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Abstract— Capacitated arc routing problems (CARPs) are
usually modeled as static problems, where information is known
in advance and assumed to remain constant during the course
of optimization. However, in practice, many factors such as
demand, road accessibility, vehicle availability etc. change
during the course of a mission and the route of each vehicle must
be reconfigured dynamically. This problem is referred to as dy-
namic capacitated arc routing problem (DCARP) and there have
been limited attempts to solve such problems in the past. Lack of
standard DCARP benchmarks is one of the key factors limiting
research in this direction. This paper introduces a benchmark
generator for DCARPs considering interruptions/changes that
are likely to occur in realistic scenarios. These benchmarks can
be used to evaluate the strengths and the weaknesses of various
optimization algorithms attempting to solve realistic DCARP
problems.

I. INTRODUCTION

The capacitated arc routing problem (CARP) is a challeng-
ing combinatorial problem, wherein a set of required arcs,
each with a fixed demand, are served by a fleet of homo-
geneous vehicles of finite capacity while attempting to keep
the total distance traveled to a minimum. However, in most
real-life applications (winter gritting, street sweeping, inspec-
tion of pipe distribution networks etc.), certain unexpected
events invariably happen while the vehicles are en route.
Examples of such unpredicted events include change in tasks
(i.e., new customer requests/cancellations), unexpected road
blocks, traffic congestion and vehicle breakdowns. Under
such situations, the originally planned vehicle routes need to
be reconfigured, which translates to a dynamic optimization
problem.

A. Review of Dynamic Benchmark Generators

In the context of dynamic optimization, few methods have
been reported so far for constructing benchmarks. In [1]–[3],
the environment parameters were switched over time to cre-
ate a series of stationary problems. Multiobjective optimiza-
tion concepts with dynamically changing objective weights
were used to construct dynamic optimization test problems
in [4]. There are also reports of methods which altered the
multidimensional landscapes using shift and severity control
schemes [5]–[8]. In 2008, a generalized dynamic benchmark
generator (GDBG) was introduced in [9], [10], in which the
environmental properties were altered to construct dynamic
instances. Although the dynamic instances introduced in
the above studies were meant to objectively evaluate the
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performance of optimization algorithms, they may not be
adequate to construct DCARP instances as they have little
or no control over practical features like mixed graphs,
distribution of multiple lanes, traffic congestion, roadblocks
or vehicle breakdowns. Changing environmental properties to
construct dynamic instances in [9] [10] may be too simplistic
to represent real life problems, as [10] only considered
the dimensional changes (i.e., adding or removing variables
from the optimization problem) and [9] only considered
the non-dimensional changes (i.e., change in the value of
variables). A generator that considers both dimensional and
non-dimensional changes is required for modeling realistic
DCARP. The motivation of the work presented here stems
from the shortcomings described above.

B. Review of DCARP

There have been limited studies reported on modeling and
solving DCARP. With the availability of advanced global
positioning systems, the area is likely to gain greater attention
in coming years. There are two principal forms of DCARP,
a) deterministic and b) stochastic. In the deterministic form,
there is no historical data available, and vehicle routes are
generated based on current requirements. Part or all of the
information (such as new tasks, vehicle availability etc.) is
unknown and revealed dynamically en route. In the stochastic
form, useful historical data about possible tasks, vehicle
availability, roads maintenance etc. is available in order to
schedule the vehicle routes. After initial scheduling, in both
these forms, the vehicle routes are redefined continuously
based on directions from a central decision maker.

The limited studies reported in solving DCARP include
solving (deterministic) winter gritting problem by Tagmouti
et al. [11]–[13]. In their study, three synthetic instances with
36, 76, and 162 tasks were used. To model the change in the
problem over time, time-dependent service costs (demands)
were assigned to each arc based on weather updates.

In order to develop a benchmark generator for DCARP,
two fundamental capabilities need to be incorporated. The
first is the generation of scalable, realistic road networks
(initial/base graph), and the second is the classification of
possible interruptions/changes and means to model them.

