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Abstract—Social learning plays an important role in behav-
ior learning among social animals. Different from individual
(asocial) learning, social learning has the advantage of allowing
individuals to learn behaviors from others without the extra
costs of individual trial-and-error. Inspired by the natural social
learning phenomenon, we have transplanted the social learning
mechanism into particle swarm optimization (PSO) to develop a
social learning PSO (SL-PSO). Unlike classical PSO variants, the
SL-PSO is performed on a sorted swarm, and instead of merely
learning from historical best positions, the particles are able to
learn from anyone better (demonstrators) in the current swarm.
A key mechanism in the SL-PSO is the learning strategy, where
an imitator will learn from different demonstrators. However,
in our previous work, little discussion has been focused on
demonstrator selection, i.e., which demonstrators are to learn
from by the imitator. In this paper, based on the analysis of
the demonstrator selection in the SL-PSO, two demonstrator
selection strategies are proposed. Experimental results show that,
the proposed demonstrator selection strategies have significantly
enhanced the performance of the SL-PSO in comparison to five
representative PSO variants on a set of benchmark problems.

I. INTRODUCTION

Social learning, different from individual (asocial) learning,
has the advantage of allowing individuals to learn behaviors
from others without incurring the costs of individual trial
and error [1], which is able to accelerate learning rates [2],
especially when the target (behavior) to learn is complex. More
specifically, individual learning is a process of trial and error
whilst social learning is a process taking advantage of mech-
anisms such as imitation, enhancement and conditioning [3].

Among various social learning mechanisms [4]–[6], imi-
tation is considered to be the most distinctive one [7], be-
cause imitation, which operates across a whole community,
could lead to population level similarities of behaviors [8],
thus further triggering another significant mechanism, i.e., the
culture transmission [9], [10]. In social learning theory, culture
can be seen as the cumulative effect of countless processes
of inter-individual transmission through imitation [11], which
can be equally regarded as the global information shared by
the whole population in swarm intelligence algorithms. Such
global information, on the one hand, is a consequence of global
search, on the other hand, can provide instructions for the
whole population to move towards the global convergence.
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Fig. 1. The framework of the Social Learning Particle Swarm Optimizer
(SL-PSO).

Due to the above mentioned attractive properties, it is quite
natural to apply the social learning mechanisms to population-
based stochastic optimization. Recently, the social learning
mechanism has been transplanted into the particle swarm
optimization [12] to develop a social learning particle swarm
optimizer (SL-PSO) [13]. Unlike classical PSO variants, the
proposed SL-PSO is performed on a sorted swarm, and instead
of merely learning from historical best positions, the particles
are able to learn from anyone better (demonstrators) in the
current swarm. Due to the full contribution of the whole
swarm, the learning procedure is expected to become more
social. Experimental results have shown that the SL-PSO is
able to perform robustly on a wide range of 47 benchmark
functions, where the decision (search) space scales from 30-
dimensional to 1000-dimensions [13].

It can be seen from Fig. 1 that, apart from fitness evalu-
ations, the most important components in the framework of
the SL-PSO are demonstrator selection and behavior learning,
which operate to determine whom is to learn from and how
to learn, respectively. In the original SL-PSO [13], a detailed
description about the behavior learning is presented with a
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simple, random behavior selection strategy.
In this paper, the influence of the demonstrator selection on

the search performance of SL-PSO has been examined. To ad-
dress the weakness of the demonstrator selection strategy used
in the original SL-PSO, two new demonstrator selection strate-
gies based on different probability distributions are proposed
to enhance the search ability of the SL-PSO by achieving a
balance between convergence speed and population diversity.

This rest of this paper is organized as follows. In Section
II, the original SL-PSO is introduced with the proposed
demonstrator selection strategies. Experimental results on the
proposed demonstrator selection strategies are presented with
the comparisons to the original SL-PSO and five PSO variants
in Section III. Section IV draws the conclusion.

