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Abstract—This paper proposes a novel swarm intelligence 
optimization method which integrates bacterial foraging 
optimization (BFO) with quantum computing, called quantum 
bacterial foraging optimization (QBFO) algorithm. In QBFO, a 
multi-qubit which can represent a linear superposition of states 
in search space probabilistically is used to represent a 
bacterium, so that the quantum bacteria representation has a 
better characteristic of population diversity. A quantum 
rotation gate is designed to simulate the chemotactic step to 
drive the bacteria toward better solutions. Several tests are 
conducted based on benchmark functions including multi-peak 
function to evaluate optimization performance of the proposed 
algorithm. The numeric results show that the proposed QBFO 
has more powerful properties in convergence rate, stability and 
the ability of searching for the global optimal solution than the 
original BFO and quantum genetic algorithm. In addition, we 
applied our proposed QBFO to solve the traveling salesman 
problem, which is a well-known NP-hard problem in 
combinatorial optimization. The results indicate that the 
proposed QBFO shows better convergence behavior without 
premature convergence, and has more powerful properties in 
convergence rate, stability and the ability of searching for the 
global optimal solution, as compared to ant colony optimization 
algorithm and quantum genetic algorithm. 

Keywords—quantum computing; bacterial foraging 
optimization; quantum bacterial foraging optimization; traveling 
salesman problem1 

I. INTRODUCTION 
In recent years, the swarm intelligence optimization 

methods inspired by biological evolution and animal swarm 
behaviors, such as ant colony optimization (ACO) [1] and 
particle swarm optimization (PSO) [2], have found their way 
into the realm of optimization algorithms and proved their 
effectiveness. The swarm intelligence optimization methods 
have found a strongly increasing number of applications in 
diverse fields, including in signal processing [3]. 

Bacteria Foraging Optimization (BFO), proposed by 
Passino [4], is a new comer to the family of nature swarm 
inspired optimization algorithms. BFO is inspired by the 
social foraging behavior of Escherichia coli bacteria. Similar 
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to ACO and PSO, BFO are designed for function 
optimization by moving a swarm of individuals called 
bacteria in the search space. One major step in BFO is the 
chemotaxis which mimics bacteria searching for nutrients. 
After every fixed number of chemotaxis steps, the swarm of 
bacteria performs a reproduction and elimination step. 

Since its inception, BFO which mimics how bacteria 
forage over a landscape of nutrients to perform parallel 
nongradient optimization has drawn the attention of 
researchers from diverse fields of knowledge [5-8] due to its 
effectiveness in the optimization domain. It has already been 
applied to many real world problems and proved its 
effectiveness over many variants of GA and PSO [9]. 
However, according to mathematical analysis in [10], the 
chemotaxis employed by the classical BFO usually results in 
sustained oscillation, especially on flat fitness landscapes, 
when a bacterium cell is close to the optima. In dealing with 
complex problems, BFO has a low convergence behavior and 
performance decreases rapidly with an increase in the search 
space. To accelerate the convergence speed of the group of 
bacteria near the global optima and avoid its premature 
convergence, a novel quantum bacterial foraging 
optimization (QBFO) algorithm is proposed by merging BFO 
and quantum computing. 

The subject of quantum computing brings together ideas 
from classical information theory, computer science, and 
quantum physics [11]. Research on combining evolutionary 
computing and quantum computing has been started since late 
1990s. It can be classified into two areas. One concentrates on 
generating new quantum algorithms using automatic 
programming techniques such as genetic programming [12]. 
The other concentrates on quantum-inspired evolutionary 
computing for a classical computer [13]. Encouraged by that 
quantum-inspired evolutionary algorithms show better 
performance on solving combinatorial optimization problems 
than their classical counterparts [14-16], this paper proposes a 
novel bacterial foraging optimization algorithm, called a 
quantum bacterial foraging optimization (QBFO) algorithm, 
which is based on the concept and principles of quantum 
computing such as a qubit, multiqubit, superposition of states 
and quantum gates. 