To overcome the first issue, it is theoretically possible to
obtain road network details for specific region (e.g., from
Google Maps). The existing instances (gdb [14], kahs [15],
val [16], egl [17]–[19], C, E of Beullens et al. [20] and
Set of Brandao and Eglese [21]) are all generated from
real life networks of various sizes. However, they may
represent isolated specific instances, whereas to thoroughly
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test the performance of various CARP/DCARP algorithms,
the user should be able to manipulate the properties of
graphs to create customized instances. For example, in a
waste collection problem, the waste pick-up sites must be
distributed according to the distribution of waste amount
(demand), which in turn is dependent on the density of
population. The streets in the residential area may include
one-way, two-way and multiple-lane roads. There could be
one or more depots for dumping wastes. In the context of
winter gritting, the service priority or demand distribution
is closely dependent on the road surface temperatures [22]
or current weather conditions [11]–[13]. For modeling such
problems, the benchmark generator must be able to allow
control of these characteristics (demand, directedness, task
distribution etc.).

With regard to the second issue, there is a need for
classification of interruptions/changes to represent realistic
situations encountered in DCARP. Only varying demands
have been considered in [11]–[13]. However, there are other
additional factors that could possibly change over time, such
as vehicle availability, road inaccessibility, addition/deletion
of tasks and traffic congestion. This study aims to develop
DCARP instances considering all these factors.

The remaining sections of this paper are organized as
follows. Mathematical formulation of DCARP is presented
in Section II. In Section III, the benchmark generator is de-
scribed in detail and three DCARP benchmarks are generated
using the proposed approach. A summary of presented work
is given in Section IV.

II. MATHEMATICAL FORMULATION

A static CARP can be mathematically modeled as an
undirected graph G = (V,E), where V is a set of n
nodes (V = v1, v2, . . . , vn), and E is a set of m edges (E
= e1, e2, . . . , em). A set of p tasks (edges) Y = (y1, . . . , yp)
(Y ∈ E) needs to be served by a fleet of homogeneous
vehicles with capacity C located at a depot s. Each task is
associated with a distance d(k) > 0(k = 1, 2, . . . , p) and
a demand q(k) ≥ 0(k = 1, 2, . . . , p). The goal is to find a
feasible set of trips with the minimum total traveled distance
D, such that each vehicle trip starts and ends at the depot
s, each required edge is serviced by one single trip, and the
total demand handled by any vehicle must not exceed its
capacity C.

In a DCARP, a planner is not aware of future events. The
vehicle availability, the number/demand of tasks and road
accessibility may change during the course of the mission. If
the vehicles are unavailable due to breakdowns, the control
center needs to re-assign other vehicle(s) to complete the
remaining tasks. When some tasks are added or canceled,
there is a need for rescheduling based on the position and
availability of the vehicles. If certain roads are inaccessible
(weather hazards) or travel times change due to traffic con-
gestion, the control center needs to generate a new schedule
to serve the tasks. The unexpected interruptions/changes
encountered in a DCARP can be dimensional and/or non-
dimensional changes. Dimensional changes include unavail-

ability of vehicles, new customer requests, cancellation of
planned tasks and inaccessible roads, while non-dimensional
changes include traffic congestion and change in the demands
for some tasks. More than one interruption/change may
simultaneously occur at a time instant.

These unexpected events need to be modeled, and such
a problem can be considered as a series of static CARPs.
The occurrence of any interruption/change(s) results in a
new instance. From the initial static CARP I0 at time t0,
a series of instances IG are generated at time tG (G =
1, 2, . . . , Gmax), where Gmax is the number of times the
instance is updated.

III. BENCHMARK GENERATION

The proposed DCARP benchmark generator has two basic
stages. First is the generation of a specific (base) CARP
instance (I0), and second is the generation of dynamically
changing instances (I1, I2, I3, . . ., IGmax ) from I0. The
process of modeling is shown in Figure 1. Stage 1 requires
a set of 20 parameters (‘Inputs 1’). It starts by generating a
regular graph using random regular graph generator (RRGG)
and then applying two operators (advanced graph genera-
tor (AGG) and repair operator (RO)) to incorporate desired
problem specific characteristics based on Inputs 1. The graph
generated from Stage 1 is then given as an input to Stage 2,
along with a set of 9 parameters (‘Inputs 2’). Subsequently,
in Stage 2, instance modifying operator (IMO) acts on the
basis instance I0 to create modified instances I1, I2, I3, . . .
etc. The steps and the operators are detailed in the following
subsections.

