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Abstract— We introduce a new method for 
multidimensional scaling in dissimilarity data that is based on 
preservation of metric topology between the original and 
derived data sets. The model seeks neighbors in the derived 
data that have the same ranks as in the input data. The 
algorithm we use to optimize the model is a modification of 
particle swarm optimization called multiswarming. We 
compare the new method to three well known approaches:  
Principal component analysis, Sammon's method, and 
(Kruskal's) metric MDS. Our method produces feature vector 
realizations that compare favorably with the other approaches 
on three real relational data sets.  

Keywords— metric topology preservation, multidimensional 
scaling, multiswarm optimization, Sammon's algorithm 

I. INTRODUCTION 
Let O = {o1, o2, …, on} be a set of n objects. Each object 

is a physical entity (a soccer player, fish, guitar, type of beer, 
etc.). When oi ∈ O has a physical label, O is labeled data; 
otherwise, O is unlabeled. The objects in O can be 
represented by feature data , or by 
relational data R on   

� 

O×O . In the first case, object oj has 
vector xj as its numerical representation; xjk is the k-th 
feature (or attribute) associated with object j. In the second 
case, we have a relation     

� 

ρ : O×O ℜ  whose n2 values 
{ρ(oi, oj)} are arrayed as relation matrix R = [rij] = [ρ(oi, oj)]. 
In this note we deal with dissimilarity data D, which exhibit 
pairwise dissimilarities on n vectors  
The elements of D may have four properties: 

  

� 

p1:  d ij ≥ 0 ∀ i, j   (1a) 

    

� 

p2 :  d ii = 0 ⇔ x i = x j (1b) 

  

� 

p3:  d ij = d ji∀ i ≠ j  (1c) 

  

� 

p4 :  d ij ≤ dik + dkj ∀ i ≠ j ≠ k (1d)    

D is said to be metric when its entries satisfy (1a)-(1d). 

  

� 

Mn = {D = [d ij]∈ ℜ nn : (1a) − (1d) hold} is the set of all 

metric matrices,   

� 

Mn
+ = {D = [d ij]∈ ℜ nn : (1a) − (1c) hold} is 

the set of positive, hollow, symmetric matrices.   

� 

D ∈ M n  is a 
Euclidean distance matrix (EDM) if and only if there is a set 

of vectors     

� 

X = {x1,…, xn}  in some Euclidean space   

� 

ℜq  , q ≤ 

n-1, such that 
    

� 

dij = (x i − x j)
T(x i − x j) = x i − x j 2

2
 between 

pairs of vectors in X is squared Euclidean distance. When D 
is Euclidean, X is called a realization of D. The smallest q 
for which there is a Euclidean realization of D is the 
embedding dimension. D is metric when it is Euclidean, but 
not necessarily conversely, so the set of Euclidean matrices 

  

� 

M n
e , is a proper subset of   

� 

M n ,   

� 

M n
e ⊂ M n . The literature on 

EDMs is not consistent with respect to this terminology: 
some authors use unsquared distances in the definition. We 
use the squared definition and theory as given, for example, 
in [1-3]; see [4-6] for the alternate formulation using 
unsquared distances. The two formulations are equivalent. 
but it is very important to make sure which type of D you are 
dealing with when performing a cluster analysis or 
multidimensional scaling using D as input. 

Let   

� 

ℜ+
pp be the set of positive definite matrices in   

� 

ℜpp . 
For vectors     

� 

x, v ∈ ℜp  and   

� 

A ∈ ℜ+
pp , the inner product 

distance is     

� 

dA(x, v) = x − v
A

= (x − v)T A(x − v) . When 

A is the identity matrix,     

� 

dA(x, v)  is Euclidean distance. 

