
Serial PSO Results Are Irrelevant in a Multi-core Parallel World

Andrew McNabb and Kevin Seppi

Abstract— From multi-core processors to parallel GPUs to
computing clusters, computing resources are increasingly par-
allel. These parallel resources are being used to address increas-
ingly challenging applications. This presents an opportunity
to design optimization algorithms that use parallel proces-
sors efficiently. In spite of the intuitively parallel nature of
Particle Swarm Optimization (PSO), most PSO variants are
not evaluated from a parallel perspective and introduce extra
communication and bottlenecks that are inefficient in a parallel
environment. We argue that the standard practice of evaluating
a PSO variant by reporting function values with respect to the
number of function evaluations is inadequate for evaluating
PSO in a parallel environment. Evaluating the parallel perfor-
mance of a PSO variant instead requires reporting function
values with respect to the number of iterations to show how
the algorithm scales with the number of processors, along with
an implementation-independent description of task interactions
and communication. Furthermore, it is important to acknowl-
edge the dependence of performance on specific properties of
the objective function and computational resources. We discuss
parallel evaluation of PSO, and we review approaches for
increasing concurrency and for reducing communication which
should be considered when discussing the scalability of a PSO
variant. This discussion is essential both for designers who are
defending the performance of an algorithm and for practitioners
who are determining how to apply PSO for a given objective
function and parallel environment.

I. INTRODUCTION

Despite the overwhelming parallel nature of modern
hardware, contributions to Particle Swarm Optimization (PSO)
are still evaluated from a purely serial perspective. Variants
to PSO may improve performance in a serial environment but
worsen performance in a parallel environment. For example,
adaptive topologies such as ARPSO [1] ensure population
diversity, but adaptation usually requires global information
about the swarm and either reduces concurrency or increases
communication costs. Researchers must understand these
issues to evaluate PSO parameters and variants, and practi-
tioners must understand them to apply PSO effectively.

For the case of serial PSO, Bratton and Kennedy [2]
addressed common issues such as swarm size and motion
equations in order to establish a common starting point
for PSO, but these conclusions do not directly apply to
parallel PSO. While practical approaches to parallel PSO
are available, most PSO research does not consider issues
raised by parallel computation, such as communication and
scaling the number of processors. We are not aware of any
general attempts to address the implementation-independent
consequences of parallelization. Now that computing clusters,
multicore processors, and powerful GPUs are commonplace,

Andrew McNabb and Kevin Seppi are with the Department of Computer
Science, Brigham Young University, 3361 TMCB, Provo, UT 84602 (phone:
801-422-8717; email: {a,k}@cs.byu.edu).

the behavior of parallel PSO must be a primary rather than a
secondary concern.

We organize the issues raised by PSO in a parallel
environment into two categories, processor scaling and task
interaction, which both limit the degree of concurrency, the
number of tasks that can be computed simultaneously [3].
First, a PSO variant may scale poorly as the number of
processors increases, independent of communication. For
example, if the maximum degree of concurrency is less than
the total number of processors, then the average degree of
concurrency is limited because the processors are never all
active. Different ways to increase the number of concurrent
tasks, such as increasing the swarm size, are not necessarily
equally effective. Second, interaction between tasks limits the
average degree of concurrency because tasks remain idle while
waiting for communication. Additionally, communication
can affect performance if non-local information, if available,
would make the work more effective. Issues such as motion
equations and topology determine the dependencies and
communication between tasks. Figure 1 illustrates how
maximum degree of concurrency and task interaction affect
performance. In Figure 1a, the number of tasks is smaller
than the number of processors, so several processors are
unused. In Figure 1b, every task in one iteration interacts
with every task in the next iteration, requiring a high level of
communication. In a task dependency diagram, the maximum
degree of concurrency is given by the number of tasks in a
column, and the task interactions are given by the arrows.

Evaluation of any PSO variant must include discussion of
the issues of processor scaling and task interaction from an
implementation-independent parallel perspective. For serial
PSO, the implementation-independent performance of a PSO
variant is usually measured with respect to the number
of function evaluations. For parallel PSO, measuring the
performance relative to the number of iterations gives the
per-processor performance, which shows how well the PSO
variant can exploit all available processors. Analysis of
task interaction and communication of a variant gives an
implementation-independent understanding of the overhead
it introduces. Together with the per-evaluation cost of the
objective function and the characteristics of the implemen-
tation and parallel hardware, the per-processor scaling and
task interactions reveal how the variant will perform in a
particular computational environment.