In QBFO, a multiqubit is used to represent a bacterium, and 
quantum rotation gate is used to mimic chemotaxis. A 
multiqubit system (for example n-qubit system) has available 
2n mutually orthogonal quantum states, so the quantum 
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bacterium with multiqubit has the advantage that it can 
represent a linear superposition of states (binary solutions) in 
search space probabilistically. A quantum rotation gate is 
defined as a chemotactic operator of QBFO to drive the 
individual bacterium toward better solutions and eventually 
toward a single state. 

The proposed quantum BFO (QBFO) schemes have been 
applied to solve four traveling salesman problems. The 
experiment results have been compared with their classical 
counterpart, a very popular swarm-intelligence algorithm 
known as ant colony optimization (ACO) [1] and quantum 
genetic algorithm (QGA) [14], with respect to the following 
performance measures: solution quality and convergence 
speed. 

The work presented here has focused on the formulation of 
the QBFO algorithm, which takes advantage of BFO and 
quantum-inspired evolutionary computing such as QGA. The 
work in [17] uses a different swarming pattern, and the work 
in [18-19] takes a different quantum representation of a 
bacterium. While our proposed QBFO takes a new 
representation of a bacterium, and a new quantum chemotaxis 
operator and a new quantum elimination-dispersal, which was 
not considered in these earlier studies. 

The rest of the paper is organized as follows. Section II 
proposes a quantum BFO. Section III provides detailed 
comparison between the classical BFO and its quantum 
variants over a test suite of 4 well-known numerical 
benchmarks. Section IV presents an application example with 
QBFO, ACO and QGA for traveling salesman problems, and 
summarizes the experimental results. Finally, conclusions are 
drawn in section V.  

 

II. QUANTUM BACTERIAL FORAGING ALGORITHM 

A. Representation 

Inspired by the concept of quantum computing and 
quantum-inspired evolutionary algorithm [15], QBFO is 
designed with a novel quantum representation, called a 
Quantum bacterium (Q-bacterium), which is defined below 
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where M is the number of multiqubit, which is defined with a 
pair of numbers (α, β) as [α  β]T. (α, β) corresponds a qubit 
expressed in 0 1 ( , )Tα βφ α β= + = . A Q-bit is defined as the 
smallest unit of information in QBFO. 

QBFO with Q-bit representation has a better characteristic 
of population diversity than other representations, since it can 
represent linear superposition of states probabilistically. Only 
one Q-bit individual such as (3) is enough to represent 2M 
states, but in binary representation at least 2M strings. 

Research results shows that E.coli bacteria have an 
interesting group behavior. A group of E.coli cells arrange 
themselves in a traveling ring by moving up the nutrient 
gradient. The cells keep certain distance and exchange food 
information through various ways. It increases their 
understanding of the environment and so increases their 
survival chances. The bacteria swarm in QBFO is composed 

of a group of Q-bacteria. The tth population is 

1 2 S( ) ( , ,...., )t t tQ t q q q=  (2)

where S is the size of population. 

B. Quantum Chemotaxis 

Chemotaxis simulates the movement of an E.coli cell 
through straight swimming and tumbling via flagella. If the 
bacterium senses that it is moving in the correct direction 
(toward attractant/away from repellent), it will keep 
swimming in a straight line for a longer time before tumbling. 
If it is moving in the wrong direction, it will tumble sooner 
and try a new direction at random. In other words, E. coli 
bacteria use temporal sensing to decide whether their 
situation is improving or not. In this way, it finds the location 
with the highest concentration of nutrition (usually the 
source) quite well. Even under very high concentrations, it 
can still distinguish very small differences in concentration. 
In the presence of a chemical gradient bacterium will 
chemotaxis, or direct their overall motion based on the 
gradient. 