  

� 

DA ∈ ℜnn  is A-Euclidean if there is an   

� 

A ∈ ℜ+
pp  and a set 

of feature vectors     

� 

X = {x1, …, xn}⊂ ℜ p  such that 

    

� 

DA = dA(x i , x j) = x i − x j A

2
;  1≤ i, j ≤ n

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  . It is not hard to 

show that D is Euclidean if and only if it is A-Euclidean. 
Thus,  

� 

DA ∈ Mn
e  ∀  A ∈ ℜ+

pp .  

 Let     

� 

HP(0,1) = {z ∈ ℜ n : z,1 = 0} denote the (n-1) 

dimensional hyperplane through the origin of   

� 

ℜn  that is 
perpendicular to the vector     

� 

1T = (1,1,…,1) ∈ ℜ n . 
Schoenberg [7] proved that D is Euclidean if and only if (iff) 
D is negative semi-definite (n.s.d.) on this hyperplane, i.e., iff 

    

� 

zTDz ≤ 0  ∀  z  in  HP(0,1) . (cf. p. 418, eqn 9.19 in [1]). 
This condition is difficult to verify, so we instead look at the 
eigenstructure of the matrix     

� 

P
 
D P , where     

� 

 
D = [

 
d ij ] = [d ij

2 ] 

and the centering matrix,     

� 

P = I −1 n[11T ], is the orthogonal 
projector of   

� 

ℜn  onto     

� 

HP(0,1) . P has only 2 distinct 
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eigenvalues:   

� 

λ1 = 1,  mult. = n−1;λ2 = 0,  mult. = 1 , so the 
spectrum of P is 

    

� 

Λ = {1,1,…,1
n−1
     ,0} . 

Theorem 1 [cf. eqn. (947), p. 425 in [1]]. Let 

    

� 

P = I −1 n[11T ],   

� 

D∈ Mn , and      

� 

 
D = [

 
d ij ] = [d ij

2 ]. Then 

  

� 

D∈ Mn
e  ⇔     

� 

P
 
D P is negative semidefinite (n.s.d.)  (2) 

If     

� 

P
 
D P has one or more positive eigenvalues, D is not 

Euclidean. The number of strictly negative eigenvalues of 
    

� 

P
 
D P  equals the (minimum) dimension s required for a 

realization of D. Note especially that the test in Theorem 1 
uses     

� 

 
D , the Hadamard product of D with itself. This presents 

a small dilemma for the user: given a dissimilarity or 
distance matrix D, how do you know if its entries are already 
squared? You will be certain only if you know that D is 
constructed by computing pairwise squared distances 
between pair of vectors in . If D arises 
from a transformation of similarity matrix S, e.g., D = 11T-S, 
its entries will not be squares, and you will need to build     

� 

 
D  

as in Theorem 1. In all other cases, you won't be certain. 
References [4-6] assume that D is NOT squared, and present 
the test in this alternate, equivalent form 

Theorem 2 [Theorem 4 of [6]]. Let     

� 

P = I −1 n[11T ], 

  

� 

D∈ Mn , and      

� 

 
D = [

 
d ij ] = [d ij

2 ].  Then  

  

� 

D∈ Mn
e  ⇔     

� 

−P
 
D P / 2  is positive semidefinite (p.s.d.)  (3) 

The eigenvalues of     

� 

−P
 
D P / 2  are (-1/2) times the 

eigenvalues of    

� 

P
 
D P. The constant (-2) multiplies the cross 

product of the inner product     

� 

x i − x j, x i − x j , and is carried 
to the other side of the equation for the Gram Matrix B in 
classical multidimensional scaling (cf. Section IIIA). 

When D is non-Euclidean,  

� 

D ∈ (M n − M n
e ) , there are 

several transformations     

� 

Ψ : (M n − M n
e )M n

e  which 
convert D from metric to Euclidean,  

� 

Ψ(D) ∈ M n
e . Benasseni 

et al. [8] discuss some methods for transformation of a metric 
D to a Euclidean D.  