The paper proceeds as follows. Section II introduces
parallel Particles Swarm Optimization by describing PSO,
considering the relationship between its performance and
the objective function, and reviewing approaches for the
parallelization of PSO. The next two sections discuss the
issues that limit the efficiency of parallel PSO. Section III

3143

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Iter. 1 Iter. 2 Iter. 3

(a) Low maximum degree of
concurrency (fewer tasks than
processors)

Iter. 1 Iter. 2 Iter. 3

(b) High interaction between
tasks (too much communication)

Task Function Evaluation Task Dependency Idle Processor

(c) Legend

Fig. 1: Task dependencies for parallel PSO in two simple
inefficient cases.

considers scaling of processors independent of communication
and ways to improve it. Section IV considers the task
interactions and communication introduced by a PSO variant
in parallel and ways to reduce bottlenecks and overhead.
Finally, Section V concludes with a plea to consider this
parallel perspective when evaluating all variants of PSO.

II. PARALLEL PSO

This section gives an overview of Particle Swarm Optimiza-
tion and its parallelization. Section II-A reviews PSO and
the standard Constricted PSO motion equations. Section II-
B discusses the properties of objective functions that are
relevant to optimization and the role of benchmark functions
in evaluating PSO. It also describes the benchmark functions
used in this paper. Section II-C discusses the decomposition
of PSO into tasks in parallel PSO.

A. Particle Swarm Optimization

Particle Swarm Optimization simulates the motion of
particles in the domain of an objective function. These
particles search for the global optimum by evaluating the
function as they move. During each iteration of the algorithm,
the position and velocity of each particle are updated. Each
particle is pulled toward the best position it has sampled,
known as the personal best, and toward the best position of
any particle in its neighborhood, known as the neighborhood
best. This attraction is weak enough to allow exploration but
strong enough to encourage exploitation of good locations
and to guarantee convergence.

Constricted PSO is generally considered the standard
variant [2]. Each particle’s position x0 and velocity v0 are
initialized to random values based on a function-specific
feasible region. During iteration t, the following equations
update the ith component of a particle’s position xt and

velocity vt with respect to the personal best xPt−1 and
neighborhood best xNt−1 from the preceding iteration:

vt,i = χ
[
vt−1,i + φPuPt−1,i(x

P
t−1,i − xt−1,i) +

φNuNt−1,i(x
N
t−1,i − xt−1,i)

]
(1)

xt,i = xt−1,i + vt,i (2)

where xP is the personal best, xN is the neighborhood
best, φP and φN are usually set to 2.05, uPt,i and uNt,i
are samples drawn from a standard uniform distribution,
and the constriction constant χ = 2

|2−φ−
√
φ2−4φ|

where

φ = φP + φN [4].
The neighborhoods within a particle swarm are defined

by the swarm topology, also known as the sociometry.
The choice of topology can have a significant effect on
the performance of PSO [5]. Topologies also determine
the amount of communication between particles, which is
especially important for parallel implementations of PSO.

B. Objective Functions

The objective function has properties which determine the
behavior of PSO. Functions may be expensive or inexpensive
in terms of the time per function evaluation, they may be
unimodal or highly multimodal, and they have some number
of input dimensions. Some properties of objective functions
are easy to determine, while others are more elusive. In any
case, these properties have a great effect on the performance
of PSO and must be considered when tuning and running the
algorithm. The usual ways of adapting PSO include motion
equations, swarm topology, and swarm size. Parallelization
also provides a number of techniques that must be considered
for parallel PSO. The effect of these parameters for particular
objective functions can only be identified using empirical
experimentation.

The ideal motion equations, topology, and swarm size
for PSO depend on the objective function. Under various
benchmark functions, the ideal topology for one function
may perform very poorly for another function. The No Free
Lunch Theorems for Optimization show that this is true in
general—if an algorithm performs well on average for one
class of functions then it must do poorly on average for other
problems [6].

