goes to the destination from the right side when
D is small in Figure 9. It is necessary to point out here that
the submarine will go as many D steps as possible from S to
T . When D is small, each step will generally be bigger.
Besides that, it also looks aheadN steps ahead. Therefore, when
D is smaller, the submarine looks farther in advance, making
it a preferable choice to veer to the right side. In this regard, a

relatively small D value has somewhat a similar effect to a
large aheadN value as discussed previously. Some readers may
point out that the invading submarine can only plan a
subsequent route when it reaches one coordinate axis iL . This
is true, however, when D is set to be sufficiently large we
believe that this will not be a critical problem.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have applied the ABC algorithm for

optimizing the route of an invading submarine based on a
proposed dynamic path planning model. Our simulation results
clearly demonstrated that the proposed method is a viable
approach for submarine search-evasion path planning.

Despite the positive results, this route planning model still
has its limitations. For example, the model is formulated in a
two-dimensional plane, which basically assumes that all the
underwater vehicles lay at a same depth below the sea level.
This is obviously not realistic when a real-world application of
this kind is pursued.

For future work, we may consider the formulation of a
model in a three-dimension space. Besides that, given that our
optimized paths are composed of line segments we may also
investigate ways to smooth the final paths in order to remove
discontinuities in the velocity.

ACKNOWLEDGMENT
We would like to thank the anonymous referees for their

valuable comments and suggestions. The second author would
like to acknowledge support from the University of
Newcastle’s PVC Conference Assistance Grant Scheme. This
work is also supported in part by the 5th National College
Students’ Innovative and Entrepreneurial Training Program in
China.

REFERENCES
[1] R. A. Geyer, Submersibles and their use in oceanography and ocean

engineering. Elsevier, 2011.
[2] G. Hardach, The First World War, 1914-1918. University of California

Press, 1981.
[3] G. M. Sandal, I. M. Endresen, R. Vaernes, and H. Ursin, “Personality

and coping strategies during submarine missions,” Military
Psychology, vol. 11, no. 4, pp. 381, 1999.

[4] P. C. Etter, Underwater acoustic modeling and simulation. CRC Press,
2013.

[5] M. I. Skolnik, Radar handbook. New York: Academic, 1970.
[6] Y. Qiu, W. Zhang, P. Zhao, and X. Liu, “Sea wave filter design for

cable-height control system of anti-submarine helicopter,” Emerging
Technologies for Information Systems, Computing, and
Management, vol. 236, pp. 433–441, 2013.

[7] J. Das, F. Py, T. Maughan, T. O’Reilly, M. Messie, J. Ryan, and G. S.
Sukhatme, “Simultaneous tracking and sampling of dynamic
oceanographic features with autonomous underwater vehicles and
lagrangian drifters,” Experimental Robotics, vol. 79, pp. 541–555, 2014.

[8] J. M. Danskin, “A helicopter versus submarine search game,”
Operations Research, vol. 16, no. 3, pp. 509–517, 1968.

[9] M. F. Shlesinger, “Mathematical physics: Search research,” Nature, vol.
443, pp. 281–282, 2006.

[10] H. Jin and J. Li, “Submarine searching strategies for dipping sonar on
antisubmarine helicopter,” Electronics Optics & Control, vol. 18, no. 8,

534

pp. 26–29, 2011 (in Chinese).
[11] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion

in mobile robotics,” Autonomous Robots, vol. 31, no. 4, pp. 299–316,
2011.

[12] C. Pan, J. Hu, and Z. Yin, “Quasi-optimal method for multiple UUVs
cooperate to search static target,” Fire Control & Command Control, vol.
38, no. 4, pp. 53–56, 2013 (in Chinese).

[13] Y. Que, Effectiveness evaluation and decision modeling on searching
submarine of antisubmarine aircraft. National Defense Industry Press,
2011 (in Chinese).

[14] T. G. McGee and J. K. Hedrick, “Guaranteed strategies to search for
mobile evaders in the plane,” Proceedings of the 2006 American Control
Conference, IEEE, pp. 2819–2824, 2006.

