
Competitive Coevolutionary Training of Simple
Soccer Agents from Zero Knowledge

Christiaan Scheepers
Department of Computer Science
School of Information Technology

University of Pretoria
Pretoria 0002
South Africa

Email: cscheepers@acm.org

Andries P. Engelbrecht
Department of Computer Science
School of Information Technology

University of Pretoria
Pretoria 0002
South Africa

Email: engel@cs.up.ac.za

Abstract—A new competitive coevolutionary team-based par-
ticle swarm optimisation (CCPSO) algorithm is developed to train
multi-agent teams from zero knowledge. The CCPSO algorithm
uses the charged particle swarm optimiser to train neural network
controllers for simple soccer agents. The training performance of
the CCPSO algorithm is analysed. The analysis identifies a critical
weakness of the CCPSO algorithm in the form of outliers in the
measured performance of the trained players. A hypothesis is
presented that explains the presence of the outliers, followed by a
detailed discussion of various biased and unbiased relative fitness
functions. A new relative fitness function based on FIFA’s league
ranking system is presented. The performance of the unbiased
relative fitness functions is evaluated and discussed. The final
results show that the FIFA league ranking relative fitness function
outperforms the other unbiased relative fitness functions, leading
to consistent training results.

I. INTRODUCTION

The particle swarm optimisation (PSO) algorithm [1] is a
stochastic population-based optimisation method, with its roots
in the simulation of the social behaviour of birds within a flock.
First developed by Kennedy and Eberhart [1] in 1995, the
PSO algorithm has been more successful in solving complex
problems than traditional evolutionary computation (EC) algo-
rithms on a variety of problems [2]. Particle swarm optimisers
have proved successful in training board state evaluators for
games such as Tic-Tac-Toe, Checkers and Bao [3]–[7]. The
aforementioned training techniques require the construction of
traditional game trees, and using a competitive coevolutionary
PSO algorithm to train a neural network game state evaluator.
Constructing traditional game trees can become impractical
for games that are more complex, such as Go [8]. The same
applies to games such as simulated soccer where it may not
even be possible to always construct a game tree. In contrast
to the above mentioned techniques, the technique presented
in this paper does not make use of a game tree. Instead, the
actions taken by each player is directly controlled by a neural
network.

The competitive coevolutionary team-based particle swarm
optimisation (CCPSO) algorithm presented in this paper is
applied to train soccer-playing robot teams in a simplified
soccer game. Teams compete against one another while team-
members collaborate in order to win. In addition to train-
ing a team of players, the training is performed from zero

knowledge, that is, no domain information is provided to the
training algorithm; only the game outcome and rules of the
game are known during training. As no domain information is
required, the algorithm can easily be adapted for games other
than simple soccer.

Analysis of the training performance showed the presence
of outliers in the measured performance of the trained players.
A hypothesis is presented to explain the presence of the out-
liers. A review of various alternative relative fitness functions
is presented. The FIFA league ranking relative fitness function
is then proposed. Final results confirm the above hypothesis
and show that the FIFA league ranking relative fitness function
overcomes the outlier problem.

The remainder of this paper is organised as follows: Section
II presents the simple soccer model. Section III presents the
CCPSO algorithm. Training performance is discussed in sec-
tion IV. Section V provides an overview of various relative fit-
ness functions and introduces the FIFA league ranking relative
fitness function. It is also shown that the FIFA league ranking
relative fitness function outperforms the alternative relative
fitness functions. Finally, section VI presents the findings and
conclusions of this paper.

II. SIMPLE SOCCER

This section presents the simple soccer model used
throughout this paper. Simple soccer is loosely based on the
simulated soccer model introduced by Jeong and Lee [9].
Detail on the simple soccer field, team composition, agent
sensors, agent actions, and overall game rules are presented.

A. Soccer field

Games are played on a two dimensional virtual soccer field
of size l×w. Fig. 1 depicts the soccer field as it is used in this
study. The size of the field is 5 wide by 6 long. Two additional
blocks that represent the goal areas are added to the field on
opposite sides.