II. MULTIDIMENSIONAL SCALING 
Let  

� 

D∈ Mn . The basic idea in multidimensional scaling 
(MDS) is to find a set     

� 

Y = {y1,…,yn}⊂ℜq  (with specified 
dimension q) so that the found dissimilarities 

    

� 

{ ′ d (y i , y j) = τ(d ij) :  1≤ i, j ≤ n} between pairs of vectors in 
Y, arrayed as  

� 

′ D  (approximately) match those in D, i.e., 
  

� 

D ≈ ′ D . When q = 1 the problem is called unidimensional 
scaling. Schoenberg [7] and Young and Householder [9] 
planted the seeds of MDS in 1938. Torgerson [10] 
germinated the idea in 1952. Rapid growth into a mature 
plant over the next 30 years is summarized in Davison [11]. 
Many relatives of MDS are presented in recent texts [5,12]. 

  

III. FIVE METHODS FOR MDS 
 

Two main types of MDS are distinguished by the type of 
objective function used: metric and non-metric [5]. It is easy 
to confuse these terms. Metric and non-Metric MDS both fit 
a metric to the data. Metric MDS refers to the case where 
J(D, D') is a least-squared error criterion, while non-metric 
MDS uses an objective function that assesses only ordinal 
values.  

A. Classical metric MDS,   

� 

D ∈ Mn
e . Is there an input D 

for which an exact solution of MDS (D = D') is guaranteed? 
Yes. If D is Euclidean, and we choose the function τ as the 
identity, we can construct Y as in Section II.A, Y is a (non-
unique) realization of D, and q is the embedding dimension 
for D.  When D is Euclidean, X can be completely recovered, 
up to rotation, translation and reflection, about the origin. 
The solution is well known [5]. Let 

    

� 

B = x i , x j[ ] = XXT  
denote the Gram matrix of inner products corresponding to 

    

� 

X = {x1, …, xn}⊂ ℜ p . The elements of B are related to D 
using the centering matrix P,  B =     

� 

−P
 
D P / 2  = XXT. B has 

rank p, with p positive eigenvalues   

� 

Λ p = {λ1 ≥,…,≥ λp}and 
corresponding orthonormal eigenvectors     

� 

Vp = {v1,…, vp} . 

Define the matrix 
  

� 

Λ = diag λ1 ,…, λp[ ] , array the p 

eigenvectors as columns of matrix V. The spectral 
decomposition of B then yields   

� 

B = VΛVT . The columns of 
the matrix   

� 

X = V Λ  are the recovered vectors, unique up to 
rotation, translation, and reflection about the origin. The 
solution in the Euclidean case is equivalent to principal 
component analysis [5], which we will use as one of the four 
methods in this article. In other cases, the search for Y is 
often guided by an objective function J(D, D') which assesses 
the goodness of fit between D and D'. Different cases of 
MDS arise by choosing different J's, and different algorithms 
to optimize J. 

B. Classical metric MDS,   

� 

D ∈ Mn . If D is metric, but 
not Euclidean, construct B as in method A. If rank(B) = p, 
we again have   

� 

B = VΛVT = XXT , and can recover X as 
before. An algorithm for cases A and B is given on p. 38 of 
Cox and Cox [5]. 

C. Metric MDS,   

� 

D ∈ Mn . An alternative to A and B, 
whether D is Euclidean or metric, is based on optimizing an 
objective function J(D,D'). Why seek an alternative? Two 
reasons: (i) for large n, finding the spectral decomposition of 
B is a difficult and notoriously unstable numerical problem; 
and (ii) even if the transformation of D into Eucidean form, 
say     

� 

 
D ∈ Mn

e , is feasible, the vectors     

� 

 
Y  found by applying 

method A to     

� 

 
D  may be a considerable distortion of the 

vectors Y obtained as a realization of D. Since our objective 
in applying MDS to D is to find a reasonable visual 
representation that may help us interpret cluster substructure 
in the input data, we turn to another method. 
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Sammon's model [13] looks for a set   