Benchmark functions are intended to share interesting
properties with real-life functions while being inexpensive
to facilitate experimentation. We occasionally refer to a
few well-known benchmark functions. The Sphere function
or parabola is fS(x) =

∑D
i=1 x

2
i . Particles are initial-

ized in the interval [−50, 50]D. The Griewank function is
fG(x) = 1 + 1

4000

∑D
i=1 x

2
i − ΠD

i=1 cos
(
xi√
i

)
. We use the

15-dimensional variant with the feasible region [−600, 600]15

(Griewank is more challenging with fewer dimensions than
with more dimensions). The Rastrigin function is fR(x) =∑D

i=1

(
x2i − 10 cos (2πxi) + 10

)
. We use the 50-dimensional

variant with the feasible region [−5.12, 5.12]50.
As there are inexpensive functions with complex landscapes

and expensive functions with simple landscapes, the behavior

3144

of PSO with respect to the function is the main issue. For
this purpose, benchmark functions are a useful and efficient
tool for understanding the effects of PSO with expensive
objective functions even though the benchmark functions are
themselves inexpensive. For example, a plot of performance
with respect to iterations for a smooth unimodal function
with five minutes per evaluation would be similar to that of
Sphere.

Unlike in serial PSO, the time for each evaluation of the
objective function is an important consideration in parallel
PSO. The evaluation time does not generally affect the
behavior of PSO, but an expensive function evaluation
decreases the relative cost of communication. In general, PSO
is more sensitive to details of parallelization for inexpensive
objective functions than for expensive functions because the
time spent in communication is more likely to outweigh the
time spent in function evaluations.

C. Parallelization of PSO

In order for an algorithm to be parallelized, its operations
must be decomposed into tasks [3]. The most fine-grained de-
compositions that are generally possible with PSO correspond
to a task for each evaluation of the objective function. In
specific cases, it may be possible to decompose the objective
function itself, but we limit the discussion and the term
“parallel PSO” to approaches that work for arbitrary objective
functions. Even in the case of a parallelized objective function,
it may be beneficial to also use parallel PSO.

Particle Swarm Optimization is usually decomposed into a
task for each function evaluation, with one task per particle
per iteration [7, 8, 9]. However, this is not always the case,
and parallel PSO may take several different forms depending
on what work constitutes each task, which mapping technique
is used, and how the tasks interact. Some of these choices
may significantly affect the behavior of PSO, while others are
implementation details that may affect parallel performance
and scalability but do not require rethinking at the PSO level.
For example, tasks may include the work of a single particle
or multiple particles; combining several particles into a single
task can reduce communication given an appropriate choice
of swarm topology. Likewise, tasks may include only the
function evaluation, with each particle’s position, velocity,
and neighborhood best updated in serial on a centralized
master [9], or tasks may include the full particle update, with
position, velocity, and neighborhood best updates performed
in parallel [8].

The performance of parallel PSO depends on the parallel
computing environment, including hardware. Networked
clusters, multi-core computers, and graphics processing units
(GPUs) are all common parallel processing platforms, but
they have very different characteristics. Cluster are the
standard way to scale to a large number of general-purpose
processors, but communication over a network is slow. Multi-
core computers have much lower communication costs but
have a limited total processing power. A GPU is very effective
for massively parallel computation but faces restrictions on the
operations that can be performed. To a large degree, external

considerations force a particular choice of computational
platform.

For extremely inexpensive objective functions, graphics
processing units (GPUs) are an attractive platform for paral-
lelization, but they are not applicable in all situations. GPUs
are extremely fast at performing floating point operations, and
GPU-based implementations of PSO can improve performance
by an order of magnitude compared to a single processor [10].
GPUs perform well for objective functions that are floating
point heavy, but they are less effective for functions relying on
integer operations or large amounts of data. Implementations
of PSO that use texture mapping on GPUs additionally
require independence between variables [11]. General-purpose
parallel architectures, such as CUDA and OpenCL, offer a
more flexible approach to GPU-based parallel PSO [10].

In parallel PSO, tasks can be distributed to processors with
either dynamic mapping or static mapping techniques. With
dynamic mapping, tasks are distributed at runtime, often with
a centralized scheduler. With static mapping, each particle is
fixed to a specific processor, which performs all updates to its
state. Fully distributed implementations may even use peer-
to-peer networks for communication between particles [12].
Assuming that position, velocity, and neighborhood best
updates all occur in serial on a centralized processor gives
a poor understanding of behavior for a more distributed
implementation. In general, it is safe to make a simplifying
assumption that parallel PSO is fully distributed.