B. Team composition

Two teams compete against each other. Each team consists
of two agents. Agents A1 and A2 form team A while agents
B1 and B2 form team B.

1210

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



A
1

A
2

B
1

B
2

Fig. 1. 5× 6 Simple Soccer field with the ball and players.

C. Agent sensors

Fehérvári and Elmenreich demonstrated the importance
of well-designed sensors to serve as neural network inputs
when attempting to train neuro-controllers for a soccer-like
environment [10]. Fehérvári and Elmenreich proposed the use
of four neurons to detect each class of object. Classes of
objects are the ball, nearest team-mate, nearest opponent, and
wall. The four neurons represent the distance to the object in
a specific direction, i.e. north, south, east or west. The input
functions for the four neurons are defined as follows:

f(north) =

{
∆y
d2 if y > 0
0 if y ≤ 0

(1)

f(south) =

{
∆y
d2 if y < 0
0 if y ≥ 0

(2)

f(west) =

{
∆x
d2 if x < 0
0 if x ≥ 0

(3)

f(east) =

{
∆x
d2 if x > 0
0 if x ≤ 0

(4)

where ∆x is the distance along the east-west direction and ∆y
is the distance along the north-south direction; d is defined as
d =

√
∆x2 + ∆y2.

D. Agent actions

Each agent can perform one of several actions per turn:

• Move: An agent can move one square to either of the
eight adjacent squares.

• Dribble: An agent that has possession of the ball
can move one square to either of the eight adjacent
squares, taking the ball along with it.

• Kick: An agent that has possession of the ball can
kick the ball two squares away in either the left or
right, or forward or backward directions.

Fig. 2 depicts the actions that an agent can perform, along with
their directions. In the event that an agent executes an invalid
action, for instance kicking without having possession of the
ball, that action is simply ignored.

E. Rules

The rules that govern how each game is played are:

• For each team one agent starts the game in front of the
goal area, the second agent starts in either of the three
blocks in front of the first agent. The exact placement
of the second agent is determined using a uniform
random placement function.

• The ball starts in the middle of the field. If the middle
is between two or four blocks, the placement is done
uniform randomly within either of the blocks.

• The game stops once a goal is scored, or if a specified
maximum number of iterations is reached.

• In the event that multiple agents occupy the same
block as the ball, the ball ownership is determined
using the probability 1

n , where n is the number of
agents occupying the block.

• A goal score is awarded once the ball enters the goal
area on either side.

• If an agent is in possession of the ball and the
move action is executed, the agent will automatically
perform the dribble action.

• An agent cannot leave the field with either a move or
dribble action.

• The ball cannot be kicked off the field. If a kick is
performed that would result in the ball leaving the
field, the ball is simply stopped at the field’s boundary.

dribble

or move

dribble

or move

kick kick

kick

kick

dribble

or move

dribble

or move
dribble

or move

dribble

or move

dribble

or move

dribble

or move

kick

kick

kick

kick

Fig. 2. Simple soccer agent actions.

1211



III. COOPERATIVE COMPETITIVE COEVOLUTION WITH
CHARGED PSO

This section introduces the CCPSO algorithm for training
multi-agent teams from zero knowledge. The neural network
architecture, as used by the neuro-controlled players, is also
discussed.

Each game agent, or neuro-controlled player, is represented
in the CCPSO algorithm as a separate swarm of particles.
Each particle position represents a weight vector for the neural
network of the corresponding player. The training objective for
the CCPSO algorithm is to find the best performing particle
positions for each of the swarms. These best performing
particle positions represent the best performing players for
each of the corresponding player positions.

Scheepers showed that the competitive coevolutionary
training environment can be seen as a dynamic environment
[11]. The CCPSO algorithm therefor uses the charged PSO
introduced by Blackwell and Bentley [12]–[14] to improve
performance in the presence of a constantly changing search
space.