In QBFO, chemotaxis operation cannot be performed as 
same as classical BFO because Q-bacteria can be in quantum 
superposition state. A Q-gate is defined as a chemotaxis 
operator of QBFO, by which operation the updated Q-bit 
should satisfy the normalization condition, 2 2| | | | 1α β′ ′+ = , 
where α′  and β ′  are the values of the updated Q-bit. The 
following rotation gate is used as a Q-gate in QBFO, such as 
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 (3)

where θ is a rotation angle of each Q-bit toward either 0 or 1 
state depending on its sign. θ should be designed in 
compliance with the application problem. The adjustment 
operation is as follows. 
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where θm is rotating angle and ( , )m m m msθ α β θ= ⋅Δ . ( , )m ms α β  is 
used to control the rotation direction and mθΔ  used to control 
the size of the rotation angle which should be designed in 
compliance with the application problem. 

Quantum chemotaxis operator acts on the linear 
superposition of states of all Q-bits in Q-bacteria and change 
the phase information of Q-bit, as well as the amplitude 
information. As the result, the position of the Q-bacterium is 
updated. 

C. Quantum Reproduction 

Quantum reproduction is an evolutionary process based on 
survival of the fittest. Let  

1

( ) ( )
cN

j=

Jhealth i = fitness i, j∑  (5)

be the health of the ith bacterium (a measure of how many 
nutrients it got over its lifetime and how successful it was at 
avoiding noxious substances), where Nc is the number of 
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chemotactic steps and ( )fitness i, j  is the fitness function 
value of ith bacterium at jth chemotactic step. 

The less healthy bacteria eventually die while each of the 
healthier bacteria asexually split into two bacteria, which are 
then placed in the same location. This keeps the swarm size 
constant. 

D. Quantum Elimination-dispersal 

Gradual or sudden changes in the survival environment, 
such as a significant local rise of temperature, may kill or 
disperse a group of bacteria that are currently in a region with 
a high concentration of nutrient gradients. 

To simulate this phenomenon in QBFO, quantum 
elimination-dispersal is performed after several steps of 
quantum chemotaxis and quantum reproduction. In this 
process, some bacteria are dispersed at random with a very 
small probability Ped while the new replacements are 
randomly initialized over the search space as 

2

=1

1=
2

M

t
i

nq M
n

Xϕ ∑  (6)

where Xn is the nth state represented by the binary string 
1 2( , ,..., )Mx x x , where ,  1,...,mx m M=  is either 0 or 1 

according to the probability of either 2t

m
α  or 2t

m
β , 

respectively. 

E. The Procedure of QBFO 

The detailed pseudo-code of the complete algorithm is 
described as TABLE I. 

 
TABLE I 

THE PSEUDO-CODE OF QBFO 

Step Do 
(1) Initialize parameters p, S, Nc, Ns , Nre, Ned , Ped . where 

p: dimension of the search space 
S: total number of bacteria in the population 
Nc: number of quantum chemotactic steps 
Nre: the number of quantum reproduction steps 
Ned : the number of quantum elimination–dispersal events 
Ped : quantum elimination-dispersal probability 

(2) Let t,j,k,l = 0 
(3) Initialization quantum bacteria population Q (t), 0

mα  and 0
mβ  of 

all 0
iq  are initialized with 1 2 . It means that one Q-bacterium 

0

i
q  represents the linear superposition of all possible states with 

the same probability. The state of 
0

i
q  is as (6).  

(4) Make P(0) by observing the states of Q(0). Quantum state Q(0) 
collapses to P(0), which is the set of binary solutions 

(5) Evaluate P(0). Each binary solution is evaluated to give 
a level of its fitness. 

(6) Store the best solutions among P(0) into B(0), the initial best 
solutions are then selected among the binary solutions.

(7) while (not termination-condition) do 
begin 
  1t t← +  
  while (l≤Ned) do Quantum Elimination–dispersal 
  begin 
    1l l← +  
    while (k≤Nr) do Quantum Reproduction 
    begin 
      1k k← +  

      while (j≤Nc) do Quantum Chemotaxis 
      begin 
       1j j← +

(8)         Make P(t) by observing the states of Q(t-1). Quantum state 
Q(t-1) collapses to P(t), which is the set of binary solutions 

(9)         Evaluate P(t). Compute fitness function, obtain the best 
fitness of the bacterium as the target of next evolution values

(10)         Update Q(t) using Q-gates. Q-bacteria in Q(t) are updated by 
applying Quantum rotation gates. 

