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Abstract— Most recently, a DE framework with neighbor-
hood and direction information (NDi-DE) was proposed to
exploit the information of population and was demonstrated to
be effective for most of the DE variants. However, the perfor-
mance of NDi-DE heavily depends on the selection of direction
information. In order to alleviate this problem, two adaptive op-
erator selection (AOS) mechanisms are introduced to adaptively
select the most suitable type of direction information for the
specific mutation strategy during the evolutionary process. The
new method is named as adaptive direction information based
NDi-DE (aNDi-DE). In this way, the good balance between
exploration and exploitation can be dynamically achieved. To
evaluate the effectiveness of aNDi-DE, the proposed method
is applied to the well-known DE/rand/1 algorithm. Through
the experimental study, we show that aNDi-DE can effectively
improve the efficiency and robustness of NDi-DE.

I. INTRODUCTION

D IFFERENTIAL EVOLUTION (DE), proposed by Storn
and Price [1], is a simple and powerful evolutionary

algorithm for global optimization over continuous space. It
has many attractive characteristics, such as compact structure,
ease to use, speedness and robustness. Recently, DE has
been extended for handling multiobjective, constrained, large
scale, dynamic and uncertain optimization problems [2]. The
rapidly growing popularity of DE has made it be successfully
used in various scientific and engineering fields [2][3], such
as chemical engineering, engineering design, pattern recog-
nition and so on.

When DE is applied to a given optimization problem,
there are two main factors which significantly affect the
behavior of DE. One is the control parameters (i.e., pop-
ulation size NP , mutation scaling factor F and crossover
rate Cr), and the other is the evolutionary operators (i.e.,
mutation, crossover and selection). During the last decade,
there are many researchers working on the improvement
of DE. According to [4], these modern DE variants can
be divided into two categories, DE integrating an extra
component and modified structures of DE. Modifications on
DE in these DE variants mainly focus on introducing the
self-adaptive strategies for the control parameters [5][6][7],
devising the new mutation operators [8][9][10], developing
the ensemble strategies [5], proposing the hybrid DE with
other optimization algorithms [11] and population topology
(multi or parallel population)[12], and so on.
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Distinct from other evolutionary algorithms (EAs), the
salient feature of DE is its mutation mechanism. However, in
most of the DE algorithms, the neighborhood and direction
information of population are not fully and simultaneously
exploited. In order to alleviate this drawback and enhance the
performance of DE, a DE framework with neighborhood and
direction information (NDi-DE) [9] was proposed, with two
novel operators: the neighbor guided selection scheme (NGS)
and direction induced mutation strategy (DIM). Although
NDi-DE is demonstrated to be effective for most of the DE
variants, the performance of NDi-DE heavily depends on the
selection of direction information for the specific mutation
strategy. Furthermore, although the guideline for selecting
the type of direction information is developed in [9], the
application of NDi-DE to the new DE algorithm is still a dif-
ficult problem. In view of this limitation, a novel framework,
adaptive direction information based NDi-DE (aNDi-DE), is
developed to enhance the performance of DE and is expected
to be more robustness than NDi-DE. Specifically, aNDi-DE
employs the adaptive operator selection (AOS) techniques,
named Probability Matching (PM) [13] and Adaptive Pursuit
(AP) [14], to automatically select the most suitable type
of direction information for the specific mutation strategy
during the evolutionary process. In this way, the good balance
between exploration and exploitation of aNDi-DE can be
dynamically achieved.

To evaluate the effectiveness of the proposed method,
aNDi-DE is applied to a famous and widely used DE
algorithm, DE/rand/1. Through the extensive experimental
study, we show that aNDi-DE is able to adaptively select the
most suitable type of direction information for DE/rand/1
during the evolutionary process. The high performance of
aNDi-DE is also confirmed by comparing with the DE and
NDi-DE algorithms.

The rest of this paper is organized as follows. In Section
II, the related works are briefly reviewed. In Section III, the
proposed aNDi-DE is presented in detail. Next, the results of
an experimental analysis are reported in Section IV. Finally,
the conclusions are drawn in Section V.

II. RELATED WORK

In this section, the original DE algorithm is introduced
firstly. Then, the related work to NDi-DE is reviewed.