II. DEMONSTRATOR SELECTION IN THE SL-PSO

As introduced in Section I, the most important components
in the framework of the SL-PSO are demonstrator selection
and behavior learning. In this section, details of the behavior
learning are presented first, and then, based on a discussion of
the original demonstrator selection strategy, two new demon-
strator selection strategies are proposed.

A. Details of the behavior learning

According to the social learning theory, imitators can learn
behaviors from different demonstrators [?] as follows:

Xi,j(t+1) =

{
Xi,j(t) + ∆Xi,j(t+ 1), if pi(t) ≤ PL

i

Xi,j(t), otherwise
(1)

where Xi,j(t) is j-th dimension of particle i’s behavior
vector in generation t, with i ∈ {1, 2, 3, ...,m} and j ∈
{1, 2, 3, ..., n}, ∆Xi,j(t + 1) being the behavior correction.
Taking into account the fact that not all particles are willing to
learn from others, a learning probability (PL

i ) for each particle
i has been defined. As a result, particle i will learn (correct
its behavior) only if a randomly generated number pi satisfies
0 ≤ pi(t) ≤ PL

i ≤ 1.
Specifically, the j-th dimension of particle i’s behavior

vector is corrected as follows in generation t+ 1:

∆Xi,j(t+ 1) = r1∆Xi,j(t) + r2Ii,j(t) + r3ϵ× Ci,j(t),
(2)

where, {
Ii,j(t) = Xk,j(t)−Xi,j(t),

Ci,j(t) = X̄j(t)−Xi,j(t).
(3)

where r1, r2 and r3 are three random numbers uniformly
distributed in [0, 1], and k is the index of the selected demon-
strator. From the above equations, we can see that the behav-
ior correction ∆Xi,j(t + 1) consists of three parts, namely,
learning inertia ∆Xi,j(t), which is the behavior correction in
the previous generation, imitation Ii,j(t) and social influence
ϵ× Ci,j(t), where ϵ is termed social influence factor.

Among the three behavior correction components, imitation
Ii,j(t) is the most important social learning element that
reflects the difference between the imitator’s behavior Xi,j(t)

and the demonstrator’s behavior Xk,j(t), and Ci,j(t) is the
difference between behavior Xi,j(t) and the mean behavior
X̄j(t) of all particles (X̄j(t) =

∑m
i=1

Xi,j

m ), which can be seen
as the swarm-level social influence.

In the SL-PSO, there are three parameters that need to
be defined, i.e., the swarm size m, the learning probability
PL
i , and the social influence factor ϵ. A good scalability

should be one of the most important criteria in respect of
one optimizer’s robustness, because the search dimensionality
of real-world problem, which are problem dependent, could
vary a lot. Unfortunately, PSO has been shown to have poor
scalability in comparison with some other widely used evolu-
tionary algorithms [14]. Therefore, in the previous work, these
parameters are adaptively related to the search dimensionality
n as follows:

m =M + ⌊ n
10
⌋, (4)

PL
i = (1− i− 1

m
)log(
√
⌈ n
M ⌉). (5)

ϵ =
n

M
× 0.01, (6)

where M is the base population size for the SL-PSO to work
properly. Typically, M = 100 is recommended.

B. Demonstrator selection

Worst Best

1 2 ... i i+2 ... m

Sorted Swarm

Demonstrators of

imitator i

i+1

Fig. 2. The demonstrator selection strategy in the original SL-PSO.

In the original SL-PSO, before demonstrator selection, the
swarm is first sorted (in the ascending order) according to the
fitness values. Consequently, for the i-th particle (imitator),
demonstrators are randomly chosen from the (i+1)-th particle
to the m-th particle, where m is the swarm size, refer to Fig.
2. Accordingly, the probability that a particle is selected as a
demonstrator will be:

Pr(k|i) = 1

m− i
, (7)

where k is the demonstrator index, satisfying i+ 1 ≤ k ≤ m.
We can see that in this strategy, each demonstrator k

for particle i has the same probability to be selected, in-
dependent of its fitness. This selection strategy has been
shown to work effectively. However, a potential weakness in
this selection strategy is that the better demonstrators have
the same probability to be selected as the relatively weaker
demonstrators, which may lead to a slow convergence. To
address such a potential weakness, the most straightforward
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idea is to relate the selection probability to the demonstrators’
fitness values, i.e., exerting different selection pressures on
different demonstrators accordingly. Following this line, two
selection strategies are proposed, where one is based on an
uniform distribution, and the other one is based on a Gaussian
distribution.