III. PROCESSOR SCALING INDEPENDENT OF
COMMUNICATION

The ideal case where communication is free separates the
issue of how an algorithm takes advantage of processors from
the issue of task interaction. As the number of processors
increases, the maximum degree of concurrency—the maxi-
mum number of tasks that can be computed simultaneously—
must increase accordingly, or the additional processors are
never utilized. In a task-dependency graph such as noted
earlier in Figure 1, the maximum degree of concurrency is
represented by the number of rows. While it is important
to be able to increase the maximum degree of concurrency
as the number of processors increases, it is also important
to do so in the most effective way possible. A significant
challenge for parallel PSO is to have as high of a marginal
improvement in performance as possible as the number of
processors increases.

Evaluating PSO algorithms as the number of processors
increases or comparing PSO variants at a fixed number of pro-
cessors is not possible from the traditional serial perspective.
PSO algorithms are usually evaluated on their performance
with respect to the number of function evaluations, but this is
not appropriate for parallel PSO, where function evaluations
are performed concurrently. Furthermore, criteria such as
speedup or wallclock time per iteration are only appropriate
for evaluating a specific implementation of parallel PSO
because these measures are highly implementation-dependent.
In a parallel context, the number of function evaluations
divided by the number of processors is a much better

3145

16 16050 500
0

20

40

60

80

100

Swarm Size

Pe
rc

en
t

N
ea

r
Z

er
o

at
40

00
It

er
at

io
ns

Sparse Ring
Dense Ring
Complete

Fig. 2: Percent of swarms attaining a value near the global
optimum of the Griewank function at a fixed number of
iterations. In the sparse ring topologies, each particle is
connected to 2 neighbors; in the dense ring topologies, each
particle is connected to 20% of the swarm; and in the complete
topologies, each particle is connected to the entire swarm.

implementation-independent scale with which to measure
performance. This is simply the number of iterations when
there is one particle per processor, and in many other realistic
cases, it is a multiple of the number of iterations. Comparing
the performance of PSO with respect to the number of
iterations as the number of processors increases shows the
scaling behavior, which may in turn depend on the specific
strategy for employing additional processors.

There are multiple ways to employ additional processors,
and their effectiveness depends on the objective function and
computational resources. For example, Figure 2 shows the
success rate of three different topologies as the number of
processors increases. For this particular objective function, the
more densely connected swarms scale poorly with the number
of processors compared to the more sparsely connected
swarms. In the remainder of this section, we consider three
approaches for increasing the maximum degree of concurrency
of parallel PSO: independent runs, increased swarm size, and
speculative evaluation.

A. Independent Runs

The naı̈ve—and perhaps most common—way to increase
the maximum degree of concurrency of PSO is to perform
independent runs on different processors and take the best
result after the runs have completed. A common use case for
independent runs is to measure variability of PSO for a given
objective function with a particular combination of parameters.
While this may provide some insight into the nature of the
objective function, it is especially useful for evaluating a
variant of PSO. In fact, when evaluating parallel PSO relative
to the number of iterations, it is far more efficient to perform
repeated experiments as parallel independent sequential runs
of PSO than by running a series of experiments on a parallel
implementation.

Parallel independent runs of PSO will give better results
than a single run of PSO with the same parameters if there is

1,000 2,000 3,000 4,000 5,000
0

10

20

30

40

50

60

70

80

90

100

Iterations

Pe
rc

en
t

of
Sw

ar
m

s
N

ea
r

Z
er

o

Ring500,1
Ring160,1
Ring50,1
Ring16,1

Fig. 3: Success rate on Griewank with respect to iterations
for Ringn,1 with various swarm sizes.

any variability whatsoever between runs, but this approach is
generally less effective than more sophisticated approaches.
Running n independent runs of PSO, each with k particles,
is equivalent to a single parallel run of PSO with kn particles
partitioned into n disjoint sets of k particles. Since there
is no communication between the subswarms of particles,
independent runs cannot share any information that might
help improve the search.

B. Swarm Size

Increasing the swarm size is generally a much more
effective use of parallel resources than simply running
multiple serial copies of PSO. Unfortunately, many PSO
variants have not been tested at multiple swarm sizes to
determine how well they scale. Serial PSO is typically used
with small swarms of about 50 particles, with slightly larger
or smaller swarm sizes as indicated by customized testing
for the specific objective function [2]. We review the general
effects of increasing the swarm size and encourage testing
the effects of swarm size in all evaluation of PSO variants.