A. DE

DE is for solving the numerical optimization problem
[1]. Without loss of generality, we consider the optimization
problem to be minimized is f(X), X ∈ S, where S ⊆ RD
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and D is the dimension of the decision variables. DE evolves
a population of NP vectors representing the candidate so-
lutions by the mutation, crossover and selection operators.
Each vector is donated as Xi,G = [x1,i,G, x2,i,G, ..., xD,i,G],
where i = 1, 2, ..., NP , NP is the size of the population and
G is the number of current iteration.

Initialization: In DE, the initial population is generated by
uniformly randomizing within the search space constrained
by the prescribed minimum and maximum bounds. The jth
parameter of Xi,G is initialized as follows:

xj,i,G = Lj + rand(0, 1) · (Uj − Lj) (1)

wherer rand(0, 1) represents a uniformly distributed random
number within the range [0, 1] and Lj and Uj represents the
lower and upper bounds of the jth variable respectively.

Mutation: After initialization, DE generates a mutant vec-
tor Vi,G with respect to each individual Xi,G (called target
vector) in the current population by the mutation strategy.
The general notation for the mutation strategies is “DE/x/y”,
where DE stands for the differential evolution algorithm, x
represents the vector to be perturbed and y represents the
number of difference vectors considered for perturbation of
x. There are various mutation strategies well-known and
widely used in the literature, which are listed as follows:
• DE/rand/1

Vi,G = Xr1,G + F · (Xr2,G −Xr3,G) (2)

• DE/best/1

Vi,G = Xbest,G + F · (Xr1,G −Xr2,G) (3)

• DE/rand/2

Vi,G = Xr1,G+F ·(Xr2,G−Xr3,G)+F ·(Xr4,G−Xr5,G)
(4)

• DE/current-to-best/1

Vi,G = Xi,G+F ·(Xbest,G−Xi,G)+F ·(Xr1,G−Xr2,G)
(5)

More details of them can be found in [1] and [2]. In order
to have a better insight into these strategies, a general formula
is introduced as follows [15]:

Vi,G = �i,G + F · �i,G (6)

where F is called the mutation scaling factor, �i,G is the base
vector and �i,G is the difference vector. In Eq. (6), �i,G can
be randomly or locally selected, and �i,G can be constructed
in a random or directed manner [15].

Crossover: The crossover operator is applied to each pair
of the target vector Xi,G and the corresponding mutant vector
Vi,G to generate a trial vector Ui,G. There are two types
of crossover scheme: binomial or exponential. The binomial
crossover is widely used in the implementation of DE, which
is outlined as follows:

uj,i,G =

{

vj,i,G ifrand(0, 1) ≤ Crorj = jrand;
xj,i,G otherwise. (7)

Selection: Following crossover, DE uses a one-to-one
selection operator to select the better one between Xi,G and
Ui,G to survive into the the next generation. The selection
operator is described as follows:

Xi,G+1 =

{

Ui,G iff(Ui,G) ≤ f(Xi,G);
Xi,G otherwise. (8)

B. NDi-DE

In order to fully and simultaneously exploit the neigh-
borhood and direction information of population, NDi-DE
synergizes two operators, NGS for selecting parents during
mutation and DIM for guiding the mutation[9].

NGS: To utilize the neighborhood information of popula-
tion to select the parents for mutation, NGS uses a probability
selection operator based on the Euclidean distance. Specif-
ically, the probability of each candidate vector is inversely
proportional to its Euclidean distance from the target vector,
which is calculated as follows:

Proi,j,G = 1− ∥ Xi,G, Xj,G ∥
DIS

(9)

where ||a, b|| is the Euclidean distance between a and b, and
DIS is the sum distance of all the individuals from Xi,G. In
addition, to enhance the ability of exploring the search space
around the promising vectors, the tournament best process is
employed to decide the base vector from the selected vectors.

DIM: Based on the direction information with two differ-
ent sources, DIM introduces three types of direction informa-
tion, i.e., Directional Attraction (DA), Directional Repulsion
(DR) and Directional Convergence (DC), for different muta-
tion strategies to achieve a good tradeoff between exploration
and exploitation (TEE). These two different sources are
the best near-neighbor vector (denoted as Xatt i,G), and the
worst near-neighbor vector (denoted as Xrep i,G), which are
determined in Eq. (10) and Eq. (11), respectively.