Selected Demonstrators

All Demonstrators

( )
i
q

Fig. 3. The proposed Uniform Selection strategy. For the i-th particle, a
number of m− qi(λ) + 1 demonstrators are selected.

1) The Uniform Selection (US): To relate the selection
probability to the demonstrators’ fitness values, one simple
measure is to directly remove the first several less fitter
demonstrators, thus increasing the selection probabilities of
the following fitter ones. Based on this idea, an Uniform
Selection strategy is proposed, where the indexes of the
selected demonstrator follow a uniform distribution defined
as:

Pr(k|λ, i) = 1

m− qi(λ)
, (8)

with
qi(λ) = m− ⌈λ× (m− i− 1)⌉, (9)

where i is the imitator index, k is the corresponding demon-
strator index, and λ is a parameter that controls the number
of demonstrators that can be selected, refer to Fig. 3.

One extreme case in this selection strategy is when λ = 0,
where all imitators learn from the best demonstrator (m-th
particle). By contrast, when λ = 1, this selection strategy will
become the same as the one in the original SL-PSO.
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Fig. 4. The corresponding demonstrator selection probabilities (Gaussian
distribution) with different imitator i = 10, i = 50 and i = 100. Population
size m = 100 and control parameter θ = 0.5 is used.

2) The Gaussian Selection (GS): Instead of entirely remov-
ing some worse fitting demonstrators, an alternative method
is to reduce their selection probabilities. Naturally, a Gaussian
distribution can well meet such a requirement. In the SL-PSO,
since the population is already sorted according to the fitness
values, refer to Fig. 2, the Gaussian distribution can be directly
related to the demonstrator indexes as follows:

Pr(k|θ, i) = 1

σi(θ)
√
2π
e
− (k−m)

2

2σi(θ)
2 , (10)

with
σi(θ) = θ × (m− i), (11)

where i is the imitator index and k is the corresponding
demonstrator index, satisfying i + 1 ≤ k ≤ m; θ is a
predefined parameter that controls the size of σi. A more
intuitive observation can be referred to Fig. 4.

It should be noted that, since the Gaussian distribution is
defined in ℝ, theoretically, the sampled values are continuously
distributed. However, in practice, to ensure the feasibility of
the randomly sampled demonstrator indexes, only rounded
discrete values in {i+ 1, i+ 2, ...,m} are used.

III. EXPERIMENTAL RESULTS

To examine the performance of the proposed demonstrator
selection strategies, a group of numerical experiments are
conducted on 12 widely used benchmark functions [15], refer
to Tables I, where the first 5 are uni-modal functions and
the rest are multi-modal functions. All test functions are 30-
dimensional and the results are obtained from 30 independent
runs. For each single run, the maximum number of fitness
evaluations (FEs) is set to 200,000 as the terminal condition.

Firstly, in order to investigate the settings of the control
parameters λ and θ in the Uniform Selection (US) strategy
and Gaussian Selection (GS) strategy , respectively, a group
of λ and θ values have been tested. Thereafter, to examine
the effectiveness of the US and GS, further comparisons have
been made with the original SL-PSO and 5 representative PSO
variants.

All experiments have been conducted on a PC with an
Intel Core i3-2328 2.2GHz CPU and Microsoft Windows 7
Enterprise SP1 64-bit operating system, and the programmes
are implemented in Matlab 2010a. It should also be noted
that, apart from the parameters introduced in the demonstrator
selection strategies, no other specific parameter setting is
needed for the SL-PSO to operate.