(11)         Store the best solutions among B(t-1) and P(t) into B(t) 
(12)         Store the best solution b among B(t) 

     end
(13)       Compute ( )Jhealth i . Sort Q-bacteria in order of ascending 

cost.
(14)       Reproduction. The half of the bacteria with the better values 

split (this process is performed by placing the copies that are 
made at the same location as their parent and the other half is 
eliminated. 
    end 

(15)     Elimination–dispersal. Generate a random number rand, a 
bacterium is eliminated if rand<Ped . Disperse another one to a 
random state as eq. (6). 
  End 

(16)    if  (migration-condition) 
      then migrate b or t

jb  to B(t) globally or locally, respectively
end 

 

III. EXPERIMENTS AND RESULTS OVER BENCHMARK 
FUNCTIONS 

This section presents some comparisons among the 
performances of the proposed QBFO, the original BFO, and 
QGA which is a typical algorithm of Quantum Evolutionary 
Computation. All methods have been applied to several 
benchmark test functions as depicted in TABLE II in order to 
check the effect of the proposed QBFO in the efficiency and 
the convergence speed. 

A. Test Functions 

Our test suite includes 4 well-known benchmark functions 
of varying complexity. The formulas of these functions are 
presented in TABLE II. 

The Sphere function (f1) is continuous, convex and 
unimodal with only one global minimum. The others are 
multimodal with a considerable number of local extremes in 
the region of interest. The Needle-in-haystack function (f2) 
has one global maximum with four local maxima, and the 
function behaves like a needle in the haystack (the function 
values for points in the space outside the narrow peaks give 
very little information on the location of the global optimum). 
The Schaffer’s F6 function (f3) has one global maximum 
with numerous local maxima, the difficulty in this function is 
that the size of the potential maxima that need to be overcome 
to get to a minimum increases the closer one gets to the global 
minimum. The Multi-peak function (f4) has one global 
maximum with huge number of local maxima, the difficulty 
in this function is asymmetric and having the global 
maximum at the edge of the search space. TABLE II 
summarizes the optima and search ranges used for all the 
functions. The contours of all the test functions are illustrated 
in TABLE II. 
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TABLE II 

DESCRIPTION OF THE BENCHMARK FUNCTION USED 
Function name Formula Optima Search domain Contour 

Sphere 
function 
(f1) 

2 2
1( )f x, y = x + y  1(0 0) 0f , =  100 , 100x y− ≤ ≤  

Needle-in-haystac
k function 
(f2) 

2 2 2 2

2 22
3

( ( )
0.

)
5

(
0

) + x + y
+ x + y

f x, y =  2 (0 0) 3600f , = 5.12 , 5.12x y− ≤ ≤  

Shaffer’s F6 
function 
(f3) 

2 2 2

3 2 2 2

0.5
( ) 0.5 +

(1 0.001 ( ))
sin x + y -

f x, y =
+ x + y⋅

 3 (0 0) 1f , =  100 , 100x y− ≤ ≤  

Multi-peak 
function 
(f4) 

4 ( ) 1 1

( 1) 1 1

f x, y = xsin y x cos y x

y cos y x sin y x

− + − + +

− + + − + +
 4 (-512 512)

511.7319
f ,

=
−  512 , 512x y− ≤ ≤  

 
 

TABLE III 
EXPERIMENTAL RESULTS FOR 20 INDEPENDENT RUNS ON FOUR BENCHMARK FUNCTIONS 

Function name Algorithm Best value Worst 
value 

Mean best 
value 

Standard 
deviation 

Average 
iterations 

Average 
run time (s)  