Xatt i,G = argmax
Xj,G,j=1,...,NP∧j ̸=i

f(Xi,G)− f(Xj,G)

∥ Xi,G, Xj,G ∥
(10)

Xrep i,G = argmax
Xj,G,j=1,...,NP∧j ̸=i

f(Xj,G)− f(Xi,G)

∥ Xi,G, Xj,G ∥
(11)

With the different sources of near-neighbor, the three types of
direction information play different roles to guide the search
through the mutation strategy. That is, DIM adopts a new
direction-inducing scheme to incorporate the defined direc-
tion information into the DE mutation strategy, as follows:

Vi,G = �i,G + F × �i,G +DTi,G, (12)

where DTi,G means the type of direction information for
Xi,G. Furthermore, in order to select the suitable type of
direction information for the specific strategy, a guideline
with three cases is developed based on TEE [9]. With the
developed guideline, different mutation strategy equips with
the direction information selected based on the case which
it belongs to.

Issues Existed in NDi-DE: Although NDi-DE is demon-
strated to be effective for most of the DE variants, the
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performance of NDi-DE heavily depends on the selection of
direction information. As shown in [9], different mutation
strategy equips with the different type of direction infor-
mation based on its search characteristics. However, when
applying NDi-DE to a new mutation strategy, how to select
the suitable type of direction information is still a difficult
problem. Therefore, AOS techniques are introduced in this
paper to automatically select the direction information to
enhance the performance and robustness of DE, specifically
NDi-DE.

III. ANDI-DE

In order to automatically select the most suitable type of
direction information for the specific DE mutation strategy,
two AOS techniques, PM [13] and AP [14], are introduced
into NDi-DE. By applying the AOS method to NDi-DE,
aNDi-DE is developed. In this section, the details of the
two AOS techniques and the direction information pool are
firstly given. Then, the aNDi-DE framework by integrating
AOS with NDi-DE is presented.

A. AOS

AOS is an adaptive control paradigm, which deals with
the on-line selection among the available operators during
the evolutionary process according to their rewards on the
search up to now [16][17]. In AOS, there are two major
phases: the credit assignment which defines how to turn the
impact of the application of an operator into reward, and
the operator selection that selects the operator to be applied
based on their rewards. In this work, we focus on the two
most promising selection mechanisms: PM and AP, which are
the probability-based methods. In PM and AP, there are four
steps, i.e., credit assignment, quality update and probability
update and operator selection.

1) Credit Assignment: In the credit assignment, we adopt
the fitness improvement rates (FIR) proposed in [18] to
measure the quality for each type of direction information.
Specifically, the FIR obtained by the ith type of direction
information at time t is defined as follows:

FIRi,t =
pfi,t − cfi,t

pfi,t
(13)

where pfi,t and cfi,t represent the fitness of the target vector
and its offspring, respectively.

Then, at the end of each generation, the average value
of all the FIR values achieved by applying the ith type of
direction information is calculated, which is denoted as Si.
After that, the credit value (or reward) to the ith type of
direction information is assigned as follows:

CVi,t =
Si

∑K
j=1 Sj

(14)

where K is the number of types of direction information.

2) Quality Update: Once the credit values of all the
type of direction information are assigned, the quality (or
estimated quality) of a direction information i, denoted as
qi,t+1, is updated as follows [14]:

qi,t+1 = (1− �)× qi,t + �× CVi,t (15)

where � ∈ [0, 1] is the adaptation rate.
3) Probability Update: Based on the updated quality of

each type of direction information, PM and AP employ
different approaches to update the selection probability.
• PM [13]

In PM, the probability pi,t+1 of the direction informa-
tion i is updated as follows:

pi,t+1 = pmin + (1−K × pmin)×
qi,t+1

∑K
j=1 qj,t+1

(16)

where pmin ∈ [0, 1] is the minimal selection probability
value of each direction information, which ensures that
each direction information has a chance to become use-
ful during the evolutionary process. The inefficient di-
rection information will converge its probability towards
pmin if it obtains no rewards for a long time, and the
probability of the overwhelming direction information
will converges to pmax = pmin + (1−K × pmin).