A. Parameter setting of λ in the US strategy

To adopt the Uniform Selection strategy, it is essential to
find a proper setting for λ. To investigate the parameter setting
of λ, five different values (λ = 0.1, 0.3, 0.5, 0.7, 0.9) are tested
on the 12 benchmark functions using SL-PSO with the US
strategy (denoted as SL-PSO-US).

As shown in Table II, the overall best results are obtained
with the setting λ = 0.7. In comparison, the best results on
f1 and f2 are obtained with λ = 0.1, which is the smallest λ
value. It seems that the performance of SL-PSO on f1 and f2
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TABLE I
BENCHMARK TEST FUNCTIONS USED IN THE EXPERIMENTS

Name Function Search range

Sphere f1(X) =
n∑

i=1

x2

i [−100, 100]n

Schwefel 2.22 f2(X) =
n∑

i=1

|xi|+
n∏

i=1

xi [−10, 10]n

Schwefel 1.2 f3(X) =
n∑

i=1

(
i∑

j=1

xj)
2 [−100, 100]n

Schwefel 2.21 f4(X) = max |xi, i ≤ i ≤ n| [−100, 100]n

Rosenbrock f5(X) =
n−1∑
i=1

(100(x2

i − xi+1)
2 + (xi − 1)2) [−30, 30]n

Step f6(X) =
n∑

i=1

⌊xi + 0.5⌋2 [−100, 100]n

Schwefel f7(X) = 418.9829 · n+
n∑

i=1

−xi · sin(
√

|xi|) [−500, 500]n

Rastrigin f8(X) =
n∑

i=1

(x2

i − 10 cos(2πxi) + 10) [−5.12, 5.12]n

Ackley f9(X) = −20 exp(−0.2

√
1

n

n∑
i=1

x2

i )− exp( 1

n

n∑
i=1

cos(2πxi)) + 20 + e [−32, 32]n

Griewank f10(X) =
n∑

i=1

x2

i
4000

−
n∏

i=1

cos( xi√
i
) + 1 [−600, 600]n

Penalized 1

f11(X) =
π

n

{
10sin2(πy1) +

n−1∑
i=1

(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2

}

+
n∑

i=1

u(xi, 10, 100, 4),

y =1 +
1

4
(xi + 1)

[−50, 50]n

Penalized 2
f12(X) =0.1

{
sin2(3πx1) +

n−1∑
i=1

(xi − 1)2[1 + sin2(3πxi+1)] + (xn − 1)2[1 + sin2(2πxn)]

}

+
n∑

i=1

u(xi, 5, 100, 4)

[−50, 50]n

In f11 and f12, u(xj , a, k,m) =




k(xj − a)m, xj > a

0, −a ≤ xj ≤ a

k(−xj − a)m, xj < −a

All functions are scalable to the search dimension denoted by n.
The global optimum is 0 for all functions.

deteriorates with the increase of λ. This is because the smaller
a λ is, the less diverse a population will be, and consequently a
faster convergence can be achieved, so that the performance on
simple uni-modal functions like f1 and f2 can be considerably
improved given limited number of fitness evaluations.

However, the drawback of a too small λ can also be reflected
from the results on multi-modal functions (f6 to f12) or even
the difficult uni-modal functions (f3 to f5): on the one hand,
SL-PSO tends to be trapped into local optima (e.g., f7 and
f8); on the other hand, the performance tends to be unstable
(e.g., f10 and f12). Therefore, we suggest that the settings of
λ not be too small, and a range λ ∈ (0.5, 1) is recommended.

B. Parameter setting of θ in the GS strategy

Similar to the parameter λ in the Uniform Selection strategy,
different θ values will cause different selection probability
distributions, thus leading to different search behaviors of
the SL-PSO. To investigate the parameter setting of θ, five
different values (θ = 0.2, 0.3, 0.4, 0.5, 0.6) are tested on the

12 benchmark functions using SL-PSO with the GS strategy
(denoted as SL-PSO-GS).