[15] J. Canny and J. Reif, “New lower bound techniques for robot motion
planning problems,” Proceedings of the 28th Annual Symposium on
Foundations of Computer Science, pp. 49-60, IEEE, 1987.

[16] R. Chiong, Ed. Nature-inspired algorithms for optimisation. Berlin:
Springer-Verlag, 2009.

[17] R. Chiong, T. Weise, and Z. Michalewicz, Eds. Variants of evolutionary
algorithms for real-world applications. Berlin: Springer-Verlag, 2012.

[18] T. Weise, M. Zapf, R. Chiong, and A. J. Nebro, “Why is optimization
difficult?,” in Nature-Inspired Algorithms for Optimisation, R. Chiong,
Ed. Berlin: Springer-Verlag, 2009, pp. 1–50.

[19] H. T. Hsieh and C. H. Chu, “Improving optimization of tool path
planning in 5-axis flank milling using advanced PSO
algorithms,” Robotics and Computer-Integrated Manufacturing, vol. 29,
no. 3, pp. 3-11, 2013.

[20] N. Geng, D. Gong, and Y. Zhang, “Robot path planning in an
environment with many terrains based on interval multi-objective PSO,”
Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2013), IEEE, pp. 813-820, 2013.

[21] E. Masehian and D. Sedighizadeh, “Multi-objective PSO-and NPSO-
based algorithms for robot path planning,” Advances in electrical and
computer engineering, vol. 10, no. 4, pp. 69-76, 2010.

[22] W. Jiao, G. Liu, J. Zhang, and B. Zhang, “Geomagnetic matching path
planning based on PSO algorithm,” Systems Engineering–Theory &
Practice, vol. 30, no. 11, pp. 2106-2111, 2010 (in Chinese).

[23] I. Chaari, A. Koubaa, H. Bennaceur, S. Trigui, and K. Al-Shalfan,
“smartPATH: A hybrid ACO-GA algorithm for robot path planning,”
Proceedings of the IEEE Congress on Evolutionary Computation (CEC
2012), IEEE, pp. 1-8, 2012.

[24] Y. Sun and R. Zhang, “Research on global path planning for AUV based
on GA,” in Mechanical Engineering and Technology, T. Zhang, Ed.
Berlin: Springer-Verlag, 2012, pp. 311–318.

[25] C. T. Cheng, K. Fallahi, H. Leung, and C. K. Tse, “A genetic algorithm-
inspired UUV path planner based on dynamic programming,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 42, no. 6, pp. 1128-1134, 2012.

[26] C. Sun and H. Duan, “Artificial bee colony optimized controller for
unmanned rotorcraft pendulum,” Aircraft Engineering and Aerospace
Technology, vol. 85, no. 2, pp. 104-114, 2013.

[27] B. Li, L. Gong, and C. Zhao, “Unmanned combat aerial vehicles path
planning using a novel probability density model based on artificial bee
colony algorithm,” Proceedings of the Fourth International Conference
on Intelligent Control and Information Processing (ICICIP 2013), IEEE,
pp. 620-625, 2013.

[28] C. Xu, H. Duan, and F. Liu, “Chaotic artificial bee colony approach to
Uninhabited Combat Air Vehicle (UCAV) path planning,” Aerospace
Science and Technology, vol. 14, no. 8, pp. 535-541, 2010.

[29] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC)
algorithm,” Journal of Global optimization, vol. 39, no. 3, pp. 459-471,
2007.

[30] D. Karaboga and B. Basturk, “On the performance of artificial bee
colony (ABC) algorithm,” Applied Soft Computing, vol. 8, no. 1, pp.
687-697, January 2008.

[31] H. Li, K. Liu, and X. Li, “A comparative study of artificial bee colony,
bees algorithms and differential evolution on numerical benchmark
problems,” in Computational Intelligence and Intelligent Systems, Z.
Cai, H. Tong, Z. Kang, and Y. Liu, Eds. Berlin: Springer-Verlag, 2010,
pp. 198-207.

[32] D. Karaboga and B. Akay, “Artificial bee colony (ABC), harmony
search and bees algorithms on numerical optimization,” Innovative
Production Machines and Systems Virtual Conference, 2009.