• AP [14]
Originally proposed for learning automata, AP adopts a
winner-take-all strategy to updated the selection proba-
bility, which works as follows:

pi,t+1 =

{

pi,t + � × (pmax − pi,t) if i = i∗t+1;
pi,t + � × (pmin − pi,t) otherwise.

(17)
where i∗t+1 = argmaxi∈{1,...,K}{qi,t+1} and � ∈ [0, 1]
is the learning rate, which is used to control the greed-
iness of the winner-take-all strategy.

4) Operator Selection: With the updated probability of
each direction information, both PM and AP use a roulette
wheel-like method to select a type of direction information
for the specific mutation strategy [13][14]. That is, the larger
pi,t of the direction information, the higher of the possibility
to be selected.

B. Direction Information Pool

In order to integrate AOS with NDi-DE for automatically
selecting the type of direction information, we consider the
three types of direction information proposed in [9], as well
as no direction information option (i.e., direction without,
DW). Therefore, the direction information pool is set as
follows:
• DA:

DAi,G = Iatt × (Xatt i,G −Xi,G) (18)

• DR:
DRi,G = Irep × (Xi,G −Xrep i,G) (19)

• DC:

DCi,G = Icon1 × (Xatt i,G −Xi,G)−
Icon2 × (Xrep i,G −Xi,G) (20)
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• DW:

DWi,G = null (21)

where Iatt, Irep, and Icon1(Icon2) are called the attraction,
repulsion, and convergence scaling factors, respectively.

In these four types of direction information, DA, DR,
DC and DW can play different roles to guide the search.
That is, DA enhances the ability of vectors to exploit the
promising regions of near-neighbor, DR prevents the vectors
from entering the local optimum, and DC accelerates the
convergence speed of vectors. For DW, it can maintain
the search bias of the original mutation strategy when the
direction information of near-neighbor cannot bring benefit
to improving the performance. By introducing DW into the
direction information pool, aNDi-DE can keep the advan-
tages of the original mutation strategy and utilize the guiding
information from DA, DR and DC.

C. The framework of aNDi-DE

Combining AOS with NDi-DE, the complete framework
of aNDi-DE is summarized in Algorithm 1 where the
differences with respect to NDi-DE are highlighted with “∗”.
From Algorithm 1, it is clear that aNDi-DE differs from the
NDi-DE only in the selection of the direction information
for the specific mutation strategy by PM or AP.

Algorithm 1 aNDi-DE
1: Generate the initial population P and set t = 1;
2: Evaluate the fitness for each individual in P ;
3: ∗ Set K, �, � and pmin;
4: While the terminated condition is not satisfied do
5: For each individual Xi,G do
6: ∗ Choose a type of direction information based on

the selection probability;
7: Use NGS [9] and DIM [9] with the selected direc-

tion information to generate a mutant vector;
8: Use Eq. (7) to generate a trial vector;
9: Use Eq. (8) to determine

the survived vector;
10: End For
11: Set t = t+ 1
12: ∗ Calculate the credit value CVi,t for each type of

direction information using Eq. (14);
13: ∗ Update the quality qi,t using Eq. (15) and the prob-

ability value pi,t for each type of direction information
using Eq. (16) (PM) or Eq. (17) (AP);

14: End while

IV. SIMULATION RESULTS

In order to evaluate the performance of aNDi-DE, 14
benchmark functions are chosen from the CEC2005 test suite
[19]. In this section, the benchmark functions are presented
firstly. Secondly, the experimental setup is shown. Thirdly,
the simulation results obtained from different experimental
studies are analyzed and discussed.

A. Benchmark Functions

In this section, 14 benchmark functions are used, which
are denoted as F1–F14. These functions are selected from the
special session on real-parameter optimization of the 2005
IEEE Congress on evolutionary computation (CEC2005)
[19]. They can be categorized into three groups: unimodal
functions (F1–F5), basic multimodal functions (F6 – F12)
and expanded multimodal functions ( F13– F14). The short
descriptions of these 14 functions are shown in Table I, and
more details of them can be found in [19].