As shown in Table II, the overall best results are obtained
with the setting θ = 0.4. In comparison, the best results on
f1 and f2 are obtained with θ = 0.2, which is the smallest
θ value. Similar to the patterns shown in the results obtained
with the Uniform Selection strategy, with the increase of θ,
SL-PSO’s performance on simple uni-modal functions (f1 and
f2) shows deterioration, but the performance on more difficult
functions (f3 to f12) becomes better.

From the average ranks of the overall results, it can be seen
that the differences between the results obtained by different
θ settings are not as significant as the results obtained by
different λ settings. Normally, the performance on multi-modal
functions are closely related to the population diversity. A
Gaussian distribution can guarantee a more widely spreading
selection range covering more demonstrators, such that more
population diversity can be maintained; by contrast, a uniform
distribution is only able to cover some of the demonstrators,
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TABLE II
THE STATISTICAL RESULTS AND THE RANKS OF OPTIMIZATION ON THE TEST FUNCTIONS USING SL-PSO WITH DIFFERENT λ AND θ VALUES OF THE

UNIFORM SELECTION STRATEGY (SL-PSO-US) AND THE GAUSSIAN SELECTION STRATEGY (SL-PSO-GS) RESPECTIVELY. THE BEST MEAN RESULTS
ARE HIGHLIGHTED.

The Uniform Selection Strategy The Gaussian Selection Strategy
λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 λ = 0.6

f1

Mean 3.47E-150 5.65E-133 4.52E-117 3.17E-103 1.27E-90 1.14E-135 1.01E-121 6.58E-109 3.14E-95 5.53E-83
Best 2.46E-151 3.04E-133 1.51E-117 1.21E-104 3.65E-91 6.45E-137 2.32E-122 1.84E-110 2.64E-96 5.69E-84
Dev 3.99E-150 4.16E-133 3.94E-117 2.96E-103 1.28E-90 1.52E-135 9.25E-122 5.88E-109 2.75E-95 6.02E-83
Rank 1 2 3 4 5 1 2 3 4 5

f2

Mean 9.13E-78 2.55E-68 2.55E-60 3.11E-53 7.87E-47 3.46E-70 5.46E-63 2.78E-56 8.21E-50 1.31E-43
Best 1.60E-78 7.41E-69 9.68E-61 1.38E-53 3.56E-47 1.05E-70 2.42E-63 9.34E-57 2.83E-50 1.74E-44
Dev 9.10E-78 1.90E-68 1.30E-60 2.97E-53 4.83E-47 2.21E-70 4.49E-63 3.72E-56 5.36E-50 1.37E-43
Rank 1 2 3 4 5 1 2 3 4 5

f3

Mean 6.37E+02 6.19E-01 1.52E-06 3.09E-07 2.63E-06 1.11E-04 1.04E-06 2.23E-08 2.45E-07 4.37E-05
Best 2.28E+02 2.24E-03 6.54E-07 1.55E-08 5.06E-07 1.71E-06 4.26E-08 2.94E-09 7.36E-09 1.24E-05
Dev 2.31E+02 1.23E+00 1.34E-06 1.90E-07 1.39E-06 1.74E-04 1.76E-06 2.89E-08 4.51E-07 4.09E-05
Rank 5 4 2 1 3 5 3 1 2 4

f4

Mean 6.89E+00 9.91E-02 3.45E-04 3.34E-30 2.19E-25 3.57E-01 4.31E-02 1.86E-31 2.06E-27 1.76E-22
Best 5.30E+00 3.50E-03 3.91E-35 7.28E-31 1.17E-25 8.13E-03 1.76E-15 4.31E-32 3.44E-28 1.01E-22
Dev 1.36E+00 1.02E-01 7.70E-04 2.20E-30 1.62E-25 5.77E-01 9.28E-02 1.65E-31 1.36E-27 6.84E-23
Rank 5 4 3 1 2 5 4 1 2 3