All else equal, an increase in swarm size increases the
exploration of PSO and decreases its variability between
runs. If a particularly multimodal objective function requires
more particles for adequate exploration than the number of
available processors, then this simultaneously increases the
maximum degree of concurrency. Small swarms converge
prematurely for the Griewank and Rastrigin functions. In
parallel PSO, where performance is plotted against iterations
instead of function evaluations, the benefit of large swarms
is even more pronounced. Figure 3 and Figure 4 show that
for Griewank and Rastrigin respectively, large swarms are
not only less prone to premature convergence, but in parallel
PSO they also attain comparable values in fewer iterations.
Results are similar for other extremely multimodal functions
but are omitted for space.

Efficiently utilizing the processors is more challenging for
functions that do not require as much exploration, but even
in an extreme case of a unimodal function, increasing the
swarm size up to the number of processors is always beneficial
(aside from communication issues discussed in Section IV).

3146

0 100 200 300 400 500 600 700 800 900

102

103

Iterations

B
es

t
Fu

nc
tio

n
V

al
ue

Ring50,3
Ring160,8
Ring500,25
Ring1600,80

Fig. 4: PSO performance on Rastrigin with respect to
iterations with various topologies.

100 100010 300 300030
10−9

10−6

10−3

100

103

Swarm Size

B
es

t
V

al
ue

at
40

0
It

er
at

io
ns

Fig. 5: Performance of PSO for the Sphere function with a
complete topology at various swarm sizes. If communication
is free and additional processors are available, increasing the
swarm size is always beneficial, even in the extreme case of
a unimodal function.

Although the ideal swarm size for the Sphere function in
serial PSO is about 30 particles, Figure 5 shows that a greater
swarm size always gives improvements in parallel PSO if
additional processors are available. However, the marginal
improvement diminishes as the swarm size increases (note
the log scale), so it is important to find PSO variants that
scale as well as possible. For example, organizing a large
swarm of particles into subswarms is generally more effective
than organizing the swarm into a large ring [13].

C. Speculative Evaluation

It seems intuitively obvious that if the number of particles
is less than the number of processors, then some of those
processors would be unused at each iteration. However, the
work associated with a particle can be split into multiple tasks
by reorganizing the work performed in consecutive iterations
of PSO. In this manner, speculative evaluation allows PSO to
perform two iterations concurrently [14]. Figure 6 depicts the
task dependencies of PSO with speculative evaluation. At the
cost of using multiple processors for each particle, and thus
requiring the number of particles to be fewer than the number
of processors, PSO with speculative evaluation can reach

Iter. 1 and 2 Iter. 3 and 4 Iter. 5 and 6

Fig. 6: Task dependency diagram for parallel PSO with
speculative evaluation.

values much more quickly for appropriate objective functions.
Where premature convergence is a concern, increasing swarm
size may be a more valuable use of resources, but if
exploration is adequate, speculative evaluation can halve the
runtime of parallel PSO.

IV. TASK INTERACTION AND COMMUNICATION

Task interactions limit the performance of parallel PSO
by causing processors to be idle while sending or receiving
communication or to use outdated information. The effect
of task interaction depends on the objective function and
computational environment. For example, given a function
with extremely expensive function evaluations, the amount of
communication may be negligible relative to the time spent on
function evaluation, but waiting for one straggling processor
to complete the current iteration may leave a large number
of processors idle for a long time. Evaluating a PSO variant
requires analysis both of the amount of communication and
the interactions that require idle waiting.

Appropriate choice of topologies, motion equations, and
other techniques can minimize the interactions and depen-
dencies between tasks. We consider three approaches to
reducing task interactions that apply in many situations: sparse
topologies, subswarms, and asynchronous parallel PSO.

A. Sparse Topologies

The swarm topology determines which particles com-
municate at each iteration. Sparse topologies require less
communication than dense topologies. PSO variants and
topologies should be evaluated by the average number and
size of messages per iteration that must be sent by each
particle. For example, in a swarm of n particles, a ring

3147

topology requires 2 messages per particle per iteration, while
a complete topology requires n − 1 messages per particle
per iteration. For standard PSO, the cost of messages is
dominated by their number rather than size. Motion equations
or dynamic topologies which require global information about
the swarm introduce task interactions that are equivalent
to using a complete topology, as in Figure 1b. Variants of
PSO that require centralized coordination, or equivalently,
communication between every pair of particles at each
iteration, are not generally practical for parallel computation.

