

Abstract—Multi-method and multi-operator evolutionary
algorithms (EAs) have shown superiority to any single EAs
with a single operator. To further improve the performance of
such algorithms, in this research study, a united multi-operator
EAs framework is proposed, in which two EAs, each with
multiple search operators, are used. During the evolution
process, the algorithm emphasizes on the best performing
multi-operator EA, as well as the search operator. The
proposed algorithm is tested on a well-known set of constrained
problems with 10D and 30D. The results show that the
proposed algorithm scales well and is superior to the-state-of-
the-art algorithms, especially for the 30D test problems.

Index Terms— Constrained optimization, evolutionary
algorithms, multi-method algorithms, multi-operator
algorithms

I. INTRODUCTION

ONSTRAINED optimization is a challenging research area
in the science and engineering disciplines. Locating the

optimal solution for such problems is often difficult, as the
characteristics and mathematical properties do not follow
any standard patterns or forms. The constrained optimization
problems (COPs) may contain different types of variables,
such as real, integer and discrete, and may have equality
and/or inequality constraints. The objective and constraint
functions could be either linear or nonlinear. The functions
may be either continuous or discontinuous, and either
unimodal or multimodal. The feasible region of such
problems could be either a tiny or a significant portion of the
search space. Moreover, the feasible region could be either
one single bounded region or a collection of multiple disjoint
regions. In some practical problems, the feasible region
could even be unbounded. Finally, the optimal solution may
exist either on the boundary, or in the interior, of the feasible
region.

Over the last decade or so, EAs have recognized as
powerful algorithms for solving both constrained and
unconstrained optimization problems. The EAs family
contains many different algorithms, such as the genetic
algorithm (GA) [1], differential evolution (DE) [2] and
evolution strategies (ES) [3, 4] .These algorithms do not
require the satisfaction of any standard mathematical
properties, such as continuity and differentiability, and have
the ability to effectively deal with large search spaces [5].
Although there have been many EAs introduced in the
literature, no single algorithm performs consistently over a
wide range of problems [6].

The authors are with the School of Engineering and Information
Technology, University of New South Wales at Canberra, Australia, emails:
{s.elsayed, r.sarker and d.essam}@adfa.edu.au

The concept of multi-method algorithms has emerged
recently that utilizes the strength of different EAs, within a
single algorithm structure, to deal with different types of
problems. Vrugt et al. [7] introduced an algorithm, known as
AMALGAM (A Multi-ALgorithm Genetically Adaptive
Multiobjective), that has been proven to be a powerful
approach for solving multiobjective problems. Later, Vrugt
et al. [8] extended their work for real valued function
optimization. As tested on a set of benchmark problems, the
algorithm obtained similar efficiencies as existing algorithms
on relatively simple problems, but it was increasingly
superior for more complex and higher dimensional
multimodal optimization problems.

 A brief review on the multi-operator based EAs is
provided here. Yong et al. has recently proposed a
composite DE algorithm (CoDE) [9], in which the algorithm
randomly combines several trial vector generation strategies
with a number of control parameter settings at each
generation to create new trial vectors. CoDE has been tested
on a set of unconstrained problems and showed competitive
performance in comparison to other state-of-the-art
algorithms. Elsayed et al. [10] proposed a mix of four
different DE mutation strategies within a single algorithm
framework to solve COPs which performed well for a set of
constrained problems that was further extended and
improved in [11, 12]. Elsayed et al. [13] also proposed two
novel DE variants, each of which utilized the strengths of
multiple mutation and crossover operators, to solve 60
constrained problems. The algorithm demonstrated superior
performances in comparison with the state-of-the-art
algorithms. Caraffini et al. [14] proposed a super fit multi-
adaptive DE for solving unconstrained problems. They
employed four DE operators with equal probability. In the
algorithm, based on normalized relative fitness improvement
and normalized distance to the best individual measures, the
probabilities were updated. To add to this, the control
parameters were adopted, in which F was generated using a
Cauchy distribution, while Cr was generated based on a
normal distribution. Both parameters were then adapted
during the evolution process. To enhance the performance of
the algorithm, the covariance matrix adaptive evolution
strategy was also used as a local search. Brest et al. [15]
proposed a DE algorithm which embedded a self-adaptation
mechanism for parameter control. Here, the population was
divided into sub-populations to apply more DE strategies,
and a population diversity mechanism was also introduced.
The algorithm was tested on a set of unconstrained
problems.

In this research, the combination of multi-operator
algorithms is explored. The algorithm is named as united

United Multi-Operator Evolutionary Algorithms
Saber M. Elsayed, Ruhul A. Sarker and Daryl L. Essam

C

1006

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

multi-operator EAs (UMOEAs). In this algorithm, the initial
population is divided into two subpopulations; and each
subpopulation is independently evolved using a multi-
operator algorithm. The success rate of each multi-operator
algorithm is recorded for a certain number of generations
and the better performing multi-operator is used to evolve its
own individuals for a number of subsequent generations
(known as a cycle), while the other population is kept on
hold. After this cycle, information from the best performing
population is used to update the individuals of the worst
performing population, and subsequently both multi-
operator algorithms rerun independently in parallel. The
process is continued up to a predefined number of fitness
function evaluations and then the best performing multi-
operator algorithm is selected to evolve only its assigned
population during the rest of the evolution process.

The performance of the proposed algorithm is tested on a
well-known set of constrained problems [16] which contains
18 test problems, with different mathematical properties,
with 10 and 30 dimensions. From the results, the proposed
algorithm shows consistently excellent performance in
comparison with the state-of-the-art algorithm, as it is able to
obtain better results, especially for the 30D test problems,
and statistically significant.