Fig. 3 provides a pseudocode implementation of the
CCPSO algorithm. A hall of fame (HOF) [15], [16] is also
maintained to avoid early stagnation and to aid exploration.
The HOF maintains a collection of the best performing individ-
uals from each generation since the evolutionary process has
started. This collection of previous best performing individuals
helps to combat the loss of exploration by preserving past good
characteristics.

1: Create and initialise a swarm of neural networks for each
game position.

2: repeat
3: for all swarms O(t) do
4: for all swarms Os(t) 6= O(t) do
5: Add each personal best position to the competition

pool for swarm Os(t).
6: Add each particle to the competition pool for

swarm Os(t).
7: end for
8: for all particles Pi (or NN) in the swarm O(t) do
9: repeat

10: Select team members and opponents from the
competition pools.

11: Play a game using the selected players.
12: Record if game was won, lost or drawn.
13: until predefined number of games has been played.
14: end for
15: Determine a score for each particle.
16: end for
17: Compute new neighbourhood best position.
18: Update particle velocities.
19: Update particle positions.
20: until all swarms converge or iteration limit is reached.

Fig. 3. Pseudocode for the basic CCPSO algorithm.

The experimental work in this study made use of the basic
feed-forward neural network algorithm as neuro-controller for
the simple soccer agents. A single hidden layer with five neu-
rons was used. The hyperbolic tangent activation function was

used as activation function. The neural network input consisted
of a 16-dimensional floating-point vectors. The values for the
input vector is calculated using equations (1), (2), (3), and
(4). The input vector is constructed by combining the four
calculated values for each of the four object classes. The four
object classes are the ball, the closest team member, the closest
opponent, and the field boundary.

The neural network output consists of an eight-dimensional
floating-point vector with values scaled between 0 and 1.
The vector is constructed by combining the movement and
kick vectors. The movement vector indicates the movement
direction, and the kick vector indicates the direction to kick the
ball. The four values per vector are desirability factors to move
or kick in each of the primary directions: forward, backward,
left, and right. A desirability factor larger than 0.5 indicates
a desire to move or kick in the corresponding direction. If
desirability is indicated in two conflicting directions (i.e. both
left and right), the direction with the larger desirability factor
is given precedence. If two conflicting desirability factors are
equal, no desire is indicated and no action will be taken.
For example, the vector {0.6, 0.8, 0.2, 0.4, 0.3, 0.4, 0.1, 0.2}
represents a desire to move backward.

For the experimental work presented in this paper the
parameters of the CCPSO algorithm were optimised using
a parallel coordinate virtualisation technique [17]. Table I
provides a summary of the parameter values that was used.

TABLE I. CCPSO PARAMETERS

Parameter Value

Swarm type Atomic (50%)
Neighbourhood structure Von Neumann
Inertia weight 0.729844
Social constricting coefficient 1.49618
Cognitive constricting coefficient 1.49618
Initial particle velocity 0
Initial particle positions R(−1, 1)
Swarm size 20 particles
Perception limit 500.0
Perception core 2.0
Charge magnitude 15.0
Maximum particle velocity 15.0
Hall of fame size 4
Hall of fame update iterations 30
Competition pool size 15
Personal best re-evaluation iterations 3

IV. OUTLIER PROBLEM

This section discusses the performance of the CCPSO
algorithm. Performance is measured by playing games against
randomly behaving players, using the S measure defined as

S =
wwonnwon + wdrawndraw

ntotal
(5)

where wwon and wdraw is the weight assigned to games
won and drawn respectively. The S measure is calculated
over 15000 games with wwon and wdraw set to 1.0 and 0.5
respectively. The average S measure along with the standard
deviation is reported over 30 simulations.