A. Stage 1: Creating basis instance

As evident, Stage 1 is designed to create a typical (static)
base network (graph) for a given application. The inputs for
this process control the character of the network (undirected,
directed, mixed), distribution of multiple lanes, distance of
the roads and their associated demands, and degree of nodes.
In this case, degree of a node is defined as the number of
connections terminating in that node, with multiple edges
between two nodes counted as one connection1. The inputs
for the process are listed in Table I. NN denotes the number
of nodes, which roughly translates to the size of the network,
served by NV vehicles starting from depot s. Based of
the application, the graph could be undirected (e.g. pipeline
inspection), directed (e.g. garbage collection) or mixed (e.g.
winter gritting). For a mixed graph, the percentage of directed
edges is prescribed using PC (PC percentage of undirected
edges are replaced with two right-about directed edges). Sub-
sequently, OW percent of those directed edges are converted
to one-way roads. The distribution of nodes’ degree can
be specified using parameters D1, D2, D3, D4, D5 which
correspond to percentages of nodes with degree 1, 2, 3, 4
and 5 respectively. Similarly, the percentage of roads with
given number of lanes can be prescribed using parameters

1This is different from definition of degree used in graph theory, in which
multiple edges between two nodes are counted separately.
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Fig. 1. DCARP benchmark generation

ML1,ML2,ML3 and ML4, and their distances using Dists,
Distm, Distl. Taskp denotes the percentage of total edges
which need to be served. The parameter demand factor (DF )
determines the demand for a given task. This parameter has
two settings. One is for the case where the demand is directly
proportional to the road length (e.g. winter gritting). The
demand for an edge (designated to be serviced) is calculated
as DF × edge length (road distance). The other setting
corresponds to a case where the demand is proportional to
the density of population. This is typically a case in a city,
where central regions have shorter road distances, but are
highly populated. In this setting, demand is calculated as DF

× dlongest(longest distance)/ d(road distance). Depending on
specific application, other demand distribution can be used.
The pseudo-code of Stage 1 is given in Algorithm 1 and the
steps are detailed in following subsections.

TABLE I
LIST OF INPUTS FOR STAGE 1

Input Value Range
No. of nodes (NN ) An integer
No. of vehicles (NV ) An integer
Character of graph (T ) u/d/m*
Depot of the fleet (s) any node
% of directed edges (for mixed graph) (PC ) [0, 100]
% of one-way roads (for directed/mixed graph) (OW ) [0, 100]
% of nodes with degree 1 (D1) [0, 100]
% of nodes with degree 2 (D2) [0, 100]
% of nodes with degree 3 (D3) [0, 100]
% of nodes with degree 4 (D4) [0, 100]
% of nodes with degree 5 (D5) [0, 100]
% of edges with 1 lane (ML1) [0, 100]
% of edges with 2 lanes (ML2) [0, 100]
% of edges with 3 lanes (ML3) [0, 100]
% of edges with 4 lanes (ML4) [0, 100]
% of edges with distance between 100m-250m (Dists) [0, 100]
% of edges with distance between 250m-1000m (Distm) [0, 100]
% of edges with distance between 1000m-4000m (Distl) [0, 100]
% of task (Taskp) [0, 100]
Demand factor (DF ) +ve real no.
if setting 1 (S1), demand = DF × road distance
if setting 2 (S2), demand = DF × dlongest(longest distance)/ d(road distance)
Notes: sum (D1, D2, D3, D4, D5)= 100.

sum (ML1, ML2, ML3, ML4)= 100.
sum (Dists, Distm, Distl) =100.
*u ≡ undirected,d ≡ directed, m ≡ mixed

Three operators are used in sequence in Stage 1 to create
a realistic, static benchmark instance. These are described
below, and their functionality is illustrated using a 10-node
graph example, with parameter values set as NN = 10, T =
undirected, PC = 0, OW = 0, NV = 2, s = 1, D1 = 30,

Fig. 2. 3-Regular graph generated using RRGG

D2 = 20, D3 = 10, D4 = 10, D5 = 30, ML1 = 50,
ML2 = 43, ML3 = 3, ML4 = 4, Dists = 80, Distm =
15, Distl = 5, Taskp = 35, DF = 0.5 (S1).