 This paper is organized as follows: after the introduction,
section II presents a brief overview on GA and DE. In
section III, the design of the proposed algorithm is
discussed. The experimental results and analysis are
demonstrated in section IV. Finally, the conclusions and
future work are given in section V.

II. BASIC ALGORITHMS AND OPERATORS
The proposed framework can consider any number of

EAs. In this section, we describe the algorithms and the
operators we considered in this research.

A. Differential Evolution

In DE, two search operators are usually used as discussed
below.

A.1. Mutation

In the standard mutation strategy, DE/rand/1, a mutant
vector (ݒԦ௭,௧ሻ is generated by multiplying the amplification
factor ܨ by the difference of two random vectors, and the
result is added to another third random vector (equation 1). ݒԦ௭,௧ ൌ Ԧభ,௧ݔ .ܨ ൫ݔԦమ,௧ െ Ԧయ,௧൯ (1)ݔ

where ݎଵ, ,ଶݎ ଵݎ ,ଷ are random numbers {1,2, ..., PS}ݎ ് ଶݎ ଷݎ് ് Ԧ is a decision vector, PS is the population size, t isݔ ,ݖ
the current generation and F is a positive control parameter
(amplification factor) for scaling the difference vector.

The purpose of the mutation operation is to explore the
search space and maintain diversity. In the literature, there
are many strategies for mutation, such as: DE/rand-to-best/2

[17], rand/2/dir [18], DE/current-to-best/1[19], and
DE/Current-to-pbest [20].

A.2. Crossover

DE algorithms usually use two type of crossover
operators. In this paper, we use the binomial crossover,
because it is widely accepted and is superior to the
exponential one [21].

The crossover operator is performed on each of the ݆௧variables whenever a randomly picked number ∈ [0,1] is
less than or equal to a crossover rate (Cr). In this case, the
number of parameters inherited from the mutant vector has a
(nearly) binomial distribution ݑ௭,௧ ൌ ൜ݒ௭,௧, ݂݅ ሺ݀݊ܽݎ ൌ ݆ ݎ ݎܥ ݆ௗሻݔ௭,௧, ݁ݏ݅ݓݎ݄݁ݐ (2)

where ݀݊ܽݎ ∈ ሾ0,1ሿ, and ݆ௗ ∈ ሾ1, ሿ is a randomlyܦ
chosen index, which ensures trial vector ሺݑሬԦ௭,௧ሻ gets at least
one component from ݒԦ௭,௧.

B. Genetic Algorithms

 In this paper, we use GA with simulated binary
crossover (SBX) [22] and a non-uniform mutation (NU-M)
[23] as well as MPC-GA [24, 25]. The reason for choosing
these operators is that GA-MPC has shown its superiority to
many other algorithms [24], and GA with SBX plus NU-M
outperformed nine different GA variants, as reported in [26].

B.1. MPC-GA

In this algorithm, an initial population is generated
randomly, with a size of PS. An archive pool (ܣ) is filled
with the best m individuals (based on their constraint
violations and/or fitness function). A tournament selection
with size ܿݐ is applied, from which the best individual is
selected and saved in the selection pool. Using the crossover
operation, for a given crossover rate, three individuals from
the selection pool is used to generate three offspring as
follows: ݕԦଵ ൌ Ԧଵݔ β ൈ ሺݔԦଶ െ Ԧଶݕ Ԧଷሻ (3)ݔ ൌ Ԧଶݔ β ൈ ሺݔԦଷ െ Ԧଷݕ Ԧଵሻ (4)ݔ ൌ Ԧଷݔ β ൈ ሺݔԦଵ െ Ԧଶሻ (5)ݔ

 On each new individual ݕԦ, a diversity operator is applied
that helps to escape from any local minima and to move to
better regions in the search space. In this case, for each
individual a uniform random number ∈ [0, 1] is generated, if
it is less than a predefined probability, , then ݕ ൌ ݔ .
Subsequently, the individuals from the archive pool are
merged with all of the offspring, and the best ܲܵ individuals
are selected as the population for the next generation.

B.2. SBX

We use SBX crossover as it is widely used in practice.
The probability distribution of β in this crossover is similar
to the probability distribution of β in binary-coded crossover.

1007

Using a pair of parents ݔԦଵ ൌ ሺݔଵଵ, ,ଶଵݔ … , Ԧଶݔ ଵሻ andݔ ൌሺݔଵଶ, ,ଶଶݔ … , Ԧଵݕ ଶሻ, two offspringݔ ൌ ሺݕଵଵ, ,ଶଵݕ … , Ԧଶݕ ଵሻ andݕ ൌ ሺݕଵଶ, ,ଶଶݕ … , :ଶሻ are generated as followsݕ

1. Generate a uniform random number ݀݊ܽݎ ∈ ሾ0,1ሿ.
2. Generate a random number βത as follows:

ҧߚ ൌ ൞ሺ2. ሻ݀݊ܽݎ భభశആ, rand 0.5ቀ ଵଶሺଵିௗሻቁ భభశആ , otherwise
 (6)

3. Generate two offspring as follows: ݕଵ ൌ ଵଶ ൣሺ1 .ҧ൯ߚ ଵݔ ሺ1 െ .ҧሻߚ ଶݕ ଶሿ (7)ݔ ൌ ଵଶ ൣሺ1 െ .ҧ൯ߚ ଵݔ ሺ1 .ҧሻߚ ଶሿ (8)ݔ

When compared to other real-coded crossover
implementations, SBX works well in many test problems
that have a continuous search space. The SBX operator can
restrict child solutions to any arbitrary closeness to the
parent solutions, thereby not requiring any separate mating
restriction scheme for better performance. SBX is very
useful for the problems in which the bounds of the optimum
are not known and where multiple optima may exist [22].