B. Experimental Setup

For a fair comparison, the same random initial population
is used to evaluate different algorithms, and the parameters
for all the experiments are set as follows unless a change is
mentioned.
• Dimension of each function: D = 30;
• Population size: NP = 100;
• F = 0.5, Cr = 0.9;
• � = 0.8, � = 0.8, pmin = 0.1;
• Iatt = Irep = Icon1 = Icon2 = F/2;
• Maximum number of function evaluations: MNFEs =

104 ×D;
• Number of runs: NumR = 30.
The control parameters in PM and AP are recommended

by [14] and the scaling factors for different types of direction
information are recommended by [9]. The influence of these
parameters in aNDi-DE will be discussed in the future work.
Furthermore, in order to show the significant differences
among the algorithms, several nonparametric statistical tests
[20] are also carried out by the KEEL software [21].

TABLE III
RANKS COMPUTED BY THE WILCOXON TEST FOR THE ANDI-DE WITH

DIFFERENT AOS METHODS. •= THE METHOD IN THE ROW IMPROVES THE

METHOD OF THE COLUMN. ◦= THE METHOD IN THE COLUMN IMPROVES

THE METHOD OF THE ROW. UPPER DIAGONAL OF LEVEL SIGNIFICANCE

� = 0.1, LOWER DIAGONAL LEVEL OF SIGNIFICANCE � = 0.05.

(1) (2) (3) (4)
Ori (1) - 13.5 ◦ 15.0 ◦ 15.0 ◦
PM (2) 77.5 • - 45.0 46.0
AP (3) 76.0 • 46.0 - 57.5
RN (4) 76.0 • 45.0 33.5 -

C. Comparison on different AOS methods

In order to compare the performance of aNDi-DE with dif-
ferent AOS methods, three aNDi-DE variants are considered
as follows:
• aNDi-DE/AP: aNDi-DE uses AP mechanism for select-

ing the direction information.
• aNDi-DE/PM: aNDi-DE uses PM mechanism for se-

lecting the direction information.
• aNDi-DE/RN: aNDI-DE uses the uniform strategy as

baseline. In this variant, the probability of each direction
information is equal and unchanged during the evolu-
tionary process.
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TABLE I
BENCHMARK FUNCTIONS

Test Function Characteristics
F1: Shifted Sphere Function Shifted, separable, scalable
F2: Shifted Schwefel’s Problem 1.2 Shifted, nonseparable, scalable
F3: Shifted Rotated High Conditioned Elliptic Function Shifted, rotated, nonseparable, scalable
F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness Shifted, nonseparable, scalable, noise in fitness
F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds Nonseparable, scalable
F6: Shifted Rosenbrock’s Function Shifted, nonseparable, scalable, narrow valley

from local to global optimum
F7: Shifted Rotated Griewank’s Function without Bounds Rotated, shifted, nonseparable, scalable
F8: Shifted Rotated Ackley’s Function with Global Optimum Rotated, shifted, nonseparable, scalable

on Bounds
F9: Shifted Rastrigin’s Function Shifted, separable, scalable, numerous local optima
F10: Shifted Rotated Rastrigin’s Function Shifted, rotated, noseparable, scalable, numerous

local optima
F11: Shifted Rotated Weierstrass Function Shifted, rotated, noseparable, scalable
F12: Schwefels Problem 2.13 Shifted, nonseparable, scalable
F13: Shifted Expanded Griewanks + Rosenbrocks Function Shifted, nonseparable, scalable
F14: Shifted Rotated Expanded Scaffers F6 Shifted, nonseparable, scalable

TABLE II
COMPARISON ON THE ERROR VALUES OF ANDI-DE WITH DIFFERENT AOS METHODS FOR ALL FUNCTIONS AT D = 30. THE NFES REQUIRED TO

ACHIEVE THE ACCURACY LEVEL ARE ALSO SHOWN IN SQUARE BRACKETS WHEN THE COMPETITOR OBTAINS THE OPTIMUM VALUE WITHIN MNFES.