Convergence 
runs 

Sphere 
function 
(f1) 

BFO 2.6980e-07 8.6672e-04 6.8164e-05 1.8469e-04 156.67 0.932624 20 
QGA 1.3296e-04 6.1000e-02 5.4486e-03 1.2980e-02 421.52 5.669402 9 

QBFO 1.1369e-09 1.6220e-04 1.5472e-05 4.1785e-05 284.81 3.743355 20 
Needle-in-haystack 
function 
(f2) 

BFO 3600 2748.8 3004.2 400.2022 481.45 2.551758 6 
QGA 3600 3594 3598.7 1.6706 361.8 4.893244 12 

QBFO 3600 3599 3599.9 0.2471 295.3 3.808226 20 
Shaffer’s F6 
function 
(f3) 

BFO 0.9903 0.7268 0.9457 0.0656 500 2.873371 0 
QGA 0.9982 0.9900 0.9918 0.0031 448.40 6.312885 4 

QBFO 1.0000 0.9903 0.9989 0.0030 230.40 3.001256 15 
Multi-peak 
function 
(f4) 

BFO 511.7078 497.2463 503.7723 4.5548 479.85 2.370211 3 
QGA 511.5752 501.3417 508.4660 2.9080 436.10 5.800089 4 

QBFO 511.7319 501.8813 510.7167 2.2493 182.00 2.490855 15 
 
 

B. Parameter Settings 

For the BFO, we chose the population size of the bacteria 
S=40, the number of chemotaxis Nc=50, the number of 
reproduction steps Nre=5, the number of elimination and 
dispersal events Ned=2, the probability of elimination and 
dispersal Ped=0.25, the depth of the attractant released by the 
cell dattract=0.1, the width of the attractant signal wattract=0.2, 
the height of the repellent effect hrepellant=dattract=0.1, and the 
width of the repellent wrepellant=2. The size of the step taken in 

the random direction specified by the tumble C was set as 0.1 
for benchmarks f1 and f3. For benchmarks f2 and f4 we chose 
C=0.001.  For the QBFO, the parameter values of S, Nc, Nre, 
Ned, and Ped were kept exactly same as BFO. We fixed the 
length of the Quantum bacterium M=44, and the size of the 
rotation angle 0.08mθ πΔ = . For the QGA, we chose 
population size S=40, the length of the quantum chromosome 
len=44, the probability of cross pc=0.7, the probability of 
variation pm=0.15, the size of rotation angle 0.08mθ πΔ = , 
and the maximal generation number maxgen=500.  
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C. Results and Discussions 

Twenty independent runs of the three competitor 
algorithms were carried out on each problem, and the 
experimental results are presented in TABLE III. In the table, 
the best results among the algorithms are shown in bold. The 
graphs presented in Fig.1-4 illustrate the evolution of best 
fitness found by three algorithms averaged for 20 runs for 
each function. 

TABLE III illustrates the comparisons of the three 
algorithms on the benchmark functions. From TABLE III, it 
is observed that for all test problems, the proposed QBFO is 
superior to other two algorithms on the optimization problems 
although it converges slower sometimes (i.e. as shown in Fig. 
1). The best value and the mean best value of the proposed 
method are closest to or even the same as the optimal value. 
QBFO is the most stable as the standard deviation of QBFO is 
smallest. 

For convenience to show better search ability, Fig.1-4 
illustrate the comparisons on functions f1-f4. In general, the 
graphs in Fig.1-4 show that the QBFO could converge to the 
global optimum keeping a good diversity and high speed 
when it conducts the optimization of Sphere, 
Needle-in-haystack, Shaffer’s F6 and Multi-peak problems.  

As evident from TABLE III and Fig.1, it obviously shows 
that the Sphere function is easy to solve. It is shown that the 
QBFO converges slower than BFO and QGA, but the average 
run time of QBFO is less than QGA and the convergence runs 
of QBFO is more than QGA. QBFO hits the success 20 times 
by 20 runs. 