To maintain the genetic diversity from one generation to
another, the use mutation operator is well-established. The
performance of non-uniform mutation is well-known in this
regard. In the process, the step size is decreased as the
generation is increased, thus it helps to making bigger search
steps in the initial stage and smaller steps at the later stages
[23]. The offspring ݔ௭′ ሺݐሻ ൌ ሺݔ௭,ଵ′ ሺݐሻ, ′௭,ଶݔ ሺݐሻ, … , ′௭,ݔ ሺݐሻሻ is
mutated according to: ݔ௭,′ ሺݐሻ ൌ ሻݐ௭,ሺݔ ሻ (9)ݐ௭,ሺߜ

using the random variation: ߜ௭,ሺݐሻ ൌቐቀݔҧ െ ሻቁݐ௭,ሺݔ . ቀ1 െ ሾrandሺݐሻሿሺଵିሻ್ቁ , ݂݅ rand 0.5ቀݔ െ ሻቁݐ௭,ሺݔ . ቀ1 െ ሾrandሺݐሻሿሺଵିሻ್ቁ , ݂݅ rand 0.5 (10)

where ݔҧ and ݔ are the upper and lower bound of
individual ݔ௭,, respectively, ݀݊ܽݎሺݐሻ is a random number ∈ሾ0, 1ሿ, t is the generation number, T is the maximum number
of generations, and b is a parameter to control the speed at
which the step length decreases. This operator performs very
well for problems when a solution only needs to be refined
during the later stages of the execution of an algorithm

III. UNITED MULTI-OPERATOR EVOLUTIONARY
ALGORITHMS (UMOEAS)

In this section, we discuss the proposed algorithm, the
improvement measure and the constraint handling technique
used in this paper.

A. UMOEAs

The pseudo-code of the proposed algorithm is provided in
this Algorithm 1. The algorithm starts with an initial popul-

ALGORITHM I. UNITED MULTI-OPERATOR EVOLUTIONARY ALGORITHMS
PSEUDO-CODE

- Generate initial population; each variable is generated within its
boundaries.

- Divide the population into two groups (ܲ ଵܵ, ܲܵଶ) with equal size
- Initialize each algorithm’s parameters and set ݏ =݀݅ݎ݁ଵ= ݏଶ= ݏଷ=ݏସ=0; ܾݎଵ=ܾݎଶ=0.5;

while ݏܧܨܨ ൏ ݏܧܨܨݔܽ݉
- if ݏܧܨܨ && ܵܥ > ݀݅ݎ݁ ൏ ݁݃ܽݐܵݔ݅ܯ

 ;1+ ݀݅ݎ݁ = ݀݅ݎ݁ -
- evolve ܲ ଵܵ using multi-operator DE, such that

 if ݀݊ܽݎ ൏ ଵܾݎ
- generate a new solution vector using DE1
- if it is better than its parent, set 1_ݏ ൌ 1_ݏ 1;

 else
- generate a new solution vector using DE2
- if it is better than its parent, set 2_ݏ ൌ 2_ݏ 1;

 end
- update ܾݎଵ ൌ ,ሺ0.05ݔܽ݉ ௦భ௦భା௦మሻሻ

- evolve ܲܵଶ using multi-operator GA:
if 2ܾݎ>݀݊ܽݎ

- generate new solutions vector using MPC-GA;
else

- generate new solutions vector using SBX-NUM
end
- calculate the success of each GA and updated ݏଷ and ݏସ
- update ܾݎଶ ൌ ,ሺ0.05ݔܽ݉ ௦య௦యା௦రሻሻ
- calculate the improvement of each multi-operator at

generation 1݉݅ ,ݐሺݐሻ, ݅݉2ሺݐሻ
- end
- if ݉݀ሺ݀݅ݎ݁, ሻܵܥ ൌ 0

- if ݉ݑݏሺ݅݉1ሻ ൏ 2ሻሺ݅݉݉ݑݏ
 else ;1= ܣܧ_ݐݏܾ݁ -
 ;2= ܣܧ_ݐݏܾ݁ -

- end
- end
- if ݀݅ݎ݁ ݀݅ݎ݁ && ܵܥ ൏ ܵܥ2

- if ܾ݁1== ܣܧ_ݐݏ
- evolve ܲ ଵܵ using multi-operator DE; else
- evolve ܲܵଶ using multi-operator GA;

- end
- end
- if ܵܥ2 == ݀݅ݎ݁

- calculate the mean(ݔ) and standard deviation (ߪ) vectors of the ߤ best individuals of the ܾ݁ܣܧ_ݐݏ
- generate new population for the worst performing multi-operator

algorithm, such as:
ݖ where ,(ߪ,ݔ)ܰ = Ԧ௭ݔ - 1
 ;ଶ=0.5ܾݎ=ଵܾݎ ;ସ=0ݏ=ଷݏ =ଶݏ =ଵݏ =݀݅ݎ݁ -

- end
 update FFEs; ݐ ൌ ݐ 1;
end

ation of size ܲܵ, that is randomly generated using a uniform
distribution, in which each decision variable must be within
its bounds. The individuals of the population is then divided
into two subpopulations (ܲ ଵܵ and ܲܵଶ). For a predefined
number of generations, evolve the subpopulation ܲ ଵܵusing a
multi-operator DE algorithm, while ܲܵଶ is evolved using a
multi-operator GA algorithm.

In the multi-operator DE algorithm, for each individual in ܲ ଵܵ a random number (݀݊ܽݎ ∈ ሾ0,1ሿ) is generated, if it is
less than a predefined probability (ܾݎଵ), a new individual
is generated using (11), otherwise it will be generated using
(12).