Func. Ori PM AP RN

F1 [106386±2145.683] [35946±564.302] [32226±773.230] [37143±869.278]
F2 6.726e-005±4.427e-005 6.821e-014±2.313e-014 6.253e-014±1.734e-014 6.253e-014±1.734e-014
F3 4.187e+005±2.346e+005 5.766e+004±3.162e+004 5.922e+004±3.473e+004 7.021e+004±4.192e+004
F4 2.435e-002±2.385e-002 6.689e-013±1.234e-012 4.824e-012±2.301e-011 1.174e-011±1.809e-011
F5 4.411e+001±2.691e+001 8.471e+000±1.213e+001 7.325e+000±1.064e+001 3.571e+000±5.009e+000
F6 3.013e+000±1.312e+000 9.303e-001±1.715e+000 8.351e-001±1.516e+000 7.973e-001±1.622e+000
F7 4.696e+003±1.589e-002 4.696e+003±0.000e+000 4.696e+003±0.000e+000 4.696e+003±9.067e-005
F8 2.093e+001±6.812e-002 2.093e+001±6.024e-002 2.096e+001±3.429e-002 2.097e+001±4.701e-002
F9 1.295e+002±2.110e+001 2.600e+001±7.603e+000 2.793e+001±8.074e+000 2.723e+001±7.642e+000
F10 1.824e+002±1.152e+001 3.206e+001±1.081e+001 3.288e+001±9.474e+000 3.632e+001±1.374e+001
F11 3.967e+001±9.936e-001 1.404e+001±5.631e+000 1.283e+001±5.414e+000 1.322e+001±5.730e+000
F12 1.459e+003±3.308e+003 2.007e+003±2.694e+003 1.610e+003±1.777e+003 1.894e+003±3.148e+003
F13 1.521e+001±1.058e+000 2.886e+000±6.069e-001 3.114e+000±7.575e-001 2.899e+000±7.084e-001
F14 1.331e+001±1.443e-001 1.268e+001±4.021e-001 1.270e+001±4.971e-001 1.289e+001±3.679e-001

Avg Rank 3.4643 2.1071 2.1429 2.2857

The comparisons among the aNDi-DE variants are carried
out on the 14 benchmark functions at 30D. The results are
shown in Tables II where “Ori”, “PM”, “AP” and “RN”
means the original algorithm, aNDi-DE/PM, aNDi-DE/AP
and aNDi-DE/RN with DE/rand/1, respectively, and the
convergence graphs for some selected functions are plotted in
Fig. 1. The best performance for each functions is highlighted
in boldface in the tables. From Table II, all the algorithms
can obtain the equal optimum value within MNFEs for
F1, and aNDi-DE/AP requires the leat number of function
evaluations to achieve the accuracy level. For the unimodal
functions (F1-F5), both aNDi-DE/PM and aNDi-DE/AP can

obtain the best result on 2 functions. For the multimodal
functions (F6-F14), aNDi-DE/PM can achieve the best result
on 5 functions, while aNDi-DE/AP can obtain the best result
on 2 functions.

In order to compare the performance of different algo-
rithms overall, Table II summarizes the average rank values
(avg rank) in the table which are evaluated based on the
descending order of the error values for all the functions.
From Table II, aNDi-DE/PM obtains the best average rank
among all the algorithms. To address the issue that an
intelligent AOS method is better than a random one, aNDi-
DE/PM and aNDi-DE/AP are also compared with aNDi-
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TABLE IV
COMPARISON ON THE ERROR VALUES BETWEEN ANDI-DE AND NDI-DE WITH SINGLE DIRECTION INFORMATION FOR ALL FUNCTIONS AT D = 30. THE NFES REQUIRED TO ACHIEVE

THE ACCURACY LEVEL ARE ALSO SHOWN IN SQUARE BRACKETS WHEN THE COMPETITOR OBTAINS THE OPTIMUM VALUE WITHIN MNFES.