f5

Mean 2.75E+01 4.52E+01 1.86E+01 1.94E+01 3.04E+01 3.30E+01 1.71E+01 1.80E+01 6.93E+01 4.22E+01
Best 1.61E+01 1.93E+01 1.82E+01 1.92E+01 1.83E+01 1.70E+01 1.68E+01 1.77E+01 1.84E+01 1.77E+01
Dev 9.15E+00 3.43E+01 3.47E-01 1.30E-01 2.40E+01 3.35E+01 3.44E-01 2.49E-01 5.01E+01 3.24E+01
Rank 4 5 1 2 3 3 1 2 5 4

f6

Mean 6.00E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Dev 5.48E-01 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 5 1 1 1 1 1 1 1 1 1

f7

Mean 2.45E+03 1.41E+03 1.69E+03 1.23E+03 9.95E+02 2.07E+03 1.69E+03 1.54E+03 1.47E+03 1.51E+03
Best 1.78E+03 9.28E+02 1.42E+03 8.29E+02 7.11E+02 1.24E+03 1.19E+03 9.28E+02 9.48E+02 1.30E+03
Dev 4.85E+02 4.96E+02 3.93E+02 2.44E+02 2.15E+02 6.87E+02 3.09E+02 4.58E+02 4.26E+02 1.29E+02
Rank 5 4 3 2 1 5 4 3 1 2

f8

Mean 1.97E+01 1.03E+01 6.96E+00 6.37E+00 6.77E+00 1.45E+01 1.51E+01 1.17E+01 1.21E+01 9.55E+00
Best 1.59E+01 7.96E+00 4.97E+00 3.98E+00 3.98E+00 1.19E+01 1.39E+01 1.09E+01 8.95E+00 7.96E+00
Dev 3.61E+00 2.29E+00 1.86E+00 2.29E+00 1.91E+00 1.81E+00 1.09E+00 8.32E-01 2.58E+00 1.51E+00
Rank 5 4 3 1 2 4 5 2 3 1

f9

Mean 1.19E-14 7.64E-15 6.22E-15 6.22E-15 5.51E-15 6.22E-15 6.22E-15 5.51E-15 5.51E-15 5.51E-15
Best 6.22E-15 6.22E-15 6.22E-15 6.22E-15 2.66E-15 6.22E-15 6.22E-15 2.66E-15 2.66E-15 2.66E-15
Dev 3.18E-15 3.18E-15 0.00E+00 0.00E+00 1.59E-15 0.00E+00 0.00E+00 1.59E-15 1.59E-15 1.59E-15
Rank 5 4 2 2 1 4 4 1 1 1

f10

Mean 7.38E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Dev 1.28E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 5 1 1 1 1 1 1 1 1 1

f11

Mean 2.07E-02 1.57E-32 1.57E-32 1.57E-32 1.57E-32 2.07E-02 1.57E-32 1.57E-32 1.57E-32 1.57E-32
Best 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32
Dev 4.64E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.64E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 5 1 1 1 1 5 1 1 1 1

f12

Mean 4.39E-03 3.30E-03 2.20E-03 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32
Best 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32
Dev 6.02E-03 5.31E-03 4.91E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Rank 5 4 3 1 1 1 1 1 1 1

Ave. Rank 4.25 3 2.2 1.6 2 3 2.4 1.7 2.2 2.4

thus causing some loss of population diversity. Therefore, the
Gaussian Selection strategy shows more stable performance,
regardless of the small differences of θ values.