1008

Ԧ,௧ݒ ൌ Ԧఝ,௧ݔ .ܨ ൫ݔԦభ,௧ െ Ԧమ,௧൯ (11)ݔ

where ߮ is a random integer number between ௌభଵ and ௌభଶ Ԧ,௧ݒ . ൌ Ԧ,௧ݔ .ܨ ቀ൫ݔԦభ,௧ െ Ԧమ,௧൯ݔ ൫ݔԦఝ,௧ െ Ԧ,௧൯ቁ (12)ݔ

where ߮ is a random integer number between [1, ௌభସ ሿ. It is
worthy to mention here that ߮ is selected after ܲ ଵܵ is sorted,
based on the fitness function and/or constraint violation.
Note also that the binomial crossover is considered in this
study, as in the literature [21], it showed superiority to the
exponential one.

If the new offspring is better than its parent (based on the
fitness function and/or constraints violation), the success of
the corresponding mutation (ݏଵ or ݏଶ, respectively) is
increased by one. After each generation, ܾݎଵ is updated,
such that ܾݎଵ ൌ ௦భ௦భା௦మ.

Following the same methodology, in the multi-operator
GA, to generate new individuals, a random number (݀݊ܽݎ ∈ሾ0,1ሿ) is generated, then if it is less than a predefined
probability (ܾݎଶ), three individuals are generated using
MPC-GA, otherwise two individuals are produced using
SBX-NU. MPC-GA uses an archive of individuals, as shown
in section II.B, once new ܲܵଶ individuals are generated,
those individuals in the archive and the new ܲܵଶ are merged,
and the best ܲܵଶ are passed on to the next generations. Next
that, the number of individuals generated by MPC-GA and
that passed on to the next generation is assigned to ݏଷ, while
those generated by SBX-NU and passed on to the next
generation are assigned to ݏସ. Consequently, ܾݎଶ is ௦య௦యା௦ర.

Subsequently, the improvements of each multi-operator
algorithm at generation (ݐ) (݅݉ଵሺݐሻ and ݅݉ଶሺݐሻ) are
calculated as shown in the following section.

The abovementioned process is repeated for ܵܥ generation
(named as a cycle). The summation of both improvements
are calculated, such that ∑ ,ௌୀଵ݉݅ , where is 1 or 2.
Then, the best performing multi-operator is selected to
evolve only its population for ܵܥ generations, while the
other population is kept on hold. Once this step is over, all
parameters are re-set to their initial values and the
population which is on hold is injected using information
from that population which was successful, such that: for the
best ߤ individuals in the successful population, the mean and
standard deviation vectors (ݔ and ߪ, respectively) are
calculated, as: ݔ ൌ ∑ ௫,ೕഋసభఓ (13)

ߪ ൌ ට∑ ሺ݅ݔ,݆െ݆ݔሻ2 ݅ߤൌ1 ఓ (14)

and hence, the population which was on hold is updated by
generating a Gaussian number random with ݔ and ߪ: ݔ௭, ൌ ܰሺݔߪሻ, where ݖ 1 (15)

The process of using two multi-operator algorithms is used
up to a predefined number of fitness function evaluations
݁݃ܽݐܵݔ݅ܯ.i.e ,(݁݃ܽݐܵݔ݅ܯ) ൌ ௫ிிா௦ଷ , not for all the
evolution process. So that if this condition is met, the best
performing multi-operator algorithm is selected to evolve
only its population individuals, while the other population is
kept on hold until the end of the evolution process

B. Improvement Measure

To measure the improvement of each algorithm or each
operator in a given generation, we consider both the
feasibility status and the fitness value, with the consideration
that any improvement in feasibility is always better than any
improvement in the infeasibility. For any generation ݐ 1,
there arises one of three scenarios. These scenarios, in order
from least, to most desirable, are discussed below.

1. Infeasible to infeasible: For any multi-operator algorithm
i, if the best solution was infeasible at generation ݐ െ 1 and
is still infeasible in generation ݐ, then the improvement
index is calculated as follows: ܸܫ,௧ ൌ ቚ ,್ೞି,షభ್ೞ ቚ௩., ൌ ,௧ (16)ܫ

where ܸ݅,௧௦௧ is the constraints violation of the best
individual at generation ݐ and ܽ݃ݒ. ܸ,௧ the average
violation. Hence ܸܫ,௧ ൌ ,௧ above represents the relativeܫ
improvement in comparison to the average violation in the
current generation.

2. Feasible to feasible: For any multi-operator algorithm i, if
the best solution was feasible at generation ݐ െ 1 and was
still feasible in generation ݐ, then the improvement index
is: ܫ,௧ ൌ maxሺܸܫ,௧ሻ ห ܨ,௧௦௧ െ ,௧ିଵ௦௧ܨ ห ൈ ,௧ (17)ܴܨ

where ܫ,௧ is the improvement for ݅௧ multi-operator
variant at generation ܨ ,ݐ,௧௦௧ the objective function for the
best individual at generation ݐ, and the feasibility ratio of a
variant ݅ at generation t is: ܴܨ,௧ ൌ ே௨ ௦ ௦௨௧௦ ௦௨௨௧ ௌ௨௨௧ ௦௭ ௧ ௧௧ ௧ (18)

To assign a higher index value to a multi-operator
algorithm with a higher feasibility ratio, the improvement
of fitness value is multiplied by the feasibility ratio. To
differentiate between the improvement index of feasible
and infeasible groups of individuals, a term maxሺܸܫ,௧ሻ is
added to (17). If all the best solutions are feasible, then maxሺܸܫ,௧ሻ will be zero.

3. Infeasible to feasible: For any multi-operator algorithm i,
if the best solution was infeasible at generation ݐ െ 1 and it
is feasible in generation ݐ, then the improvement index is: ܫ,௧ ൌ maxሺܸܫ,௧ሻ ห ݅ݒ,௧ିଵ௦௧ ,௧௦௧ܨ െ ,௧ିଵ௩ܨ ห ൈ ,௧(19)ܴܨ

where ܨ,௧ିଵ௩ is the fitness value of the least violated
individual in generation t-1.