� 

YS ⊂ ℜq , q < p, 
whose elements have the same pairwise distances as their 
pre-images in X. Let   

� 

D = [dij] be a distance matrix for X in 

  

� 

ℜp  and   

� 

′ D = [ ′ d ij ] be a distance matrix whose ij-th entry is 
the distance between the (unknown) vectors     

� 

y j = AS(x j)  in 

  

� 

ℜq , where     

� 

AS :ℜ p  ℜq  is our notation for any algorithm 
that attempts to solve Sammon's optimization problem  

    

� 

min
Y⊂ℜq
 JS( ′ D | D) = 1

dij
i< j
∑

(dij− ′ d ij )
2

diji< j
∑

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

. (4) 

Our notation emphasizes that D is fixed (possibly by X), 
while Y (i.e., D') is variable.   

� 

JS( ′ D | D) = 0 ⇔ ( ′ D = D) . 
When JS is zero all n(n-1)/2 distances are preserved exactly. 
Thus, AS attempts to find a YS that is isometric to X. This is 
a stronger property than the one sought by our new MTP-
MSO algorithm, which has the less ambitious objective of 
finding   

� 

Yρ
*  that preserves neighbor ranks. There are two 

cases of (4) depending on the type of input data (D or X). 
Both cases choose a function η' to convert YS into D', and 
both are initialized by guessing a first set YS0 and computing 
  

� 

′ D 0 = ′ η (YS0 ) . If the input data is X, we also must choose η 
so that    

� 

D = η(X) . It would be unusual – but not unheard of - 
in this case to choose 

� 

η≠ ′ η . After guessing an initial YS0, 
Sammon used the method of steepest descent as AS to 
iteratively minimize   

� 

JS . In this paper we use Newton's 
method to minimize JS. 

D. Non-Metric MDS,   

� 

D ∈ Mn . There are many forms 
for this type of MDS [5]. We will use Kruskal's original 
version of nonmetric MDS [14]. In this case J(D, D') is an 
objective function that assesses ordinal values. To begin, 
reindex the dissimilarities in D = [dij] to the vector d which 
has entries dk = dij, where kij=(i-1)((2n-i)/2)+(j-i). Relabel the 
entries of  D'  to get a vector d' in the same way. Because D 
and D' are symmetric, and have zero diagonals, these vectors 
are in   

� 

ℜT, T = n(n−1) / 2 . Kruskal's stress function defines 
the optimization problem 

    

� 

min
Y⊂ℜq
 J K( ′ D | D) = (dkij − ′ d kij )2

kij=1

T
∑ dkij

k=1

T
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
. (5) 

From d and d' compute the rank vectors r and r'. It is 
convenient to represent these conversions as r = F(D), 
r'=F(D'), F denoting the composition of the two operations 
just described. If the ranks of d and d' are the same, then r = 
r',  so approximate solutions YK of (3) attempt to replicate 
the monotonic order structure of D in D'. A detailed 
description of Kruskal's iterative algorithm for 
approximating solutions of (5) appears in [5, pp. 69-71].  

Our implementation begins by choosing q, randomly 
initializing   

� 

YK0 ∈ℜq , and computing   

� 

′ D 0 = ′ η (YS0 ) . Let 

    

� 

′ d Kt  denote the vector of distances, t = 0, 1, … tmax. At step t, 
find all successively indexed subsequences in     

� 

′ d Kt  that are 
not monotonically increasing, and replace each of these 
subsets with the average distance in the subsequence. Let the 
new set of distances be       

� 

′ 
 
d Kt . Then update YKt  for i =  1 to n 

with 

      

� 

yKi,t+1 = yKi,t + γ• 1− ( ′ 
 
d kij ′ d kij )( )

j=1

n
∑

i=1

n
∑ (yKi,t − yKj,t ). (6) 

Kruskal's algorithm is terminated  with output set Y=YKt, 
when   

� 

J K( ′ D Kt | D) < ε . All of our examples use the 
Euclidean norm for η', γ = 0.2 and ε = 10-4. 