Fig. 4 depicts the S measure for 30 simulations over 2000
iterations. A quick visual inspection of the S measure values
at iteration 500 reveals that the majority of S measure values
are clustered above 0.6. Two bad performing teams, or outliers

1212



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

S
 m

e
a

s
u
re

Iteration

Fig. 4. S measures over 2 000 iterations for 30 teams.

in the measured performance can be seen at iteration 500 with
S measure values of 0.3 and 0.4 respectively. The available
information shows that the evolutionary process is not always
able to drive the performance of the swarm high enough.
Outliers remain visible in the data even with an iteration limit
of 2000.

The outliers indicate that the training algorithm failed to
consistently train well-performing simple soccer players using
a given parameter configuration. One interpretation of these
results might be that the relative fitness function does not reveal
enough information to drive the evolutionary process fast
enough to a better-performing area of the hyper-dimensional
search space. Further analysis of the relative fitness function
and the effect thereof on the training performance is required
to confirm or deny this hypothesis. A detailed analysis of the
relative fitness function is presented in the next section.

V. RELATIVE FITNESS

This section provides an overview of alternative relative
fitness functions. The concept of biasing behaviour towards
a specific gameplay strategy through a fitness function is
discussed. A performance comparison between the alternative
unbiased relative fitness functions is presented.

A. Avoiding Biased Behaviour

One of the primary focuses of this study is to develop
a training technique that trains playing strategies from zero
knowledge. Zero knowledge implies that the behaviour of the
players may not be predetermined or guided towards a specific
playing style or strategy. It is of key importance that the relative
fitness function therefor does not introduce a bias towards
specific strategies by rewarding a certain gameplay style more
than others.

The next two subsections discuss two alternative relative
fitness functions to train game agents based on previous
studies. Both of these relative fitness functions introduce a
bias by rewarding certain gameplay styles more than others.

1) Simple soccer absolute fitness: Lee and Jeong developed
an absolute fitness function for their genetic algorithm (GA)
to train simple soccer game agents [9]. The simple soccer
absolute fitness function to be maximised is defined as

F =
i=N∑
i=1

L′(i) (6)

where

L′(i) = L0 +

tfinal∑
t=0

(fgoal−A(t) + fposses−A(t)

+ fgoal−B(t) + fposses−B(t)) (7)

with

fgoal−A(t) =

{
1000 if team A scores at iteration t
0 otherwise

fgoal−B(t) =

{
−90 if team B scores at iteration t
0 otherwise

fpossess−A(t) =

{
10 if team A possesses the ball

at iteration t
0 otherwise

fpossess−B(t) =

{ −10 if team B possesses the ball
at iteration t

0 otherwise
(8)

where i is the i’th simulation of the game, N is the number
of simulations (Lee and Jeong defined N to be five for their
work), tfinal is the number of iterations per simulation until a
goal is scored or 30 if no goal is scored in the first 30 iterations,

1213



t is the t’th iteration of the simulation, and L0 is a constant
set to 400.

Analysis of equation (7) reveals that the maximum value
for F is achieved when fpossess−A(t) = 10 for t < 30
and fgoal−A(t) = 1000 for t = 30. This maximum fitness
value can only be achieved by holding on to the ball for all
iterations up to the last, at which point the team must score
a goal. Because F is maximised the optimisation process will
likely result in players exhibiting this specific behaviour. Thus
introducing a bias towards this specific gameplay strategy.

This bias violates the training from zero-knowledge goal of
this study.

2) Rampup absolute fitness: Fehérvári and Elmenreich
used a genetic algorithm (GA) to evolve neural network con-
trollers to play soccer in a simplified soccer simulation [10].
They made use of a fitness function, hereafter referred to as
the rampup absolute fitness function, to drive the evolutionary
process. The rampup absolute fitness function was defined as
follows:

Framp = WpPp + WbdPbd + (WkPk −WfkPfk)

+ WbgPbg + WsPs (9)

with the parameters as summarised in table II, where Pp, Pbd,
Pk, Pfk, Pbg and Ps represent the number of points and Wp,
Wbd, Wk, Wfk, Wbg and Ws are the weighting of these points.