1009

To assign a higher index value to an individual that
changes from infeasible to feasible, ݅ݒ,௧ିଵ௦௧ is added with
the change of fitness value in (19).

C. Discussion

Here, some issues, regarding the design of the proposed
algorithm, are discussed.

1- The reason for generating new individuals for the
worst performing multi-operator algorithm, instead of
directly copying them from the best performing one,
is to maintain diversity. However, it may not be
efficient to generate a totally random population, as
this may cost fitness evaluations without any valuable
outcome. Therefore, information from the best ߤ
individuals in the successful population is considered,
as shown in (13) - (15).

2- The reason for using different values for ߮ in (11)
and (12) is that to maintain diversity as well as to
enhance the intensification. Note that equation (12) is
similar to the DE/Current-to-best/1 variant if ߮ ൌ 1.

3- The reason for using two multi-operator algorithms
only up to ݁݃ܽݐܵݔ݅ܯ fitness evaluations (here equal
to ௫ிிா௦ଷ), and not for all the evolution process, is to
reduce the time complexity of the algorithm to reach
the optimal solution, especially at this stage the
decision of which multi-operator algorithm performs
best can usually be justifiably made.

4- The point behind reusing two multi-operator
algorithms, instead of one, after every 2ܵܥ
generations, is that passing good information for a
poor multi-operator algorithm may help it to reach
better solutions latter on.

5- It is important to mention here that a minimum
threshold to use an operator in each multi-operator
algorithm is set, i.e. 5%, to keep the benefit from
poorly performing operators as they may perform
better at later generations.

D. Constraint Handling

In this paper, we consider the selection of the individuals
for the purposes of a tournament [27] as follows: i) between
two feasible solutions, the fittest one (according to fitness
function) is better, ii) a feasible solution is always better than
an infeasible one, iii) between two infeasible solutions, the
one having the smaller sum of constraint violations is
preferred.

In this approach, no penalty factor is required, since the
selection procedure only performs pair-wise comparisons.
Therefore, feasible solutions have fitness equal to their
objective function value, and the use of constraint violation
in the comparisons aims to push infeasible solutions towards
the feasible region.

The equality constraints are also transformed to
inequalities of the following form, where ߝ is a small value,
here it is equal to 0.0001:

TABLE I. DETAILS OF ALL PARAMETERS VALUES

General: ܲܵ ൌ 200 ܲ ଵܵ ൌ ܲܵଶ ൌ ܵܥ ,100 ൌ ߤ ,25 ൌ 25 and ݁݃ܽݐܵݔ݅ܯ = ௫ிிா௦ଷ .

DE: ݎܥ ൌ ሼ0.4, 0.85, 0.99ሽ and ܨ ൌ ሾ0.4 , 0.95ሿ , ߮ ∈ ሾௌభଵ , ௌభଶ ሿ in (11)

[28], while it is ߮ ∈ ሾ1, ௌభଶ ሿ in (12).

GA: ൌ ݄ܿݎܽ ,0.2 ൌ ௌభଶ mutation rate =0.1, tournament ,%100=ݎܥ ,
selection size = 2 or 3 randomly, ߟ ൌ 3 and ܾ ൌ 5 [26]. |݄ሺݔԦሻ| െ ߝ 0, ݁ ݎ݂ ൌ 1, … , (20) ܧ

where E is the number of equality constraints.

IV. EXPERIMENTAL RESULTS
In this section, the performance of the proposed algorithm

is discussed and analyzed by solving a well-known set of
constrained problems which contain 18 test problems with
both 10 and 30 dimensions [16]. The algorithm was run 25
times for each test problem, where the stopping criterion was
to run for up to 200K FEs for the 10D instances, and 600K
FEs for the 30D problems.

To begin with, all parameter values are provided in Table
I. It is worthy to mention here that multiple ݎܥ values used,
instead of one, as it is confirmed in the literature that small
values of ݎܥ are good for separable functions, while large
values are suitable for non-separable functions. Hence for
each new individual a random value from the ݎܥ list was
selected, while ܨ was selected within a range, which is well-
known in the literature.

A. Comparison with the state-of-the-art-algorithms
Here the computational results of UMOEAs are

compared with the state-of-the-art algorithms, εDEag [29],
which won the CEC2010 constrained optimization
competition, and improved jDE (jDEsoco). The detailed
results are shown in Appendix A.

It is important to highlight that UMOEAs was able to
reach 100% feasibility ratios for both the 10D and 30D
instances, but ߝDEag obtained 100% and 95.11% feasibility
ratios for the 10D and 30D test problems, respectively. The
average feasibility ratio for jDEsoco was 98%.

Considering the quality of the solutions obtained, a
summary is reported in Table I. From this table, UMEAs
was found superior performance to the other algorithms for
the majority of the test problems, especially for the 30D
instances.

Furthermore, the Wilcoxon signed rank test [30] was
used which allowed us to statistically judge the difference
between paired scores when it was not possible to make the
assumptions required by the ݐ test, such as that the
population should be normally distributed. The results based
on the best and average fitness values are presented in the
last column in Table II. As a null hypothesis, it is assumed
that there is no significant difference between the best and/or

1010

TABLE II. COMPARISON AMONG UMOEAs, ΕDEAG AND JDESOCO

D Comparison Results Better Equal Worse Dec.