[33] D. Karaboga and B. Akay, “A comparative study of artificial bee colony
algorithm,” Applied Mathematics and Computation, vol. 214, no. 1, pp.
108-132, 2009.

[34] C. Blum, R. Chiong, M. Clerc, K. De Jong, Z. Michalewicz, F. Neri, and
T. Weise, “Evolutionary Optimization,” in Variants of Evolutionary
Algorithms for Real-World Applications, R. Chiong, T. Weise and Z.
Michalewicz, Eds. Berlin: Springer-Verlag, 2012 pp. 1–29.

[35] B. Li and R. Chiong, “A novel artificial bee colony algorithm with a
balance-evolution strategy for numerical optimization,” unpublished.

[36] G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm for
numerical function optimization,” Applied Mathematics and
Computation, vol. 217, no. 7, pp. 3166–3173, 2010.

[37] S. Biswas, S. Das, S. Debchoudhury, and S. Kundu, “Co-evolving bee
colonies by forager migration: A multi-swarm based Artificial Bee
Colony algorithm for global search space,” Applied Mathematics and
Computation, vol. 232, pp. 216-234, 2014.

[38] W. Gao and S. Liu, “Improved artificial bee colony algorithm for global
optimization,” Information Processing Letters, vol. 111, no. 17, pp. 871-
882, 2011.

[39] W. Gao, S. Liu, and L. Huang, “Enhancing artificial bee colony
algorithm using more information-based search equations, Information
Sciences, vol. 270, pp. 112–133, 2014.

[40] A. Alizadegan, B. Asady, and M. Ahmadpour, “Two modified versions
of artificial bee colony algorithm,” Applied Mathematics and
Computation, vol. 225, pp. 601-609, 2013.

[41] D. Aydin, S. Özyön, C. Yaşar, and T. Liao, “Artificial bee colony
algorithm with dynamic population size to combined economic and
emission dispatch problem,” International Journal of Electrical Power &
Energy Systems, vol. 54, pp. 144-153, 2014.

[42] A. Rajasekhar, R. K. Jatoth, and A. Abraham, “Design of intelligent
PID/PI λ D μ speed controller for chopper fed DC motor drive using
opposition based artificial bee colony algorithm,” Engineering
Applications of Artificial Intelligence, vol. 29, no. pp. 13-32, 2014.

[43] F. Kang, J. Li, and H. Li, “Artificial bee colony algorithm and pattern
search hybridized for global optimization,” Applied Soft
Computing, vol. 13, no. 4, pp. 1781-1791, 2013.

[44] B. Li, “Research on WNN modeling for gold price forecasting based on
improved artificial bee colony algorithm,” Computational Intelligence
and Neuroscience, vol. 2014, pp. 1-10, 2014.

[45] W. Gao, S. Liu, and L .Huang, “A novel artificial bee colony algorithm
with Powell's method,” Applied Soft Computing, vol. 13, no. 9, pp.
3763-3775, 2013.

[46] F. Kang, J. Li, and Z. Ma, “Rosenbrock artificial bee colony algorithm
for accurate global optimization of numerical functions,” Information
Sciences, vol. 181, no. 16, pp. 3508-3531, 2011.

[47] H. Ding and Q. Feng, “Artificial bee colony algorithm based on
Boltzmann selection policy,” Computer Engineering and
Applications, vol. 31, pp. 53-55, 2009 (in Chinese).

[48] B. Li, Y. Li, and L. Gong, “Protein secondary structure optimization
using an improved artificial bee colony algorithm based on AB off-
lattice model,” Engineering Applications of Artificial Intelligence, vol.
27, no. 1, pp. 70-79, 2014.

[49] J. C. Baker and D. G. Wiencek, Cooperative monitoring in the South
China Sea: satellite imagery, confidence-building measures, and the
Spratly Islands disputes. Greenwood Publishing Group, 2012.

[50] G. Mei and S. Wu, “Development, Application and Challenge
Confronted with Electronic Reconnaissance Satellite,” vol. 28, no. 4, pp.
28-31, 2005 (in Chinese).

535