E. Non-Metric MDS with MTP-MSO. The input data 
need only satisfy properties (p1)-(p3) of (1), which includes 
Euclidean and metric inputs as special cases. Runkler and 
Bezdek [15] recently proposed a new algorithm for feature 
extraction called metric topology preservation - multiswarm  
optimization MTP-MSO. This algorithm can also be used for 
MDS but has not been previously discussed in this context. 
The long acronym MTP-MSO indicates that this algorithm 
combines metric topology preservation as defined in [16] 
with a variation of multi (particle) swarm optimization, 
introduced in [17]. MSO is itself a generalization of the 
original form of particle swarm optimization (PSO, [18]). 
Here is the definition of MTP: 

Definition MTP.     

� 

P(ℜp)  and     

� 

P(ℜq )  are the power sets of 

  

� 

ℜp and ℜq ,       

� 

φ :P(ℜp)P(ℜq ) ,     

� 

y i = φ(x i ) ∀ i ,  

� 

Y = φ[X], 

  

� 

| X |=| Y | = n > 1 .  If d  is a metric for   

� 

ℜ p and d'  is a metric 
for   

� 

ℜq , φ is a metric topology preserving  (MTP) 
transformation if and only if, for any xi in X,  whenever xj is 
the k-th nearest (in the sense of d) neighbor of xi, then yj is 
the k-th nearest (in the sense of d') neighbor of yi in Y. 

Any feature extractor φ that preserves in its range the 
relative positions of (all) neighbors of every point in its 
domain, has the MTP property. That is, neighbors in   

� 

ℜ p are 
still neighbors in   

� 

ℜq that have the same relationship to each 
other in the two sets. A function that has this property lies in 
between continuity, which preserves neighborhoods but not 
distance order; and isometry, which preserves not only 
distance order, but actual distances.  

Using the same relabeling schemes for D and D' as in 
method D above results in the vectors d, d' and r, r' from d, 
d', all in   

� 

ℜT, T = n(n−1) / 2 , r = F(D), r'=F(D'), Now 
compute Spearman's rho [19] between r and r',  

    

� 

ρSp(r, ′ r ) = ρSp(F(D), F( ′ D ))

=1− 6 (rk − ′ r k )2

k =1

T
∑ (T3 − T)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

. (7) 
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This is a correlation coefficient, so -1 ≤    

� 

ρSp ≤ 1. Bezdek 
and Pal proved that φ is a metric topology preserving  (MTP) 
transformation with respect to (D, D') if and only if 

    

� 

ρSp(r, ′ r ) = ρSp(F(D), F( ′ D )) =1. To convert the MTP statistic 
into an objective function suitable for MDS, let   

� 

D = η(X) , 
  

� 

′ D = ′ η (Y) and write (5) as 

  

� 

Jρ(F( ′ D ) | F(D))   .  (8) 

The MDS model based on (8) is the optimization problem 

    

� 

max
Y⊂ℜq
{Jρ(F( ′ D ) | F(D))} .  (9) 

We use (particle) multi-swarm optimization (MSO) to 
look for solutions of (9). MSO is a stochastic optimization 
algorithm that attempts to maximize the fitness value of an 
objective function     

� 

f :ℜqn ℜ by considering candidates of 
a population that evolves over many iterations (generations 
in time, called t below). In our approach each sub-swarm 
focusses on one fixed part of the solution (a specific feature 
vector). Our setup is somewhat different from dynamic 
multi-swarm particle swarm optimization (DMS-PSO) [17], 
where each sub-swarm focuses on a specific region of the 
solution space and where sub-swarms are dynamically re-
grouped. The (unknown) set of q-vectors to be constructed 
from D are     

� 

Yρ = {y1,…,yn}⊂ℜq . As shown in Fig. 1, 
MTP-MSO assigns a swarm of m particle vectors to each of 
the n feature vectors we seek, so we have n sets of  m particle 
vectors (subswarms), say     

� 

Ykρ = {yk1,…,ykm}⊂ℜq . Each 
(unknown) feature vector yk is associated with   

� 

Ykρ , which 

has velocity vectors     

� 

ΔYkρ = {Δyk1,…,Δykm}⊂ℜq .  The 
total number of particles (vectors) is mn, as seen in Fig. 1. 