10D

UMOEAs
– to – ࢿDEag

Best 5 12 1 ൎ
Average 10 6 2

UMOEAs
– to –

jDEsoco

Best 6 12 0

Average 15 1 2

30D

UMOEAs
– to – ࢿDEag

Best 16 1 1

Average 15 1 2
UMOEAs

– to –
jDEsoco

Best 16 0 2

Average 17 0 1

mean values of two samples whereas the alternative
hypothesis is that there is a significant difference at a 5%
significance level. Based on the results, one of three signs
(+, -, and ൎ) was assigned for the comparison of any two
algorithms, where “+” means the first algorithm was
significantly better than the second, “-” means that the first
algorithm was significantly worse, and “ൎ ” means that there
was no significant difference between the two algorithms.
From Table II, it is clear that UMOEAs was statistically
better than ߝDEag, in regard to both the best and average
results for the 30D test problems, while the performance of
UMOEAs was statistically better in regard to the average
results for the 10D test problems. The performance of
UMOEAs was also better than jDEsoco in regards to both
the best and average results

B. Scaling Analysis

In this analysis, the relationship between the
dimensionality of the test problem and the average number
of function evaluations needed to find the best solutions with
the tolerance limit (here equal to 0.0001) was derived. Due
to the number of pages limitation, only one test problem,
C07, was chosen for the purpose. The problem is known to
be difficult as the objective function is non-separable, multi-
modal and is shifted by a matrix ݄݅ݏ, while the constraint is
separable, multi-modal and also shifted by the same matrix.
The optimal solution of this problem is at ݂ሺכݔሻ ൌ 0. The
problem was solved using different dimensions, i.e. D = 5,
10, 15, 20, 25 and 30 variables. For each D, the algorithm
was run over 50 trials, and the average FFEs, to reach the
stopping criteria, were recorded. It should be noted that the
evaluation of a constraint was counted as one. It is also
worthy to mention here that up to only 30 variables were
used, as the available data are up to 30 dimensions.

Figure 1 shows the average FFEs for each dimension. For
a further investigation, a regression line [31] is fitted to help
readers to approximate the average fitness evaluations that
are required for different dimensions.

So, the regression equation for C07 was: ݏܧܨ ൌ ଶܦ139.2 –ܦ7820 2017 (18)

and the coefficient of determination [31] was 99.68%. This
means that the line is highly fitted to predict future values.

Fig.1. Average number of FFEs versus the problem dimension for C07
using 50 runs. The line represents the quadratic regression fitting of the
data.

C. A Brief Discussion

Here the effects of CS and ݁݃ܽݐܵݔ݅ܯ are analyzed.
However, due to the maximum number of pages limitation,
the detailed results are not presented here.

Firstly, each 30D constrained problem was solved with
three different values for 50 ,25 =ܵܥ ,ܵܥ and 75 generations.
The ranking mechanism presented in [10] was used to rank
all variants. Based on that, the variant with ܵܥ ൌ 50 is the
best.

In regards to ݁݃ܽݐܵݔ݅ܯ, each 30D problem was solved
with two different values, such that ݁݃ܽݐܵݔ݅ܯ ൌ௫ிிா௦ଷ and ௫ிிா௦ଶ . Based on the ranking mechanism, ݁݃ܽݐܵݔ݅ܯ ൌ ௫ிிா௦ଷ was found the best.

V. CONCLUSIONS AND FUTURE WORK

In the last decade, many EAs have been introduced to
solve constrained optimization problems. Most of those
algorithms were designed to use a single crossover and/or a
single mutation operator. In this paper, we adopted the
concept of multiple algorithms empowered by multiple
operators, in which the initial population was divided into
two subpopulations, and each subpopulation was
independently evolved using its assigned multi-operator
algorithm. After a predefined number of fitness evaluations,
the best performing multi-operator continued to evolve its
own subpopulation, while the other group of individuals was
on hold. Then, after a few generations, information from the
best performing subpopulation was used to update the worst
performing subpopulation, and hence the two multi-operator
algorithms were rerun in parallel again. The procedure was
continued until a defined stage and then the best performing

1011

algorithm was selected to evolve its population and the worst
one was totally disregarded.

The algorithm was tested on the CEC2010 constrained
benchmark problems, and showed better performance in
comparison with the-state-of-the-art algorithms.

For future work, we wish to deeply analyze the
algorithm’s components and to also test it on real-world and
dynamic problems.

REFERENCES

[1] D. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. MA: Addison-Wesley, 1989.

[2] R. Storn and K. Price, “Differential Evolution - A simple and efficient
adaptive scheme for global optimization over continuous spaces,”
International Computer Science Institute Technical Report, Tech.
Rep. TR-95-012, 1995.

[3] I. Rechenberg, Evolutions strategie: Optimierung Technischer
Systeme nach Prinzipien der biologischen Evolution. Stuttgart:
Fromman-Holzboog, 1973.

[4] T. Bäck, Evolutionary Algorithms in Theory and Practice : Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford,
UK: Oxford University Press, 1996.

[5] R. Sarker, J. Kamruzzaman, and C. Newton, “Evolutionary
optimization (EvOpt): a brief review and analysis,” International
Journal of Computational Intelligence and Applications, vol. 3, pp.
311-330, 2003.

[6] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation, vol.
1, pp. 67-82, 1997.

[7] J. A. Vrugt and B. A. Robinson, “Improved evolutionary optimization
from genetically adaptive multimethod search,” in proceeding
Proceedings of the National Academy of Sciences of the United States
of America (PNAS), 2007, pp. 708–711.

[8] J. A. Vrugt, B. A. Robinson, and J. M. Hyman, “Self-Adaptive
Multimethod Search for Global Optimization in Real-Parameter
Spaces,” IEEE Transactions on Evolutionary Computation, vol. 13,
pp. 243-259, 2009.

[9] Y. Wang, Z. Cai, and Q. Zhang, “Differential Evolution With
Composite Trial Vector Generation Strategies and Control
Parameters,” IEEE Transactions on Evolutionary Computation, vol.
15, pp. 55-66, 2011.