1) RRGG: Regular random graph generator (RRGG) cre-
ates a uniform 3-regular (each node is adjacent to 3 edges)
undirected graph with the given number of the nodes and
a random road distance between 100 to 4000. The graph
for the 10-node example is shown in Figure 2. The reason
why 3-regular undirected graph is generated as the first level
output is in the real life situations majority of the nodes are
of degree 3 (T-junctions) and 4 (crossings). Further, it is more
straightforward to get a connected graph with mixed degrees
(1, 2, 3, 4, 5) starting from a 3-regular graph (maximum
change in degree is 2) compared to 4-regular (maximum
change in degree is 3).

2) AGG: The undirected 3-regular graph is then modified
through the advanced graph generator (AGG) which first
transforms the regular graph to a graph containing different
nodes’ degrees based on the required set of D1, D2, D3, D4

and D5 and then transforms the updated graph to a directed
or mixed graph containing one-way roads according to the
input information T , PC and OW . The process of generating
the desired distribution of nodes’ degrees, starting from a 3-
regular graph for a 10-node case is described below.
• Generating degree-5 nodes: First, the possible sets of

3 disjoint nodes are identified. Disjoint here means that
there is no common edge between the given nodes. For
the case shown in Figure 3(a), there are three such sets
possible, which are {6, 2, 3}, {1, 8, 4} and {5, 10, 7}. If
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Algorithm 1 Pseudo code of Stage 1
Require: NN (even number), T , PC , OW , NV , s, D1, D2, D3, D4, D5, ML1,
ML2, ML3, ML4, Dists, Distm, Distl, Taskp, DF (for details of these
symbols refer to Table I)
//RRGG Operator:
Initialize: generate a vector W (size 1× 3NN ) by repeating [1,2,..., NN ] three
times;
A=sparse (NN , NN );
while isempty(W ) ==0 do

r1 = rand[0,1], r2 = rand[0,1];
k1 = round(r1× length(W )), k2 = round(r2× length(W ));
Select two nodes, v1 ← W (k1) and v2 ← W (k2);
if there are loops v1 = v2 or parallel edges A(v1, v2) = 1 then

Re-select k1 and k2;
else

Add edges to graph, A(v1, v2) = 1 and A(v2, v1) = 1;
Remove used edges (v1, v2) and (v2, v1) from W ;

end if
end while
//AGG Operator:
The depot of graph ← s;
NE = Number of edges;
Assign various degrees in terms of D1, D2, D3, D4 and D5;
if the graph is a directed graph then

Based on OW value, randomly select round(NE −NE ×OW× 0.01) edges;
Replace each edge with two right-about directed edges;

else if the graph is a mixed graph then
Based on PC value, randomly select round(NE × PC× 0.01) edges and save
them into M ;
Based on OW value, randomly select round((NE × PC × 0.01) × OW×
0.01) edges from M and save them into N ;
Replace each edge in N with one directed edge;
Replace each edge in (M -N ) with two right-about directed edges;
Add a reverse edge for each of the selected edge into A;

end if
//RO Operator:
Generate the shortest distance DDn between each pair of nodes;
for j = 1→ Number of nodes do

if 0 ≤ DDn(j,s) ≤ ∞||DDn(s,j) = ∞ then
patℎsj ←reverse patℎjs;
Update DDn;

else if 0 ≤ DDn(s, j) ≤ ∞||DDn(j, s) =∞ then
patℎjs ←reverse patℎsj ;
Update DDn;

else if DDn(j, s) =∞||DDn(s, j) =∞ then
Connect node j and s with an undirected edge;
Update DDn;

end if
end for
Based on ML1, ML2, ML3, ML4, randomly select edges and add a parallel
edge to each of them;
Based on Dists, Distm, Distl, randomly select edges and distribute distances
to each of them;
Based on the percentage of tasksTaskp, randomly choose round(Taskp × (Total
number of edges)) edges as tasks;
Use DF to assign each task a demand;
Assign capacity of vehicles: (