 

Fig. 1. Architecture of  the MTP-MSO Model 

Fig. 2 is an abbreviated form of the MTP-MSO algorithm 
given in [15]. The particle vectors and their velocities for 
each of the n subproblems are initialized randomly with 
uniformly distributed random vectors in [0,1]q for each yk, 
and in [-1,1]q for each Δyk. The set of best particle vectors at 
the t-th step is     

� 

{y1, t
* ,…, yn, t

* }⊂ ℜq . Instead of accepting 

    

� 

{y1, t
* ,…, yn, t

* } as the best we can do, we also compute the 

local best for each particle vector yik,t of the current 
populations. Then for each k = 1 to n we pick the particle 
vector that maximizes the MTP objective function for that k 
(with the best particle vectors for all other k) and, if 
necessary, rename it     

� 

yk, t
* . In this way we maintain a set of 

currently best overall candidates. At termination, compute 
the terminal value   

� 

Jρ(D∗ | D) ,  and we are done.  

Algorithm MTP-MSO 

Inputs:   

� 

D ∈ Mn
+ ;   

� 

α ∈ [0,1];     

� 

a1,a2 ∈ ℜ+ ; m, q, tmax ∈ N . MSO     
 fitness   

� 

f (Y) = Jρ (F(D) | F( ′ D )) . 

Initialize     

� 

Y =
 
Y ,ΔYFor k = 1,…, n :     

� 

y k
* ∈ {y1k ,…,y mk }: Next k 

For k = 1,…, n  
      

� 

Ytemp = Y∗  

     For i = 1,…,m : 
      

� 

Ytemp,k =  y ik :  
 
f ik = f (Ytemp ) : Next i 

        

� 

j = argmin{
 
f 1k ,…,

 
f mk} : 

      

� 

y k
* =  y jk : fk

* =
 
f jk  

Next k 
For t = 1 to tmax 
         

� 

ΔY = αΔY + a1rand(
 
Y −Y) + a 2rand(Y∗ −Y)  

       

� 

Y = Y +ΔY  
      For k =  1 to n 
            

� 

Ytemp = Y∗     
           For i=1 to m 
                    

� 

Ytemp,k = y ik  

                
        

� 

If  f (Ytemp ) >
 
f ik  Then   y ik = y ik :  

 
f ik = f (Ytemp )  

                     

� 

If  f(Ytemp ) > fk
*  Then  y k

* = y ik :  fk
* = f(Ytemp )  

           Next i 
       Next k 
Next t 

Out     

� 

{y1
*,…, y1

*}= Yρ
* ⊂ ℜq :   

� 

Jρ (F(D) | F( ′ D ))  

 
Fig. 2. The MTP-MSO Algorithm 

IV. NUMERICAL EXAMPLES 
Experiment 1. Anderson's Iris data comprises n =150 

feature vectors in p=4 dimensions [20]. Each vector in Iris 
has one of three (crisp) physical labels corresponding to the 
subspecie it belongs to; Setosa, Versicolor, or Virginica. The 
input data for this experiment is Iris 149, which is Iris 
without feature vector 143, which duplicates vector 102. This 
accomodates our implementation of Sammon's algorithm that 
requires dij  > 0 for all i≠j (cf. the denominator of (4)).  