[10] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Multi-operator based
evolutionary algorithms for solving constrained optimization
Problems,” Computers and Operations Research, vol. 38, pp. 1877-
1896, 2011.

[11] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “On an evolutionary
approach for constrained optimization problem solving,” Applied Soft
Computing, vol. 12, pp. 3208-3227, 2012.

[12] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “An Improved Self-
Adaptive Differential Evolution Algorithm for Optimization
Problems,” Industrial Informatics, IEEE Transactions on, vol. 9, pp.
89-99, 2013.

[13] S. Elsayed, R. Sarker, and D. Essam, “Self-adaptive differential
evolution incorporating a heuristic mixing of operators,”
Computational Optimization and Applications, pp. 1-20, 2012.

[14] F. Caraffini, F. Neri, J. Cheng, G. Zhang, L. Picinali, G. Iacca, and E.
Mininno, “Super-fit Multicriteria Adaptive Differential Evolution,”
in proceeding Evolutionary Computation (CEC), 2013 IEEE
Congress on, 2013, pp. 1678-1685.

[15] J. Brest, B. Boskovic, A. Zamuda, I. Fister, and E. Mezura-Montes,
“Real Parameter Single Objective Optimization using self-adaptive
differential evolution algorithm with more strategies,” in proceeding
Evolutionary Computation (CEC), 2013 IEEE Congress on, 2013, pp.
377-383.

[16] R. Mallipeddi and P. N. Suganthan, “Problem definitions and
evaluation criteria for the CEC 2010 competition and special session
on single objective constrained real-parameter optimization,”

Technical Report, Nangyang Technological University, Singapore,
Tech. Rep. 2010.

[17] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential Evolution
Algorithm With Strategy Adaptation for Global Numerical
Optimization,” IEEE Transactions on Evolutionary Computation, vol.
13, pp. 398-417, 2009.

[18] V. Feoktistov and S. Janaqi, “Generalization of the strategies in
differential evolution,” in proceeding Parallel and Distributed
Processing Symposium, 2004. Proceedings. 18th International, 2004,
p. 165.

[19] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential evolution:
a practical approach to global optimization. Berlin: Springer, 2005.

[20] Z. Jingqiao and A. C. Sanderson, “JADE: Adaptive Differential
Evolution With Optional External Archive,” IEEE Transactions on
Evolutionary Computation, vol. 13, pp. 945-958, 2009.

[21] E. Mezura-Montes, J. V. Reyes, and C. A. Coello Coello, “A
comparative study of differential evolution variants for global
optimization,” in proceeding the 8th annual conference on Genetic
and evolutionary computation, Seattle, Washington, USA, 2006, pp.
485-492.

[22] R. B. Agrawal, K. Deb, K. Deb, and R. B. Agrawal, “Simulated
Binary Crossover for Continuous Search Space,” Complex Systems,
vol. 9, pp. 115–148, 1995.

[23] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, 1992.

[24] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “GA with a new multi-
parent crossover for solving IEEE-CEC2011 competition problems,”
in proceeding IEEE Congress on Evolutionary Computation, 2011,
pp. 1034-1040.

[25] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “A new genetic
algorithm for solving optimization problems,” Engineering
Applications of Artificial Intelligence, vol. 27, pp. 57-69, 2014.

[26] S. Elsayed, R. Sarker, and D. Essam, “A Comparative Study of
Different Variants of Genetic Algorithms for Constrained
Optimization, Simulated Evolution and Learning.” vol. 6457, K. Deb,
et al., Eds., ed: Springer Berlin / Heidelberg, 2010, pp. 177-186.

[27] K. Deb, “An Efficient Constraint Handling Method for Genetic
Algorithms,” Computer Methods in Applied Mechanics and
Engineering, vol. 186, pp. 311-338, 2000.

[28] R. Sarker, S. Elsayed, and T. Ray, “Differential Evolution with
Dynamic Parameters Selection for Optimization Problems,”
Evolutionary Computation, IEEE Transactions on, vol. PP, pp. 1-1,
2013.

[29] T. Takahama and S. Sakai, “Constrained optimization by the ε
constrained differential evolution with an archive and gradient-based
mutation,” in proceeding IEEE Congress on Evolutionary
Computation, 2010, pp. 1-9.

[30] G. W. Corder and D. I. Foreman, Nonparametric Statistics for Non-
Statisticians: A Step-by-Step Approach. Hoboken, NJ: John Wiley,
2009.

[31] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to
Linear Regression Analysis, 4th Edition. New York: John Wiley and
Sons, 2006.

1012

APPENDIX A

FUNCTION VALUES ACHIEVED BY UMOEAs, ߝDEAG AND JDEsoco FOR THE CEC2010 TEST PROBLEMS

Prob. Alg. 10D 30D
Best Mean St. d Best Mean St. d

C01 UMOEAs -7.473104E-01 -7.473104E-01 2.766290E-16 -8.218844E-01 -8.177187E-01 4.068346E-03
εDEag -7.473104E-01 -7.470402E-01 1.323339E-03 -8.218255E-01 -8.208687E-01 7.103893E-04

jDEsoco -0.7473103 -7.3836E-01 1.6006E-02 -0.8218841 -8.1238E-01 1.3187E-02
C02 UMOEAs -2.2777104E+00 -2.277631E+00 2.674215E-04 -2.280972E+00 -2.276652E+00 3.215291E-03

εDEag -2.277702E+00 -2.269502E+00 2.3897790E-02 -2.169248E+00 -2.151424E+00 1.197582E-02
jDEsoco -1.1176240 5.6359E-01 1.1044 0.6792295 1.5603 8.4705E-01