In some cases where heavy interaction shows improved
results for serial PSO, it may be possible to make adaptations
to be more appropriate for parallel PSO. For example, for
some functions, serial PSO performs better with a fully
connected topology than with a sparse topology such as
a ring. By changing the motion equations to pass along the
best value from any neighbor rather than the best value seen
by the particle itself, sparse topologies behave like dense
topologies by spreading information quickly through the
swarm. In this case, communicating with 2 neighbors chosen
randomly at each iteration requires only 2 messages per
particle per iteration and gives almost the same performance
as the complete topology, which requires a much higher
overhead of n− 1 messages per particle per iteration [15].

B. Subswarms

If evaluation of the objective function is sufficiently
inexpensive relative to the costs of communication, then
parallelizing PSO with one particle per processor is pointless.
For example, if function evaluation is faster than sending a
network packet, then it is cheaper to perform all evaluations
locally. Parallelization becomes more favorable, even for
inexpensive objective functions, if each processor performs
PSO on a semi-independent subswarm.

Most attempts at subswarms for PSO have introduced
sophisticated procedures for migrating particles between
subswarms as with islands in genetic algorithms [16, 17],
but these approaches require centralized coordination that
increases communication and idleness. In contrast, the apiary
topology [13] achieves similar or better results using the
standard mechanism of swarm topology. Thus, communication
follows the same structure as ordinary parallel PSO, as
shown in the task-dependency graph in Figure 7. Likewise,
cooperative micro-PSO is well-suited to parallel swarms with
a similar communication structure [18]. Note that the number
of particles per subswarm and the number of iterations per
task determine the task granularity, so it is straightforward
to adapt these parameters according to the relative cost of
communication. If the topology between subswarms requires
k messages per subswarm, and if communication between
subswarms occurs every m iterations, then the average number
of messages per subswarm per iteration is k/m.

C. Synchronous and Asynchronous Parallel PSO

Asynchronous parallel PSO [19, 20] is a modification to the
standard algorithm which removes the synchronization point
at the end of each iteration. At each iteration of PSO, each

Timestep 1 Timestep 2 Timestep 3 Timestep 4

Fig. 7: Task-dependency graphs for parallel PSO with
subswarms The squares represent tasks, and the diamonds
represent function evaluations (with multiple particles and
iterations in each timestep).

(a) Synchronous parallel PSO (b) Asynchronous parallel PSO

Fig. 8: Task dependency diagrams for synchronous and
asynchronous parallel PSO with heterogeneous processors. In
this particular example, asynchronous parallel PSO performs
21 function evaluations in the same time that synchronous
parallel PSO performs 15 evaluations.

particle must update its neighborhood best. This calculation
requires the position and the result of the function evaluation
from each of its neighbors. Synchronous parallel PSO, which
exactly reproduces the computations of serial PSO, requires
that computation associated with a particle wait until the
results from the previous iteration are available from all of its
neighbors. However, in asynchronous parallel PSO, particles
iterate independently and communicate asynchronously. If
a particle is ready to update its neighborhood best but has
not received information about all of its neighbors, it may
use information from the previous iteration.1 Figure 8 shows
task dependency diagrams for synchronous and asynchronous
parallel PSO. Asynchronous iteration is particularly beneficial
in situations such as a cluster with heterogeneous processors,
an objective function with varying evaluation times, or a
cluster with a large number of processors.

There are a few slightly different variants of asynchronous
parallel PSO. In a partially asynchronous implementation,
particles might wait for some but not all neighbors to complete
before proceeding [21]. In some master-slave implementations,
particles never get more than one iteration ahead of others [19,

1Asynchronous parallel PSO has been compared to the “asynchronous
updates” variant of serial PSO [20]. However, serial PSO with asynchronous
updates differs from standard PSO in that particles use newer information,
but asynchronous parallel PSO differs from standard PSO in that particles
use older information.

3148

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

σ

Ti
m

e
pe

r
ite

ra
tio

n

95th percentile
median
5th percentile

(a) Asynchronous PSO (single task)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

σ

Ti
m

e
pe

r
ite

ra
tio

n

95th percentile
median
5th percentile

(b) Synchronous PSO with 50 processors

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

σ

Ti
m

e
pe

r
ite

ra
tio

n

95th percentile
median
5th percentile

(c) Synchronous PSO with 1000 processors

Fig. 9: Probability distributions of the time per iteration (i.e., maximum task time) for synchronous parallel PSO. Individual
task times are i.i.d. with a Gamma distribution of mean 1 and varying standard deviations.

20]. However, in a fully distributed implementation, particles
might never wait for information, and one particle could
complete many more iterations than another particle [12].