func. Ori DA DR DC PM

F1 [106386±2145.683] 5.053e-002±2.260e-001 2.084e-014±2.786e-014 [43566±1089.237] [35946±564.302]
F2 6.726e-005±4.427e-005 7.439e-001±3.243e+000 1.307e-006±1.100e-006 5.874e-014±1.818e-014 6.821e-014±2.313e-014
F3 4.187e+005±2.346e+005 5.833e+004±1.143e+005 2.970e+005±1.500e+005 7.024e+004±3.443e+004 5.766e+004±3.162e+004
F4 2.435e-002±2.385e-002 1.365e-008±6.559e-008 1.454e-002±2.352e-002 1.078e-010±1.731e-010 6.689e-013±1.234e-012
F5 4.411e+001±2.691e+001 1.182e+003±4.018e+002 1.523e+002±1.314e+002 5.461e+000±1.104e+001 8.471e+000±1.213e+001
F6 3.013e+000±1.312e+000 2.583e+004±1.209e+005 5.728e+000±1.528e+001 1.329e-001±7.279e-001 9.303e-001±1.715e+000
F7 4.696e+003±1.589e-002 4.696e+003±0.000e+000 4.745e+003±1.532e+001 4.707e+003±8.143e+000 4.696e+003±0.000e+000
F8 2.093e+001±6.812e-002 2.096e+001±3.092e-002 2.094e+001±5.642e-002 2.094e+001±5.308e-002 2.093e+001±6.024e-002
F9 1.295e+002±2.110e+001 3.161e+001±9.678e+000 2.497e+001±8.025e+000 2.325e+001±7.416e+000 2.600e+001±7.603e+000
F10 1.824e+002±1.152e+001 3.807e+001±1.218e+001 3.452e+001±9.035e+000 9.398e+001±6.913e+001 3.206e+001±1.081e+001
F11 3.967e+001±9.936e-001 1.197e+001±4.581e+000 3.294e+001±1.196e+001 3.596e+001±9.900e+000 1.404e+001±5.631e+000
F12 1.459e+003±3.308e+003 1.045e+004±6.531e+003 1.304e+003±2.786e+003 1.212e+003±1.801e+003 2.007e+003±2.694e+003
F13 1.521e+001±1.058e+000 2.991e+000±6.763e-001 3.902e+000±3.324e+000 9.736e+000±5.635e+000 2.886e+000±6.069e-001
F14 1.331e+001±1.443e-001 1.209e+001±4.208e-001 1.338e+001±1.642e-001 1.330e+001±1.462e-001 1.268e+001±4.021e-001

Avg Rank 3.8214 3.4286 3.2857 2.5000 1.9643

DE/RN. From Table II, we can find both aNDi-DE/PM and
aNDi-DE/AP perform better than aNDi-DE/RN in terms of
the average rank value. (i.e., 2.1071 vs. 2.2857, and 2.1429
vs. 2.2857 respectively). Furthermore, in order to show the
significant differences among the algorithms, the results of
the multiple-problem Wilcoxon signed-rank test [20] are also
presented in Table III. As the results shown in Table III,
all the aNDi-DE variants obtain higher R+ values than R−
values. Furthermore, all the aNDi-DE variants can improve
DE/rand/1 both at level of significance � = 0.1 and � =
0.05.

Generally, all of the aNDi-DE variants are able to improve
the performance of DE/rand/1, and aNDi-DE/PM is the best
one in this comparison. The reason may lie in that the four
types of direction information, i.e., DA, DR, DC and DW,
are effective to guide the search through playing different
roles.

TABLE V
RANKS COMPUTED BY THE WILCOXON TEST BETWEEN ANDI-DE AND

NDI-DE WITH SINGLE DIRECTION INFORMATION. •= THE METHOD IN

THE ROW IMPROVES THE METHOD OF THE COLUMN. ◦= THE METHOD IN

THE COLUMN IMPROVES THE METHOD OF THE ROW. UPPER DIAGONAL

OF LEVEL SIGNIFICANCE � = 0.1, LOWER DIAGONAL LEVEL OF

SIGNIFICANCE � = 0.05.

(1) (2) (3) (4) (5)
Ori (1) - 42.0 28.0 9.5 ◦ 13.5 ◦
DA (2) 49.0 - 45.0 51.0 12.0 ◦
DR (3) 63.0 60.0 - 24.0 17.0 ◦
DC (4) 81.5 • 54.0 67.0 - 38.5
PM (5) 77.5 • 79.0 • 74.0 • 66.5 -

D. Comparison with NDi-DE with single direction informa-
tion

In this section, to investigate the benefits obtained by using
a pool of direction information in aNDi-DE, the comparisons
between aNDi-DE/PM and NDi-DE with single direction
information are carried out. For this purpose, three NDi-DE
variants are used in this experiment. They are NDi-DE/DA,

NDi-DE/DR and NDi-DE/DC which represents the NDi-DE
with DA, DR, and DC, respectively. The results are presented
in Table IV where “DA”, “DR” and “DC” means NDi-
DE/DA, NDi-DE/DR and NDi-DE/DC, respectively, and the
convergence graphs for some selected functions are plotted
in Fig. 1.