C. Comparison with PSO variants

In this section, the SL-PSO using the proposed demonstrator
selection strategies is compared with the original SL-PSO and
five representative PSO variants, including the global version
PSO (GPSO) [16], the local version PSO (LPSO) [17], the
fully informed PSO (FIPS) [18], the dynamic multi-swarm
PSO (DMS-PSO) [19] and the comprehensive learning PSO
(CLPSO) [20]. The parameter settings for these PSO variants

TABLE III
PARAMETER SETTINGS FOR PSO VARIANTS

Algorithm Parameter Settings
GPSO ω = 0.9 0.4, c1 = c2 = 2.0
LPSO ω = 0.9 0.4, c1 = c2 = 2.0
FIPS χ = 0.729,

∑
ci = 4.1

DMS-PSO ω = 0.729, c1 = c2 = 1.49445,m = 3, R = 15
CLPSO ω = 0.9 0.7, c1 = c2 = 1.49445

are summarized in Table III. Empirical settings of λ = 0.7 and
θ = 0.4 are used in the two proposed demonstrator selection
strategies respectively.
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Fig. 5. The convergence profiles of the compared algorithms
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TABLE IV
THE STATISTICAL RESULTS AND THE RANKS OF OPTIMIZATION ON THE TEST FUNCTIONS USING THE UNIFORM SELECTION STRATEGY (SL-PSO-US)

AND THE GAUSSIAN SELECTION STRATEGY (SL-PSO-GS), IN COMPARISON WITH THE ORIGINAL SL-PSO AND PSO VARIANTS. THE BEST MEAN
RESULTS ARE HIGHLIGHTED.

SL-PSO-US SL-PSO-GS SL-PSO GPSO LPSO FIPS DMS-PSO CLPSO

f1

Mean 3.2E-103 6.6E-109 4.24E-90 1.25E-61 8.48E-35 6.20E-70 3.30E-14 4.76E-19
Best 1.2E-104 1.8E-110 3.74E-91 1.88E-64 3.40E-40 5.44E-71 3.32E-20 2.01E-19
Dev 3E-103 5.9E-109 5.26E-90 2.82E-61 2.85E-34 1.44E-69 1.27E-13 1.92E-19
Rank 2 1 3 5 6 4 8 7

f2

Mean 3.11E-53 2.78E-56 1.5E-46 7.33E+00 6.67E-01 1.13E-38 8.48E-11 7.54E-12
Best 1.38E-53 9.34E-57 1.02E-46 4.46E-36 3.16E-25 3.94E-39 1.66E-13 2.44E-12
Dev 2.97E-53 3.72E-56 5.34E-47 1.39E+01 2.58E+00 5.70E-39 1.84E-10 2.50E-12
Rank 2 1 3 8 7 4 6 5

f3

Mean 3.09E-07 2.23E-08 4.66E-07 4.22E+03 3.65E-01 1.21E+00 9.79E+01 1.13E+03
Best 1.55E-08 2.94E-09 1.7E-07 3.24E-08 3.97E-02 3.89E-01 2.97E+01 6.68E+02
Dev 1.9E-07 2.89E-08 2.48E-07 5.08E+03 3.83E-01 6.59E-01 7.31E+01 2.89E+02
Rank 2 1 3 8 4 5 6 7

f4

Mean 3.34E-30 1.86E-31 1.17E-24 8.49E-07 4.42E-05 2.37E+00 1.90E+00 4.31E+00
Best 7.28E-31 4.31E-32 4.2E-25 3.20E-08 1.37E-05 6.87E-01 8.17E-01 3.15E+00
Dev 2.2E-30 1.65E-31 8.37E-25 1.01E-06 2.32E-05 1.17E+00 7.85E-01 6.84E-01
Rank 2 1 3 4 5 7 6 8

f5

Mean 1.94E+01 1.80E+01 2.15E+01 6.05E+03 5.18E+01 3.53E+01 5.60E+01 9.28E+00
Best 1.92E+01 1.77E+01 1.86E+01 2.17E-01 4.11E+00 1.11E+01 2.88E-02 9.35E-01
Dev 1.30E-01 2.49E-01 3.41E+00 2.32E+04 3.68E+01 2.71E+01 3.28E+01 1.03E+01
Rank 3 2 4 8 6 5 7 1

f6

Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.33E-01 0.00E+00
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Dev 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.15E-01 0.00E+00
Rank 1 1 1 1 1 1 8 1