Points are awarded every five seconds for field distribution,
every four seconds for distance to the ball and every two sec-
onds for ball distance to the opponent’s goal. Field distribution
is based on 64 evenly distributed checkpoints. Each checkpoint
is controlled by the nearest player. A point is awarded for each
checkpoint controlled by a team. A single point is awarded
to the team with the player nearest to the ball. Kicking-
related points are awarded a point per kick. Fig. 5 presents a
visual representation of how the evolutionary process is guided
towards specific behaviour.

Field

distribution

Distance to

ball

Number

of kicks

Ball

distance 

to opp. goal

Number of

scores

Fig. 5. Rampup absolute fitness direction of evolution.

It is clear to see how the rampup absolute fitness function
drives the evolutionary process towards a specific bias. Inspec-
tion of the reward function reveals that only offensive-type

TABLE II. RAMPUP ABSOLUTE FITNESS FUNCTION PARAMETERS.

Parameter Symbol Weight
Field distribution Pp 100

Distance to the ball Pbd 103

Number of kicks Pk 2× 104

Number of false kicks (ball is kicked out of bounds) Pfk 104

Ball distance to the opponent’s goal Pbg 105

Number of scores Ps 4× 106

strategies are rewarded. Given enough generations, a defensive
playing team will not be rewarded enough to survive. The
objective of the soccer game is indeed to score goals; however,
drawing behaviour is also worth rewarding. Drawing a game
against a very good team can be compared to winning against
a mediocre team.

B. Unbiased Fitness

The previous subsection showed that it is possible to
introduce bias into the training process through the relative
fitness function. Developing a well-performing unbiased rel-
ative fitness function is extremely important. Two unbiased
relative fitness functions were developed for the simple soccer
problem by the authors of this study. The two relative fitness
functions are discussed below.

1) Fixed Reward: The reward scheme used in the initial
experimentation rewarded victories with one point, draws with
zero points and defeats with −2 points [18]–[20]. In contrast
to this point structure international soccer leagues typically use
a point system where three points are awarded for a victory,
one point for a draw, and zero for a defeat.

Updating the point allocation to be inline with the soccer
league scoring system will not address the primary weakness
of the fixed reward scheme. Draws will become a less desirable
outcome, but no additional information about the actual game
performance will be revealed. A very good team winning 15 : 0
against a very bad team will be rewarded the same as a team
winning 9 : 6 against a very good team. This leads to a
low diversity between the relative fitness value of particles
in a swarm in cases where a small number of games are
played. Higher diversity in the relative fitness function reveals
more information about the search space, which in turn, allows
for faster convergence on well-performing areas of the search
space. A relative fitness function that reveals more information
about the search space is thus more desirable.

2) Goal Difference: In order to increase population diver-
sity, more information must be gathered from the competitions
being played. One approach is to award points based on
the score difference (and not just based on the competition
outcome) between competing two teams. For the simple soccer
model, the score difference is simply the goal difference at the
end of the game. A team winning 15 to zero will be rewarded
with 15 points for their victory, whereas the losing team will
receive a penalty of −15 points for their defeat. A draw will
result in both teams receiving zero points. The relative fitness,
F(t), for iteration t is calculated using

F(t) =
N∑

n=1

(Gn −On) (10)

where Gn is the number of goals scored in the n’th competi-
tion, On is the number of goals the opponents scored in the
n’th competition, and N is the number of games played per
tournament.

The goal difference relative fitness function gathers more
information from each game being played when compared to
the fixed reward relative fitness function. It is, however, more
influenced by the game rules than a fixed reward scheme. For
instance, if the game is played only up to five goals it does

1214



not take the number of game steps (or iterations) into account
for a team to score the five goals. One team might score five
goals very fast, whereas another team might take a very long
time to score five goals. Limiting the game in question to a
fixed number of steps (or iterations) addresses this problem to
some extent. The fast scoring team will still be able to score
five goals, whereas the slow scoring team might only score,
say, two goals. This approach may not always be an option
for all games as certain games dictate game-end conditions as
part of the game rules and iteration limits cannot be applied.
For simple soccer, an iteration limit can be added.