∑

(demand)/NV <capacity
< (

∑

(demand)/NV )/NV +
∑

(demand)/NV ) and (capacity >
max(demand))

Ndjn = ⌊(NN ×D5/3)⌋ is less then the number of sets
identified (in this case 3), then Ndjn sets are randomly
chosen for assigning degree 5; otherwise all the sets are
chosen. In this case, Ndjn = 1, so 1 set ({1, 8, 4}) out
of the possible three is randomly chosen. Thereafter,
in each of the chosen sets, one edge is added between
each pair of nodes, in order to raise their degree from
3 to 5. This process is shown in Figure 3. These sets of
chosen nodes are thereafter excluded from the further
steps (assignment of other degrees of nodes), and the
remaining nodes are assigned to a set RestNodes.

• Generating degree-1 nodes: In RestNodes, possible
sets of 3 joint nodes are identified. Joint here refers to
a set of nodes that form a closed loop. In this example,

(a) Choosing sets of 3 disjoint nodes

(b) Graph after 5 degree distribution

Fig. 3. Process of generating nodes with degree 5

{6, 9, 5} forms such a set. If Njn = ⌊(NN ×D1/3)⌋
is less than the number of such possible sets, Njn sets
are randomly chosen, otherwise all sets are chosen for
degree 1 assignment. In this example, Njn = 1, so the
set {6, 9, 5} is chosen. Among the chosen set(s), an
edge is deleted between each of the nodes to reduce
their degree to 1. This set of nodes is then removed
from RestNodes, which now contains nodes {2, 3, 7,
10} (Note: If the number of available sets is less than
Njn, then repeat the process using set(s) of 4 joint nodes
instead).

• Generating degree-4 nodes: In the RestNodes, all
possible sets of 2 disjoint nodes are identified. In this
example, the possibilities are {2, 3} and {7, 10}; If
Ndjn = ⌊(NN ×D4/2)⌋ is less then the number of
possible sets, then Ndjn sets are randomly chosen,
else all groups are chosen for degree 4 assignment.
Thereafter, for each chosen set the nodes add an edge
between the nodes to raise their degree to 4. For this
particular case, Ndjn = 0, so none of the sets are chosen
(hence no nodes are generated with degree 4).

• Generating degree-2 nodes: In the RestNodes all pos-
sible sets of 2 joint nodes are identified. In this example,
the only possibility is set {2, 7}. Thereafter, similar
process as that for generating degree 1 nodes (described
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above) is followed and the edge between the nodes is
removed to generate degree 2 nodes.

Summarizing the above, if the degree needs to be raised,
the process involves identifying disjoint nodes and adding
edges between them, whereas if the degree needs to be
reduced, joint nodes are identified and edges between them
are deleted. After implementing the above process, the graph
obtained with the required degree distribution is shown in
Figure 4.

Fig. 4. Graph after assignment of degree distribution (AGG)

3) RO: After AGG operator, a repair operator (RO) is
applied to the graph. The purpose of this operator is to
maintain the connectedness of the network while maintaining
(close to) desired properties of nodes’ degrees. RO operates
by connecting every task to the depot directly or indirectly
by introducing an undirected edge or adding certain reverse
edge within the shortest available path (between task and
depot). In the example discussed here, node 1 is considered
as the depot, which has a direct or indirect route to all other
nodes, hence the graph remains unchanged after applying
RO.

Finally, after RO operator, multiple lanes, distances (near-
est integer), tasks and demands (nearest integer) and vehicle’s
capacity are assigned based on the specific input information
to generate the base benchmark. When assigning the number
of tasks, whether multiple lanes of an edge are considered as
one task or multiple tasks depends on the specific real-life
requirement and situation. The base graph obtained for the
example is shown in Figure 5.