f7

Mean 1.23E+03 1.54E+03 1.50E+03 5.62E+03 3.07E+03 2.98E+03 5.74E-08 6.06E-13
Best 8.29E+02 9.28E+02 1.40E+03 3.08E+03 2.02E+03 1.66E+03 5.71E-08 0.00E+00
Dev 2.44E+02 4.58E+02 9.10E+01 2.19E+03 7.80E+02 7.87E+02 6.02E-10 8.88E-13
Rank 3 5 4 8 7 6 2 1

f8

Mean 6.37E+00 1.17E+01 1.55E+01 4.65E+01 5.02E+01 3.86E+01 2.70E-13 5.83E-09
Best 3.98E+00 1.09E+01 1.19E+01 1.49E+01 1.01E+01 1.90E+01 0.00E+00 1.54E-09
Dev 2.29E+00 8.32E-01 3.19E+00 2.55E+01 2.25E+01 1.04E+01 8.41E-13 5.02E-09
Rank 3 4 5 7 8 6 1 2

f9

Mean 6.22E-15 5.51E-15 5.51E-15 1.36E-14 7.67E+00 6.69E-15 6.11E-09 2.99E-10
Best 6.22E-15 2.66E-15 2.66E-15 6.22E-15 6.22E-15 6.22E-15 3.13E-11 1.16E-10
Dev 0.00E+00 1.59E-15 1.59E-15 4.34E-15 9.79E+00 1.83E-15 1.89E-08 9.47E-11
Rank 3 1 1 5 8 4 7 6

f10

Mean 0.00E+00 0.00E+00 0.00E+00 1.21E-02 2.46E-03 2.07E-13 1.76E-02 8.40E-12
Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.00E-15
Dev 0.00E+00 0.00E+00 0.00E+00 1.58E-02 6.64E-03 5.03E-13 2.56E-02 1.45E-11
Rank 1 1 1 7 6 4 8 5

f11

Mean 1.57E-32 1.57E-32 1.57E-32 6.91E-03 1.57E-32 1.57E-32 9.32E-15 3.61E-20
Best 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.57E-32 1.71E-22 1.57E-20
Dev 0.00E+00 0.00E+00 0.00E+00 2.68E-02 2.83E-48 2.83E-48 3.61E-14 1.87E-20
Rank 1 1 1 8 1 1 7 6

f12

Mean 1.35E-32 1.35E-32 1.35E-32 7.32E-04 7.32E-04 1.35E-32 1.46E-03 3.31E-19
Best 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 2.32E-19 1.84E-19
Dev 0.00E+00 0.00E+00 0.00E+00 2.84E-03 2.84E-03 2.83E-48 3.87E-03 8.67E-20
Rank 1 1 1 6 6 1 8 5

Ave. Rank 2 1.6 2.5 6.3 5.4 4 6.2 4.5

The statistical results are summarized in Table IV. It can be
seen that the SL-PSO with the proposed demonstrator selection
strategies shows best overall performance, in comparison with
the original SL-PSO and 5 PSO variants. Although the DMS-
PSO and CLPSO performs best on f8 and f7, respectively, the
SL-PSO-GS performs best on 9 out of 12 functions. With the
proposed demonstrator selection strategies, it can be seen that,
the SL-PSO shows fast convergence on uni-modal functions;
on the other hand, the SL-PSO maintains stable performance
on multi-modal functions, which can be further confirmed
from the convergence profiles shown in Fig. 5.

IV. CONCLUSIONS

This paper has introduced two demonstrator selection s-
trategies in the social learning particle swarm optimizer (SL-
PSO). Experiments have been conducted on 12 widely used
benchmark functions in comparison with the original SL-PSO
and 5 representative PSO variants. The results have shown
that, with the proposed demonstrator selection strategies, the
performance of SL-PSO has been enhanced.

In future work, more studies on different demonstrator
selection strategies might be of interest, and it should also
be meaningful to investigate the influence of different demon-
strator topological structures on the performance of SL-PSO.
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