C. FIFA League Ranking

An alternative approach to increasing the information gain
of the relative fitness function is to make use of the Official
FIFA World Ranking points system.1 After the 2006 FIFA
World Cup, a revised ranking calculation procedure was intro-
duced to significantly simplify the procedure. The new ranking
system makes use of the following formula to calculate the
points awarded to a team per match:

P = M × I × T × C × 100 (11)

where

• M indicates if the match ended in a victory (3 points),
a draw (1 point), or a defeat (0 points). In cases where
a penalty shoot-out is required, the winning team is
awarded 2 points and the losing team 1 point. Should
a team lose a match, no points are awarded.

• I indicates the importance of the match based on a
weight scheme. For friendly matches I = 1.0, for
World Cup qualifier and continental qualifier matches
I = 2.5, for continental final competitions and FIFA
confederation cup matches I = 3.0, and for World
Cup final competitions I = 4.0.

• T indicates the strength of the opposition, calculated
as

T =
200− (opposition rank position)

100
(12)

The top team is assigned T = 2.0 and teams ranked
lower than 150 is assigned T = 0.5. Rank is based on
the most recent FIFA ranking publication.

• C indicates the strength of the confederation. For
intercontinental matches, the average of the confed-
erations the two competing teams belong to, is used.
The confederation strength is based on the number of
victories by the confederation at the last three FIFA
World Cup competitions. After the 2010 FIFA World
Cup the strengths were UEFA 1.00, CONMEBOL
1.00, CONCACAF 0.88, AFC 0.85, CAF 0.86, and
OFC 0.85.

• P indicates the points awarded to a team for a match.

Generally speaking, the greatest winners in the new point
system are teams who win competitive matches against high-
ranking opponents. Friendly matches and draws provide lim-
ited gains and losses provide none.

1http://www.fifa.com/worldfootball/ranking/procedure/men.html

Rank is calculated for a team as the sum of all the games
played in the last four years devalued over the period (100%
for the first year, 50% for the second year, 30% for the third
year, and 20% for the fourth year back).

The ranking system introduced by FIFA recognises the fact
that a victory against a good team (or a high-ranking team) is
more difficult to achieve - scoring goals against a good team
is inherently more difficult, and should thus be rewarded more
than a victory against a bad team (or a low-ranking team).
The ranking system also takes into account past results, albeit
at a reduced weight when compared to current results, thus
avoiding a situation where a single team can dominate the
ranks based on a single year’s results.

Competitive coevolution makes use of tournaments to
determine a relative fitness for each individual. The relative
fitness can be seen as a rank. Similarly, the relative fitness
function can be seen as a ranking system. Building on this
idea, the experimental work in this study made use of a new
relative fitness function based on the FIFA ranking system.
Points are calculated using

P(t) =
N∑

n=1

(
Mn ×

200− Tn
100

)
(13)

where N is the number of games played in the competitive co-
evolution tournament, Mn is the n’th game outcome, defined
as

Mn =

{
3 for a victory
1 for a draw
0 otherwise

(14)

and Tn is the n’th opposition team rank. Each tournament
team consists of randomly chosen team members. The use of
randomly constructed teams creates a problem as no team rank
can be maintained with consistency between iterations. Instead,
the rank must be maintained per player, and then calculated
for a team based on the members. The opposition team rank,
Tn, is calculated by averaging the rank of the members of the
opposition team as follows:

Tn =

∑P
p=1 r(p)

P
(15)

where function r(p) represents the rank of player p in a team
consisting of P members. A player’s rank is determined based
on the relative fitness of the particle in the previous iteration.
The relative fitness, F(t), for iteration t is calculated using

F(t) = P(t) + 0.5× P(t− 1) + 0.3× P(t− 2)

+ 0.2× P(t− 3) (16)

taking into account previous points awarded using the same
weighting scheme as the FIFA ranking system.