Synchronous and asynchronous parallel PSO are both
valuable approaches. The benefits of the synchronous PSO
include its simplicity, repeatability, and comparability with
standard PSO, which may be essential in research applications.
If the evaluation time varies significantly or if processors are
heterogeneous, then asynchronous parallel PSO may provide
a significant performance improvement over synchronous
parallel PSO [19, 20]. However, its slower communication can
make asynchronous parallel PSO require more iterations to
converge. When evaluation times are consistent and processors
are homogeneous, synchronous and asynchronous parallel
PSO are comparable with respect to time [21]. Choosing
between synchronous and asynchronous parallel PSO is
a tradeoff between maximizing the number of function
evaluations and having the location of the particles better
informed.

If the time for each task is i.i.d. with known distribution,
then we can find the distribution of the time per iteration of
synchronous parallel PSO. Specifically, let X1, X2, . . . , Xn

be i.i.d. random variables with c.d.f. F (x) and p.d.f. f(x)
which represent the number of seconds required to perform
a function evaluation and communicate the results for each
of n concurrent tasks. Then for synchronous parallel PSO,
the following iteration can begin after Y = max1≤i≤nXi

seconds. The distribution of Y is given by the c.d.f. G(y) =
Fn(y) and the p.d.f. g(y) = nFn−1(y)f(y). Thus, the
median time per iteration is F−1(2−

1
n) seconds.

This statistical result shows how the cost of synchronous
parallel PSO increases with the number of processors. We
illustrate this with the case where task times are Gamma
distributed with an expected value of 1 second and a standard
deviation of σ. Thus, using the inverse-scale parameterization
of the Gamma, Xi ∼ Gamma(1

σ2 ,
1
σ2). This distribution is

shown for varying values of σ in Figure 9a. For asynchronous
parallel PSO, this represents the time for each task and has
an expected value of 1. For synchronous parallel PSO, the
time required for each task is effectively lengthened by the

12864 25616 512 768
0

5

10

15

Number of Processors

A
ve

ra
ge

Ti
m

e
Pe

r
It

er
.

Synchronous
Asynchronous

Fig. 10: Average time per iteration as the number of processors
changes. Each function evaluation takes about 5 seconds with
very little variance in task times apart from communication.

need to wait for all other tasks in the same iteration. The
distribution over the slowest task time, maxXi, is shown
for 50 processors in Figure 9b and for 1000 processors in
Figure 9c with varying values of σ. Similar plots can be
made for any distribution with a known c.d.f. and can even
be approximated from a set of empirical samples.

In practice, there may be variance in task times even if
function evaluation times are homogeneous, and task times
can be longer for synchronous than for asynchronous parallel
PSO because communication is more expensive when all
processors are communicating at the same time. Figure 10
shows the average time per iteration of synchronous and
asynchronous parallel PSO for tasks with very little variance
in function evaluation times. At least for this particular
implementation of parallel PSO, the benefit of asynchronous
parallel PSO is even greater than might be expected.

While there are specific situations where it makes sense
to use synchronous parallel PSO, it is important for PSO
variants to be compatible with asynchronous iteration. If a
variant requires that all particles iterate in lockstep, then it
will always be inefficient on large clusters and with objective
functions with varying evaluation times.

3149

V. CONCLUSION

We have examined PSO in a parallel context, first by
considering how its performance scales independently of
communication, and second by considering the task inter-
actions and communication that it requires. Based on this
perspective, we have reviewed approaches to improve the
parallel performance of PSO. Swarms with topologies based
on sparse rings, random neighborhoods, and subswarms
provide a variety of flexible options for using communication
efficiently.

When comparing PSO variants from a parallel perspective,
evaluation must include two important results:
• First, the performance of PSO per iteration at different

numbers of processors indicates how well the algorithms
use function evaluations as the number of processors
scales.

• Second, the number and size of messages per particle per
iteration indicates the amount of communication required.
Furthermore, any communication beyond that required
by the PSO topology, such as centralized coordination,
must be identified.

Furthermore, designers should demonstrate that an algorithm
does not introduce any centralized bottlenecks or incompati-
bilities with distributed PSO and asynchronous iteration. All
of this information, combined with details about a particular
objective function and computational environment, determine
the parallel behavior of PSO variants.

In modern computational environments, parallel com-
putation is central to the evaluation of Particle Swarm
Optimization. Results that demonstrate an improvement only
for serial PSO are insufficient.