We computed dissimilarity data for Iris 149 with the 
Euclidean (  

� 

D2 ∈ Mn
e ) and Sup (  

� 

D∞ ∈ Mn ) norms. D2 is 
Euclidean,   

� 

D∞ is not:    

� 

−P
 
D ∞P / 2  has 75 positive, 1 zero, and 

73 negative eigenvalues. Fig. 3 shows the 2D data sets 
produced by the four methods for these inputs. The class 
labels shown are (1=Setosa), (2=Versicolor), (3=Virginica). 
The scatterplots all show linear separability between class 1 
and the mixed classes 2/3. The main points of this example 
are  (i) to verify that MTP-MSO produces 2D realizations of 
Iris 149 that are in every way comparable to the other three 
methods; and (ii) that MTP-MSO does not falter on non-
Euclidean inputs (the sup norm dissimilarity data   

� 

D∞). The 
Sammon and Kruskal algorithms produce virtually identical 
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outputs for these three inputs. This happens often, but not always. 

 
PCA (Euclidean D2) 

 
Sammon (Euclidean D2) 

 

Kruskal (Euclidean D2) 
 

MTP-MSO (Euclidean D2) 

 
PCA (Sup norm  

� 

D∞ ) 

 
Sammon  (Sup norm  

� 

D∞ ) 

 

Kruskal (Sup norm  

� 

D∞ ) 

 

MTP-MSO (Sup norm  

� 

D∞ ) 

Fig. 3. 2D sets of feature vectors extracted from Euclidean (D2) and Sup norm (  

� 

D∞ ) distance matrices on Iris 149

Experiment 2. Helm [21] discussed ways to visually 
represent the perception of colors by normal (not color blind) 
and abnormal (color blind) subjects. Subjects were asked to 
place colored tiles in a physical arrangement that showed 
perceived color similarity as well as relative distance 
between adjacent tile pairs. Helm found that the average 
distance matrix   

� 

D  for the 10 normal subjects had two large 
eigenvalues (223, 175) and 8 much smaller ones in the 
interval [-5.84, 9.43]. This suggested to him that a two-
dimensional PCA plot corresponding to the two large 
eigenvalues would capture the essential structural 
relationships between the 10 colors. Fig. 4, adapted from Fig. 
5 of [16], shows this representation, with color 1="A", color 
2 = "C", and on up to to color 10 = "S". The longest distance 
is from 1 to 2, then 2-3 and 3-4 are roughly equal, and so on, 
the closest pairs being 8-9 and 9-10 ("S" and "Q"). We 
processed a slightly different version of Helm's data listed as 
Table 10 in [8]. The matrix     

� 

−P
 
D P / 2  of Theorem 2 for this 

input D has 6 positive, 1 zero, and three negative 
eigenvalues. Thus, D is not Euclidean, and the minimum 
embedding dimension is three. 

 

 

Fig. 4. Helm's plot for 10 combined subjects on first two PCs of   

� 

D . 

We exhibit scatterplots in Fig. 5 for q = 2 to afford 
comparisons to Helm's solution shown in Fig. 4. Sammon 
and Kruskal MDS again yield strikingly similar plots to each 
other, and this pair of plots are also quite similar to Helm's 
result. Our PCA and MTP-MSO plots are similar to each 
other, but less so than Sammon is to Kruskal. Ignoring the 
"direction of connection," which is not relevant to 
interpretation of the data, we see that all four algorithms 
produce similar results: (i) pathwise linear connections in 
chromatic order; and (ii) relative distances between color 
pairs that agree with those seen in Fig. 4. 

 
PCA 

 

Sammon 

 

Kruskal 

 
MTP-MSO  

Fig. 5. 2D sets of feature vectors extracted from Helm's data on color perceptions of 10 normal (not color blind) subjects 
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Experiment 3. Fitch and Margoliash [22] present the 
phylogentic tree shown in Fig. 6 (Fig. 2, [22]) which is based 
on average mutation distances between minimum numbers of 
mutations required to interrelate pairs of cytochromes c 
(Table 3, [22]). 