Two concepts not incorporated into the newly developed
relative fitness function are the addition of a game importance
weight (I in the FIFA equation) and confederation strength (C
in the FIFA equation). In theory it would be possible to incor-
porate these two components if the training algorithm made
use of multiple populations for a single position. Currently,
the algorithm uses a single population per position, rendering
these components redundant.

1215



As historic performance is indirectly maintained by the
rank, r(p), used when determining the new fitness value
(which in turn determines the new rank) the function is further
simplified to F(t) = P(t).

It should be noted that the FIFA league ranking system
does not incorporate any problem domain information other
than game outcome similar to the fixed reward functions. This
property makes it possible to apply the ranking system as a
relative fitness function, as described here, to any competitive
coevolutionary problem.

D. Relative Fitness Function Evaluation

Of the three unbiased relative fitness functions reviewed
above, the FIFA league ranking function stands out. FIFA
league ranking takes into account past player performance
when calculating the relative fitness value. The past per-
formance allows for teams to be ranked over a number of
games, allowing teams to be rewarded according to their
expected performance. The function also provides a more
detailed indication of a players’ performance than the other two
relative fitness functions discussed. As stated in the previous
section, functions that reveal more information about the
search space is considered more desirable as they improve
training performance.

To objectively compare the performance of the three unbi-
ased relative fitness functions a comparative study was carried
out. Each function was tested using 30 simulations over 2000
iterations with the optimised parameter configuration shown in
table I.

Fig. 6 provides the performance comparison of the three
unbiased relative fitness functions. The average S measure and
standard deviation for each of the three unbiased relative fitness
functions are shown. The FIFA league ranking relative fitness
function clearly outperformed the other two relative fitness
functions. A higher S measure and a lower standard deviation
were achieved. The lower standard deviation indicates a higher
level of consistency in the algorithms’ ability to produce
well performing players. Fig. 7 depicts the S measure for
30 simulations over 2000 iterations using the FIFA league
ranking relative fitness function. The lack of outliers confirm
that the FIFA league ranking relative fitness functioned solved
the outlier problem.

VI. FINDINGS AND CONCLUSIONS

This paper proposed a new competitive coevolutionary
team-based particle swarm optimisation (CCPSO) algorithm
to train multi-agent teams from zero knowledge. The simple
soccer model was introduced as a testbed for the CCPSO
algorithm. The rules governing play were also presented. It
was shown how the CCPSO algorithm could be applied to the
simple soccer model.

The S measure was presented to measure training per-
formance of the CCPSO algorithm. Analysis of the training
performance of the CCPSO algorithm revealed the presence of
outliers in the training data. The outliers indicated the training
algorithm failed to consistently train well-performing simple
soccer players. It was hypothesised that the relative fitness
function could be the root cause of the outliers.

Various design aspects of the relative fitness function were
presented and a new function based on FIFA’s league ranking
algorithm was presented. Analysis of the training performance
when using the FIFA league ranking relative fitness function
revealed that the outliers were no longer present. The newly
introduced relative fitness function solved the outlier problem.

Overall it was shown that the CCPSO algorithm, along with
the FIFA league ranking relative fitness function, was capable
of training well performing players, from zero knowledge, as
measured by the S measure.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proc.
IEEE International Conference on Neural Networks (ICNN’95), vol. 4,
Apr. 1995, pp. 1942–1948.

[2] ——, Swarm Intelligence. Morgan Kaufmann, 2001.
[3] L. Messerschmidt and A. Engelbrecht, “Learning to Play Games using

a PSO-based Competitive Learning Approach,” Proceedings of the 4th
Asia-Pacific Conference on Simulated Evolution and Learning, pp. 444–
448, 2002.

[4] C. Franken and A. Engelbrecht, “Comparing PSO Structures to Learn
the Game of Checkers from Zero Knowledge,” in Proc. Congress on
Evolutionary Computation (CEC’03), 2003, pp. 234–241.