For Needle-in-haystack function, it is evident form TABLE 
III and Fig.2 that QBFO is the fastest algorithm in reaching 
the target global value. The frequency of hitting the optima 
of QBFO is 20 times in 20 runs, and that of BFO is only 6 
times. 

For Shaffer’s function, it can be easily observed form 
TABLE III and Fig.3 that QBFO arrives at the global 
optimum value fastest. The frequency of hitting the optima of 
QBFO is 15 times in 20 runs, and BFO cannot reach to the 
global optimum value. 

According to TABLE III and Fig.4, QBFO remained the 
best performance in the convergence rate, the best value, the 
mean best value and the frequency of hitting the optima. 

Obviously, QBFO takes advantage of quantum 
computation, which provides the bacteria with more 
intelligence to search the global optimum, and contribute to 
the global optimization ability. 

 According to the comparison analysis above, it is obvious 
to know that the proposed QBFO can keep a better diversity 
to develop the virgin space and have the best ability to reach 
the optimum. The relative results showed that  QBFO is a 
good method to improve the global ability of BFO. QBFO 
shows good convergence performance not only for simple 
smooth function such as Sphere function but also for complex 
function such as multi-peak function and nonlinear 
optimization problem. 

 

 

 

 
 

Fig. 4.  Convergence Curve of three algorithms for f4
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Fig. 3.  Convergence Curve of three algorithms for f3 
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Fig. 2.  Convergence Curve of three algorithms for f2 
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Fig. 1.  Convergence Curve of three algorithms for f1 

1269



 
 

 

IV. APPLICATION TO THE TRAVELING SALESMAN 
PROBLEM 

A. QBFO for the Traveling Salesman Problem 

The traveling salesman problem (TSP), which is an 
NP-hard problem in combinatorial optimization, is 
considered to demonstrate the applicability of QBFO to the 
combinatorial optimization problem. TSP can be modeled as 
an undirected weighted graph, such that cities are the graph's 
vertices, paths are the graph's edges, and a path's distance is 
the edge's length. It is a minimization problem starting and 
finishing at a specified vertex after having visited each other 
vertex exactly once. In this paper we will restrict attention to 
TSPs in which cities are on a plane and a path (edge) exists 
between each pair of cities (i.e., the TSP graph is completely 
connected). 

Give a weighted graph G=(C,D), where C=(C1,C2,…,CM) 
is the set of cities and {( , ) : , }i j i jD C C C C C= ∈ is the set of 
edges. Let d(Ci,Cj) be a cost measure associated with 
edge ( , )i jC C D∈ , which is the Euclidean distance between Ci 
and Cj. The object of TSP is to find a shortest closed tour 
which visits all the cities in C. 

In this work a quantum bacterium is an agent which moves 
from city to city on a TSP graph. We encoded each quantum 
bacteria population 1 2 S( ) ( , , ...., )t t tQ t q q q=  as in eq. (1), where S 
is the bacterial population size, the length of the quantum 
bacterium M is the same as the number of cities. At the 
beginning, we generate randomly a population composed of S 
“quantum bacteria”, each bacterium is randomly initialized 
over the search space as in eq. (2). This allows a bacterium to 
encode not only one solution but all the possible solutions by 
using the superposition principle. 

When we make P(t) by observing the states of Q(t) in 
QBFO, we can get a set of binary solutions 

1 2 S( ) ( , , ...., )t t tP t = x x x , where 1 2( , , ...., )t t t t
i i i iMx x x=x  is a binary 

string. Each binary solution t
ix is evaluated to give a level of 

its fitness as 
n n

0 i j 0

( ) ij ij
i j ,

f x d c
= ≠ =

=∑ ∑  (7)

subject to 1   1  
n n

ij ij
i=0,i j j=0,i j

x , j = 0,..,M, x , i = 0,..,M
≠ ≠

= =∑ ∑ . 

Where cij is equal 1 if the path goes from city i to city j, and 
0 otherwise, for cities 0, ..., M., and dij is the distance from 
city i to city j. 