It is to be noted that in I0, it may not be at times possible
to generate exact number of required nodes with degree 1.
The reason is that 3-regular graph may not contain 3 or 4
joint nodes. Hence, larger the D1 value, more deviation from
required degree distribution may be expected in the generated
graphs. The percentage of OW may also have an effect on
the degree distribution. If OW is set very high (most roads
are one-way), then the graph may contain a large number of
nodes which do not connect to the depot. In that case RO
will add edges to create those connections which will alter
the degree distribution of the graph.

Fig. 5. The base instance (I0) generated at Stage 1. The numbers along side
the edges denote distance, and edges with numbers in brackets (denoting
demand) are task edges.

B. Stage 2: Creating Dynamic Benchmarks

The instance generated from Stage 1 forms the basis in-
stance I0 at time t0, and is given as an input for Stage 2 along
with a set of parameters ‘Inputs 2’, listed in Table II. The
parameter Gmax defines the number of instances to be gen-
erated in series, starting from I0. Each instance may incor-
porate one or more interruptions/changes from the previous
instance. tG defines the time between the instance updates.
The parameters w1, w2, . . . , w6 indicate percent change to
quantify six different types of interruptions/changes affecting
the instance. Each of these parameters are a vector of length
Gmax, representing the % change at each time step. The
parameter w1 is used to prescribe the number of vehicles, and
w2 for number of roads that could possibly break down from
one time step to other. The percentages w1 and w2 are always
calculated based on the initial numbers (in I0) of vehicles and
roads respectively. w3 denotes the percent of new added tasks
at a time step. This percentage is calculated on the number
existing tasks after applying w2 changes. This is because
some of the roads which broke down may have had tasks
associated with them, which are automatically removed from
the set of current tasks. Similarly, w4 determines the number
of tasks that are cancelled, which also is calculated based
on current tasks. w5 denotes the percent of existing roads
whose (percieved) distance has changed due to congestion.
In this model, the speed of vehicle is assumed constant, and
hence distances have been manipulated (changed according
to Gaussian distribution with current value as mean and
1% standard deviation) to reflect the affect of congestion.
w6 represents the percent of existing tasks for which the
demands have changed. The demand is also assumed to
change according to Gaussian distribution. The demand
factor DF is used to calculate demands for the added tasks.
After calculating the percentage values (w1, w2, . . . , w6), the
numbers are rounded to nearest integer for manipulating the
instance. The pseudo-code for Stage 2 process is shown in
Algorithm 2, and the description follows.

Instance Modifying Operator (IMO) is used to create
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Algorithm 2 Pseudo code of Stage 2
Require: I0, tG, NV , Gmax , w1, w2, . . . , w6, DF

for i = 1→ Gmax do
V eℎicles← Set of vehicles in I0
Ndv ← round(NV × w1(i) × 0.01)
Delete Ndv randomly chosen vehicles from V eℎicles
//Update Edges:
Edges← Set of all edges in I0
NE ← Number of edges in Edges
Nde ← round(NE × w2(i)× 0.01)
Delete Nde randomly chosen edges from Edges
Update Edges, I0, NE

//Update Tasks:
Tasks← all tasks in I0 (Tasks ∈ Edges)
NonTasks ← Edges without task in I0 (NonTasks ∈ Edges)
Nt ← Number of tasks (edges) in Tasks
Nnt ← Number of edges in NonTasks
Na ← round(Nt × w3(i)× 0.01)
if Na < Nnt then

Choose Na edges from NonTasks
Assign demands to the chosen edges using DF

else
Assign demands to all edges in NonTasks using DF

end if
Ndt ← round(Nt × w4(i)× 0.01)
Delete Ndt randomly chosen tasks from Tasks
Update Tasks,Nt