 

Fig. 6. Mutations of cytochrome c in 20 animal species (Fig. 2, [17]) 

The 20 species include 1= man, 2=monkey, 3= dog, etc. 
The tree in Fig. 8 suggests two tight clusters at relatively 
small average mutation distances, C1 ={1,…,8} and C2 = 
{9,…,13}. The tightest couplings (minimum average joining 
distances) appear to be the pairs{1, 2} and {4,5} in cluster 
C1. Four relatively "anomalous" species seem to form a third 
cluster, C3 = {14=snake, 15=tuna, 16=fly, 17=moth}. The 
last three organisms form a fourth cluster  C4 = {18, 19, 20},  
where 18 = baker's mould, 19 = bread yeast, and 20= skin 
fungus. These non-sentient organisms join the first 17 
species at almost twice the mutation distances that bind the 
others together.     

� 

−P
 
D P / 2  for these data has 6 negative 

eigenvalues, so the input data are not Euclidean.  

Fig. 7 displays scatterplots of the 2D sets of feature 
vectors extracted from the data with our four study models. 
There are four rows in Fig. 7. The top row exhibits all 20 
vectors derived from each model. Note that 19 and 20 are 
superposed in the Kruskal diagram in this row. All four 
models place the outlier cluster C4 = {18, 19, 20} apart from 
the other 17 organisms. To see more clearly how the MDS 
vectors separate the remaining input species, we made 
successively finer "zooms" that increased the resolution of 
the remaining clusters to make further distinctions possible. 
The blue boxes in the top row are zoomed to produce the 
scatterplots in the second row. Here we see the anomalous 
points cluster C3 = {14, 15, 16, 17} scattered about, outside 
of the red boxes. Zooming the red boxes yields the third row 
of Fig. 9, where the cluster C2 = {9,…,13} lies outside the 
green bounding boxes in all four views. Finally, expansion of 
the green boxes yields the graphs in the bottom row of Fig. 7, 
where all four models have grouped together C1 ={1,…,8}. 

So, all four models produce 2D models that offer visual 
evidence that agrees with the stucture of the data captured by 
Fitch and Margoiash in Fig. 6. Please notice the highlighted 

pairs {1, 2} and {4,5} in the bottom right view of Fig. 7. 
These are the most tightly coupled pairs in the tree of Fig. 6, 
and MTP-MSO produces vectors for these pairs that are 
closer to each other than they are in the other three views in 
tha last row. Thus, in this example anyway, we feel that our 
new approach to MDS performs a bit better than the 
comparison algorithms. 

V. CONCLUSIONS AND DISCUSSION 
We reviewed three well known approaches to MDS 

(PCA, Sammon, Kruskal), and compared them to outputs 
from our new MTP-MSO algorithm on three real data sets. 
The results suggest that our model is generally comparable to 
Sammon's model, and both of these seem slightly better than 
PCA and Kruskal's approaches. Moreover, our new 
algorithm yields vectorial representatives for the mutation  
data that are closer to the original interpretation of this data 
set than the other three models. These examples suggest that 
there is merit in further investigations of MTP-MSO.  

One aspect of our method that might lead to better MDS 
solutions is that optimization of the MTP objective function 
is done with multi (particle) swarm optimization. This type 
of evolutionary computation often avoids local extrema that 
stall the Kruskal and Sammon algorithms at undesirable 
minima. On the other hand, traditional MDS is significantly 
faster than our implementation of MTP-MSO. As often 
happens, a new algorithm such as MTP-MSO raises more 
questions than it answers. What is the exact time and 
memory complexity of MTP-MSO and how can it be 
decreased? Can we adapt it for MDS in big data? What can 
we do for visualization when the data is sparse or 
incomplete? Is there a better way to optimize the MTP stress 
function? Our immediate aim will be to adapt MTP-MSO  to 
address some of these questions. 
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Fig. 7. Feature vectors extracted from Fitch's mutation data: top row = full scale: row 2 = zoom blue: row 3 = zoom red: bottom row = zoom g
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