From Table IV and Fig. 1, it is clear that aNDi-DE/PM
is the best one among all the algorithms. Specifically, aNDi-
DE/PM obtains the best performance on 7 out of 14 function-
s, while NDi-DE/DA, NDi-DE/DR and NDi-DE/DC achieves
the best results on 3, 0 and 5 functions respectively. In
addition, to show the significant differences among different
algorithms, the results of the multiple-problem Wilcoxon
signed-rank test [20] are also presented in Table V. We
can find that aNDi-DE/PM is significantly better than NDi-
DE/DA and NDi-DE/DR. For NDi-DE/DC, aNDi-DE/PM
does not significantly outperform it. It is worth noting that
DC is the most suitable type of direction information for
DE/rand/1 in the NDi-DE framework [9]. Therefore, these
results indicate that aNDi-DE is effective to manage a pool
of direction information by using AOS and is more robust
than NDi-DE with using a single direction information.

E. Analysis of strategy adaptation

In order to study the adaptation characteristics of PM and
AP, we analyze how the probability value of each direction
information changes during the evolutionary process. In this
experiment, the whole search process is divided into 50 phas-
es and the probability value of each direction information in
each phase is recorded and plotted in Fig. 2.

For F1, the adaptation trajectory of PM is similar to
AP. That is, the probability values of the four direction
information are oscillatory during the first 13 phases. After
that, the trajectories of them are tending towards stability.
In both aNDi-DE/PM and aNDi-DE/AP, DA dominates on
phase 14 to phase 50. However, the difference between them
during the evolutionary process is that PM converges rapidly
and select the current best direction information in a much
higher probability.
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Fig. 1. Convergence graphs of different aNDi-DE variants for the selected functions at D = 30

For F10, when using AP as the adaptive mechanism,
the probability values of the four direction information are
oscillatory on stage 0 to stage 24, and the trajectories of
them are tending towards stability on stage 25 to stage 50
on which DA dominates. When using PM, the probability
values of them are oscillatory on stage 0 to stage 31, and
DA dominates on stage 32 to stage 50.

According to the results shown Fig. 2, it can be observed
that:

• As stated in [14] and [17], the AP technique converges
more rapidly to a probability distribution than the PM
method, which is confirmed in this experiment. How-
ever, aNDi-DE/PM is better than aNDi-DE/AP on the
test functions. The reason may lie in that aNDi-DE/AP
tend to select the most exploitive type of direction in-
formation in a much higher probability at the beginning
of evolution. It will make the population become easier
to trap in the local optimum.

• It is interesting to find that when the convergence graphs
of aNDi-DE/PM and aNDi-DE/AP are unchanged, the
adaptation trajectories of the direction information are
also tending towards stability. It suggests that no type
of direction information can dominate for a long time
before the population converges.

• Fig. 2 clearly indicates that each type of direction
information is useful for enhancing the search ability
of NDi-DE, which is also confirmed in Section IV-
D. In addition, Fig. 2 also demonstrates that NDi-DE
at different evolution stages may need different search

strategies.

V. CONCLUSIONS

In NDi-DE, the performance heavily depends on the selec-
tion of direction information, and how to select the suitable
type of direction information is still a difficult problem. In
order to address the exited issue in NDi-DE and enhance the
performance and robustness of it, we propose a new method,
adaptive direction information based NDi-DE (aNDi-DE)
in this paper. In aNDi-DE, two adaptive operator selection
(AOS) mechanisms, i.e., Probability Matching (PM) and
Adaptive Pursuit (AP), are introduced to adaptively select the
most suitable type of direction information for the specific
mutation strategy. In this way, the good balance between
exploration and exploitation can be dynamically achieved.

The experiments have been carried out on a suite of 14
benchmark functions to evaluate the effectiveness of aNDi-
DE.Through the experimental study, we show that aNDi-DE
with PM and AP is able to improve the performance of NDi-
DE. In addition, the experimental results also demonstrate
the effectiveness of the four types of direction information
at different evolution stages.

In the future, aNDi-DE will be applied to other DE algo-
rithms to test the effectiveness, and other AOS mechanisms
(e.g., multi-armed bandit, MAB [22]) will also be studied in
aNDi-DE.
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