//Update distances:
Nlc = round(NE × w5(i)× 0.01)
Choose Nlc edges randomly from Edges
Change the distances of chosen edges by values sampled from N (0, 0.01)
//Update demands:
Ndc ← round(Nt × w6(i)× 0.01);
Choose Ndc tasks randomly from Tasks
Change the demands of chosen tasks by values sampled from N (0, 0.01)

end for

TABLE II
LIST OF INPUTS FOR STAGE 2

Input Value Range
No. of instances (Gmax) An integer
Time duration for each interruption/change (tG (mins)) +ve real no.
% of broken-down vehicles (w1) [0, 100]
% of broken-down roads (w2) [0, 100]
% of new added tasks (w3) [0, Maxw3

]*
% of cancelled tasks (w4) [0, 100]
% of roads changed distance (w5) [0, 100]
% of tasks changed demand (w6) [0, 100]
Demand factor (for new added tasks) (DF ) +ve real no.
if setting 1 (S1), demand = DF × road distance
if setting 2 (S2), demand = DF × dlongest(longest distance)/ d(road distance)
*w3 can go up to a value such that all edges become tasks

dynamic instances from the base graph I0. The functioning
of the operator is illustrated using the example used in the
previous section. IMO uses the input parameters ‘Inputs
2’ (described in Table II) and applies the percent changes to
the relevant attribute of the graph to create the new instance.
In Table III, one such set of parameters is shown for creating
two progressive instances from I0.

1) Generation of I1: Among the given parameters, tG
and w1 indicate the time and the number of broken-down
vehicles respectively, which do not affect the graph. However,
they affect the instance since these parameters are required
to completely define the problem. At t1, the value of w1 is
50%, which means 50% of NV (the value rounds to 1 for
this time step) number of vehicles are broken down. Also,
the value of tG dictates where the vehicles will be at the
instant (while serving existing tasks), which will determine
how they should be re-routed.

TABLE III
A SET OF INPUTS (‘INPUTS 2’) FOR STAGE 2

Parameter Values (10 case) Values (100 case)
Gmax 2 2

tG (mins) {1, 3} {4, 6}
w1 (%) {50, 20} {10, 50}
w2 (%) {10, 15} {10, 15}
w3 (%) {100, 120} {5, 50}
w4 (%) {0, 0} {5, 50}
w5 (%) {0, 10} {5, 0}
w6 (%) {10, 10} {10, 50}
DF {0.5 (S1), 0.5 (S1)} {6 (S2), 6 (S2)} (Instance2)

{0.5 (S1), 0.5 (S1)} (Instance1,3)

The percentage w2 of broken-down roads for t1 is set as
10%. I0 has 14 roads, and hence round (10% of 14) = 1
road will break down (equivalently, removed from graph) at
t1. For this case, 1 random road (edge 2-4) is removed from
the graph. The percentage w3 of added tasks for t1 is set as
100% which means there are round (100% of 5) = 5 new
added tasks, e.g., edges 4-10, 4-10 (each lane of edge 4-10 is
considered as a task here), 1-8, 1-6 and 5-8. The demands of
new added tasks are assigned based on the DF value. Due to
low values of w4 and w5 (both will result in rounded value
of zero), there are no deleted tasks and no change in road
distance (congestion) at t1. For the case of change in task
demand, w6 is 10%, which results in the change in demand
of 1 task (edge 8-10) modified using Gaussian distribution
as discussed earlier. The resultant isntance at t1 is shown in
Figure 6(a).

2) Generation of I2: Following the similar process as for
creating I1, the values of change for various attributes are
calculated. In this case, the number of broken-down vehicles
comes out to be zero (20% of 2). Hence after this instant,
both vehicles will be available to complete the tasks. The
rounded values of broken-down roads, added tasks, deleted
tasks, roads with changed distance and tasks with changed
demands come out to be 2, 6, 0, 1 and 1 respectively. Given
these numbers, two roads (edges 2-10 and 8-10) are removed
from the graph I0. It is to be noted here that the roads are
removed from I0 and not I1. This implies that some (or
all) roads which were broken/inaccessible in previous time
step (edge 2-4 in this case) have become operable again.
Thereafter, 6 tasks are added (at random) which are edges
1-8, 5-8, 4-10, 4-10, 3-4, 2-4, and no task is deleted. One
road (edge 1-6) has changed distance from 154 to 150 at
this instant, while 1 task (edge 1-8) has changed demand
from 104 to 101. The resultant instance at t2 is shown in
Figure 6(b).