B. Experimental Results and Performance Evaluation 

We applied the proposed QBFO to the TSPs listed in 
TABLE IV [20]. Using the 4 instances listed in TABLE IV, 
the performance of QBFO was compared with the 
performance of other two naturally inspired optimization 
methods: Ant Colony Optimization algorithms (ACO) and 
Quantum Genetic Algorithms (QGA). Numerical 
experiments were executed with QBFO, ACO and QGA. The 
QBFO parameters were set to the following values: S=40, 

Nc=50, Nre=5, Ned=2, Ped=0.25, 0.08mθ πΔ = , and iteration 
times as 500. The results of comparison are shown in 
TABLE IV and the obtained optimal routs of 4 instances by 
QBFO are shown in Fig.5-8. 

In TABLE IV, we report the best integer tour length, the 
best real tour length, and the number of average iterations 
required to find the best integer tour length. The best result for 
each problem is in bold. It is therefore clear that the proposed 
QBFO algorithm gives better results, compared to the ACO 
and QGA. 

 
TABLE IV 

THE RESULTS OF THE OPTIMAL ROUTES 
COMPARISON OF QBFO WITH ACO AND QGA 

Problem 
name Algorithm 

Best 
search 
value 

Best 
value 

known 

Average 
iterations 

City Set 1 
(10-city 

problem) 

ACO 2.6907 2.6907 75.5 
QGA 2.6907 2.6907 252.31 

QBFO 2.6907 2.6907 187.9 

City Set 2 
(30-city 

problem) 

ACO 431.3477 423.741 146.25 
QGA 443.5672 423.741 338 

QBFO 425.6490 423.741 267.47 

City Set 3 
(50-city 

problem) 

ACO 462.2606 427.855 198.33 
QGA 465.0977 427.855 450.54 

QBFO 456.4608 427.855 342.85 

City Set 4 
(75-city 

problem) 

ACO 559.1439 549.18 231.62 
QGA 563.7425 549.18 438.78 

QBFO 553.9830 549.18 408.52 
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Fig. 6.  Best Solution to a TSP with 30 cities 
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Fig. 5.  Best Solution to a TSP with 10 cities 
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Refer to Fig.9-12, we can see the comparative results of the 
convergence processes of applying QBFO, ACO and QGA to 
solve the 4 TSP problems. It is shown that the proposed 
QBFO can converge toward the optimal solution more 
quickly than ACO and QGA, and the final convergence 
values in QBFO also show better findings of the function 
global minimum in comparison to ACO and QGA. 

 

 

 

 

 

V. CONCLUSION 
In this paper, a novel QBFO is proposed, which is based on 

the BFO and quantum computing. A novel quantum bit 
expression mechanism called quantum bacteria is employed 
and the quantum chemotaxis is adopted to update the 
Q-bacteria. Quantum reproduction is performed after several 
steps of quantum chemotaxis, which makes most bacteria get 
together and accelerates convergence of the algorithm. Then 
quantum dispersal operation is performed on the bacteria 
swarm with a certain probability, which can expand the 
searching space and prevent the algorithm to fall into the local 
optimal value. The key to the application of QBFO to a new 
problem is to identify an appropriate representation for the 
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Fig. 12.  Convergence curves to a TSP with 75 cities 
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Fig. 11.  Convergence curves to a TSP with 50 cities 
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Fig. 10.  Convergence curves to a TSP with 30 cities 
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Fig. 9.  Convergence curves to a TSP with 10 cities 
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Fig. 8.  Best Solution to a TSP with 75 cities 
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problem (to be represented as a graph searched by many 
quantum bacteria). The simulated results in solving traveling 
salesman problem show that QBFO is superior to ACO and 
QGA. 

Future research may focus on extending the analysis 
presented in this paper to a group of quantum bacteria 
working on a multidimensional fitness landscape and also 
include effect of the quantum chemotaxis and 
elimination–dispersal events in the same. 
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