[5] ——, “Evolving intelligent game-playing agents,” in Proceedings of
the 2003 Annual Research Conference of the South African Institute
of Computer Scientists and Information Technologists on Enablement
through Technology. South African Institute for Computer Scientists
and Information Technologists, 2003, pp. 102–110.

[6] ——, “PSO Approaches to Coevolve IPD Strategies,” in Proc. Congress
on Evolutionary Computation (CEC’04), vol. 1, 2004, pp. 356–363.

[7] J. Conradie and A. Engelbrecht, “Training Bao Game-Playing Agents
using Coevolutionary Particle Swarm Optimization,” in Proc. IEEE
Symposium on Neural Networks (ISSN’06), 2006, pp. 67–74.

[8] D. Davis, T. Chalabi, and B. Berbank-Green, “Artificial-life, agents
and GO,” in New Frontiers in Computational Intelligence and Its
Applications, M. Mohammadian, Ed. Amsterdam, The Netherlands:
IOS Press, 2000, pp. 125–139.

[9] I. Jeong and J. Lee, “Evolving Multi-agents using a Self-organizing
Genetic Algorithm,” Applied Mathematics and Computation, vol. 88,
no. 2-3, pp. 293–303, 1997.

[10] I. Fehérvári and W. Elmenreich, “Evolving Neural Network Controllers
for a Team of Self-organizing Robots Self-organizing Systems,” Journal
of Robotics, 2010.

[11] C. Scheepers, “Coevolution of Neuro-controllers to Train Multi-Agent
Teams from Zero Knowledge,” MSc dissertation, University of Pretoria,
2013.

[12] T. Blackwell and P. Bentley, “Dont push me! Collision-avoiding
swarms,” in Proceedings of the 2002 Congress on Evolutionary Com-
putation, vol. 2, 2002, pp. 1691–1696.

[13] ——, “Dynamic Search with Charged Swarms,” in Proceedings of the
2002 Genetic and Evolutionary Computation Conference. Morgan
Kaufmann Publishers, 2002, pp. 19–26.

[14] T. Blackwell, “Swarms in Dynamic Environments,” in Proceedings of
the 2003 Genetic and Evolutionary Computation Conference. Springer-
Verlag, 2003, pp. 1–12.

[15] C. Rosin and R. Belew, “Methods for Competitive Co-evolution: Find-
ing Opponents Worth Beating,” in Proceedings of the Sixth International
Conference on Genetic Algorithms. Morgan Kaufmann Publishers, Inc.,
1995, pp. 373–380.

[16] ——, “New Methods for Competitive Coevolution,” Evolutionary Com-
putation, vol. 5, no. 1, pp. 1–29, Jan. 1997.

[17] C. Franken, “Visual Exploration of Algorithm Parameter Space,” Proc.
IEEE Congress on Evolutionary Computation (CEC’09), pp. 389–398,
2009.

[18] K. Chellapilla and D. Fogel, “Evolving Neural Networks to Play
Checkers without Expert Knowledge,” IEEE Trans. Neural Networks,
vol. 10, no. 6, pp. 1382–1391, 1999.

1216



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

S
 m

e
a

s
u

re

Iteration

FIFA League Ranking Average
FIFA League Ranking Standard deviation

Fixed Reward Average
Fixed Reward Standard deviation

Goal Difference Average
Goal Difference Standard deviation

Fig. 6. Relative fitness function comparison.

 0.6

 0.7

 0.8

 0.9

 1

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

S
 m

e
a

s
u

re

Iteration

Fig. 7. S measures over 2 000 iterations for 30 teams using the FIFA league ranking relative fitness function.

[19] ——, “Anaconda Defeats Hoyle 6-0: A Case Study Competing an
Evolved Checkers Program against Commercially Available Software,”
in Proceedings of the 2000 Congress on Evolutionary Computation,
vol. 2, 2002, pp. 857–863.

[20] D. Fogel, Blondie24: Playing at the Edge of AI. San Francisco, CA,
USA: Morgan Kaufmann Publishers, Inc., 2002.

1217