It is to be noted here that the selection of roads, ve-
hicles, tasks etc. to be modified is done randomly using
proportions (w1 − w6 parameters) in the example above.
However, it is possible for the user to input exactly which of
these (roads, vehicles, tasks etc.) he/she needs to change to
generate specific instances, in which case these parameters
will not be required. Hence, this model can be easily used
to generate a specific dynamic benchmark which to meet the
user’s requirement.
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(a) I1 (b) I2

Fig. 6. Dynamic instances generated during Stage 2

C. Example: 100-node benchmarks

In this section, three benchmarks are generated using the
proposed benchmark generator: Instance1 (undirected, rep-
resenting problems like pipeline inspection), Instance2 (di-
rected, e.g., garbage collection) and Instance3 (mixed, e.g.,
winter gritting) are briefly discussed. The parameters used
for Stage 1 are listed in Table IV shown come after. Twenty
independent instantiations were done for each of the base
graphs I01, I02 and I03 in order to show the deviations in
the output graphs from desired properties. The statistics are
shown in Table V. It can be seen that on an average the
properties of the generated graphs are close to the inputs
prescribed. Slight deviations are caused due to parameters
D1 and OW , as discussed earlier at the end of Section III-A.

TABLE IV
PARAMETERS INPUT OF EACH INSTANCE FOR STAGE 1

Instance1 Instance2 Instance3
NN 100 100 100
NG 1 1 1
T undirected directed mixed
PC 0 100 30
OW 0 10 10
NV 8 8 8
s 1 1 1
D1 3 3 3
D2 2 2 2
D3 60 60 60
D4 30 30 30
D5 5 5 5

ML1 50 50 50
ML2 43 43 43
ML3 3 3 3
ML4 4 4 4
Dists 80 80 80
Distm 15 15 15
Distl 5 5 5
Taskp 10 10 10
DF 0.5 (S1) 6 (S2) 0.5 (S1)

One of the random base graphs for each instance is chosen
to represent I01, I02 and I03 at t0 for further creating
instances at t1 and t2. The parameters used for Stage 2
are listed in Table III. The properties of generated instances
are shown in Table VI. As evident from the properties,

w2 (the number of broken-down roads) affects the con-
nectedness and degree distribution of the graph (as some
edges are deleted). Deleting the edges also indirectly af-
fects the proportion of lanes (ML1,ML2,ML3,ML4) and
distances (Dists, Distm, Distl). Based on which edges are
deleted, this can have a significant effect on D1, D2 . . . D5,
as seen from changes in values for Instance1 from t0 to
t1. In real life situations, it is unlikely that w2 will assume
high values (as many roads broken-down at the same time is
an unlikely occurrence). Changes in Dists, Distm and Distl
largely depend on standard deviation used (in addition to w5),
which in this case is 1%, resulting in only slight variations
in the road length distribution. The overall change in the
number of tasks is determined by the number of broken-
down roads with tasks associated with them, as well as the
prescribed added/deleted tasks. The parameter w1 affects the
problem severity by changing the number of vehicles that are
available to complete the tasks. In the given examples, the
instances become progressively harder to solve with time as
the number of vehicles decrease at both time steps (without
proportional reduction in number of tasks).

IV. SUMMARY

DCARP is a challenging problem which is of great interest
in both research and industry due to its applicability in many
real world problems. In this study, a benchmark generator for
DCARP is presented. The benchmark generator is capable
of modeling interruptions/changes closely resembling those
likely to be encountered in real life situations. Generic
or very customized CARP and DCARP instances can be
generated by manipulating the input parameters for the
benchmark generator. The flexibility and control offered by
the generator make it more suitable to create benchmarks in
order to thoroughly test the DCARP optimization algorithms,
compared to the limited set of specific instances currently
available in the literature.
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