REFERENCES

[1] J. Riget and J. S. Vesterstrøm, “A diversity-guided particle
swarm optimizer—the ARPSO,” EVALife, Dept. of Computer
Science, University of Aarhus, Denmark, Tech. Rep., 2002.

[2] D. Bratton and J. Kennedy, “Defining a standard for particle
swarm optimization,” in Proc. IEEE Swarm Intelligence
Symposium, 2007.

[3] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction
to Parallel Computing, 2nd ed. Harlow, England: Addison-
Wesley, 2003.

[4] M. Clerc and J. Kennedy, “The particle swarm—explosion,
stability, and convergence in a multidimensional complex
space,” IEEE Transactions on Evolutionary Computation, vol. 6,
no. 1, 2002.

[5] R. Mendes, “Population topologies and their influence in
particle swarm performance,” Ph.D. dissertation, Universidade
do Minho, Guimaraes, Portugal, 2004.

[6] D. H. Wolpert and W. G. Macready, “No Free Lunch theo-
rems for optimization,” IEEE Transactions on Evolutionary
Computation, vol. 1, no. 1, 1997.

[7] D. Gies and Y. Rahmat-Samii, “Particle swarm optimization for
reconfigurable phase-differentiated array design,” Microwave
and Optical Technology Letters, vol. 38, no. 3, 2003.

[8] M. Belal and T. El-Ghazawi, “Parallel models for particle
swarm optimizers,” International Journal of Intelligent Com-
puting and Information Sciences, vol. 4, no. 1, 2004.

[9] J. Schutte, J. Reinbolt, B. Fregly, R. Haftka, and A. George,
“Parallel global optimization with the particle swarm algorithm,”

International Journal for Numerical Methods in Engineering,
vol. 61, no. 13, 2004.

[10] Y. Zhou and Y. Tan, “GPU-based parallel particle swarm
optimization,” in Evolutionary Computation, 2009. CEC’09.
IEEE Congress on, 2009.

[11] J. Li, X. Wang, R. He, and Z. Chi, “An efficient fine-grained
parallel genetic algorithm based on GPU-accelerated,” in
Network and Parallel Computing Workshops, 2007. NPC
Workshops. IFIP International Conference on, 2007.

[12] I. Scriven, A. Lewis, D. Ireland, and J. Lu, “Decentralised
distributed multiple objective particle swarm optimisation
using peer to peer networks,” in Proc. IEEE Congress on
Evolutionary Computation, 2008.

[13] A. McNabb and K. Seppi, “The apiary topology: Emergent
behavior in communities of particle swarms,” in Proc. Parallel
Problem Solving from Nature, 2012.

[14] M. Gardner, A. McNabb, and K. Seppi, “Speculative Evaluation
in Particle Swarm Optimization,” Parallel Problem Solving from
Nature, 2010.

[15] A. McNabb, M. Gardner, and K. Seppi, “An exploration of
topologies and communication in large particle swarms,” in
Proc. IEEE Congress on Evolutionary Computation, 2009, pp.
712–719.

[16] J. Liang and P. Suganthan, “Dynamic multi-swarm particle
swarm optimizer,” in Proc. IEEE Swarm Intelligence Sympo-
sium, 2005.

[17] J. Jordan, S. Helwig, and R. Wanka, “Social interaction in
particle swarm optimization, the ranked FIPS, and adaptive
multi-swarms,” in Proc. Conference on Genetic and Evolution-
ary Computation. ACM, 2008.

[18] K. E. Parsopoulos, “Parallel cooperative micro-particle swarm
optimization: A master–slave model,” Applied Soft Computing,
vol. 12, no. 11, 2012.

[19] G. Venter and J. Sobieszczanski-Sobieski, “A parallel particle
swarm optimization algorithm accelerated by asynchronous
evaluations,” in Proc. World Congress on Structural and
Multidisciplinary Optimization, 2005.

[20] B.-I. Koh, A. George, R. Haftka, and B. Fregly, “Parallel asyn-
chronous particle swarm optimization,” International Journal
of Numerical Methods in Engineering, vol. 67, 2006.

[21] I. Scriven, D. Ireland, A. Lewis, S. Mostaghim, and J. Branke,
“Asynchronous multiple objective particle swarm optimisation
in unreliable distributed environments,” in Proc. IEEE Congress
on Evolutionary Computation, 2008.

3150