C03 UMOEAs 0.000000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 6.441640E-24 1.398980E-23
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 2.867347E+01 2.883785E+01 8.047159E-01

jDEsoco 0.00000E+00 7.8105 2.9437 9.993685E-22 6.1447E+01 5.7577E+01
C04 UMOEAs -1.000000E-05 -1.000000E-05 8.879988E-17 -3.333331E-06 -3.333299E-06 2.710191E-11

εDEag -9.992345E-06 -9.918452E-06 1.5467300E-07 4.698111E-03 8.162973E-03 3.067785E-03
jDEsoco -1.00000E-05 -1.00000E-05 9.4831E-16 8.0490978E-05 3.5187E-04 2.3948E-04

C05 UMOEAs -4.836106E+02 -4.836106E+02 0.00000E+00 -4.83611E+02 -4.83611E+02 2.850879E-06
εDEag -4.836106E+02 -4.836106E+02 3.89035E-13 -4.531307E+02 -4.495460E+02 2.899105E+00

jDEsoco -483.6106247 -3.0217E+02 3.0256E+02 -19.9503700 1.0822E+02 1.5203E+02
C06 UMOEAs -5.786624E+02 -5.786624E+02 3.268074E-08 -5.306375E+02 -5.306351E+02 4.396221E-03

εDEag -5.786581E+02 -5.786528E+02 3.6271690E-03 -5.285750E+02 -5.279068E+02 4.748378E-01
jDEsoco -578.662366 -5.7408E+02 1.6461E+01 -530.6377271 -4.7284E+02 1.2743E+02

C07 UMOEAs 0.00000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 5.043447E-26 5.859419E-26
εDEag 0.00000E+00 0.000000E+00 0.0000000E+00 1.147112E-15 2.603632E-15 1.233430E-15

jDEsoco 0.00000E+00 6.4192E-27 1.3515E-26 4.2197747E-26 8.7396E-24 3.2529E-23
C08 UMOEAs 0.00000E+00 4.522781E+00 4.806185E+00 0.0000000E+00 2.218930E-26 3.449849E-26

εDEag 0.00000E+00 6.727528E+00 5.560648E+00 2.518693E-14 7.831464E-14 4.855177E-14
jDEsoco 0.00000E+00 3.7421 1.0330E+01 7.2310934E-26 8.2585E+01 2.4395E+02

C09 UMOEAs 0.00000E+00 0.000000E+00 0.0000000E+00 7.354649E-28 5.092577E-25 9.259689E-25
εDEag 0.00000E+00 0.000000E+00 0.0000000E+00 2.770665E-16 1.072140E+01 2.821923E+01

jDEsoco 0.00000E+00 5.2898E-01 1.4620 2.7729234E-25 2.4743 8.7782
C10 UMOEAs 0.00000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 1.376304E-25 1.413405E-25

εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 3.252002E+01 3.326175E+01 4.545577E-01
jDEsoco 0.00000E+00 3.1712E+01 1.8188E+01 1.0862047E-25 2.9386E+01 7.1786

C11 UMOEAs -1.52271E-03 -1.52271E-03 1.559697E-12 -3.92344E-04 -3.92344E-04 1.35647E-10
εDEag -1.52271E-03 -1.52271E-03 6.3410350E-11 -3.268462E-04 -2.863882E-04 2.707605E-05

jDEsoco -0.0015227 -8.2555E-03* 2.3807E-02 -0.0003920 1.1667E-03 5.2690E-03
C12 UMOEAs -1.992458E-01 -1.992458E-01 5.970216E-11 -1.99264E-01 -1.99263E-01 4.08248E-08

εDEag -5.700899E+02 -3.367349E+02 1.7821660E+02 -1.991453E-01 3.562330E+02* 2.889253E+02
jDEsoco -0.1992457 -2.2365E+01* 1.1083E+02 -0.1992634 -1.9925E-01 2.3453E-05

C13 UMOEAs -6.842937E+01 -6.640174E+01 2.260741E+00 -6.561403E+01 -6.334698E+01 1.229909E+00
εDEag -6.842937E+01 -6.842936E+01 1.0259600E-06 -6.642473E+01 -6.535310E+01 5.733005E-01

jDEsoco -68.4293648 -6.8315E+01 5.7018E-01 -68.4293209 -6.7537E+01 5.0553E-01
C14 UMOEAs 0.00000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 1.558464E-25 2.326714E-25

εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 5.015863E-14 3.089407E-13 5.608409E-13
jDEsoco 0.00000E+00 9.1221E-01 2.4538 5.7101696E-26 1.5946E-01 7.9732E-01

C15 UMOEAs 0.00000E+00 2.893417E-21 1.446705E-20 6.323509E-27 8.833195E-23 2.391952E-22
εDEag 0.000000E+00 1.798980E-01 8.8131560E-01 2.160345E+01 2.160376E+01 1.104834E-04

jDEsoco 2.0257948E-26 1.2452E+09 3.8127E+09 9.6993452E-16 1.5357E+09 1.6045E+09
C16 UMOEAs 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.0000000E+00

εDEag 0.000000E+00 3.702054E-01 3.7104790E-01 0.000000E+00 2.168404E-21 1.062297E-20
jDEsoco 0.000000E+00 4.1102E-01 3.8359E-01 0.0812907 7.3206E-01 2.9943E-01

C17 UMOEAs 5.694188E-23 1.210981E-17 2.126749E-17 5.186611E-22 9.653885E-03 1.320570E-02
εDEag 1.463180E-17 1.249561E-01 1.9371970E-01 2.165719E-01 6.326487E+00 4.986691E+00

jDEsoco 0.0302187 8.8958E+01 9.9131E+01 2.9943E-01 5.0398E+02 4.4832E+02
C18 UMOEAs 2.451780E-27 7.761344E-26 7.179142E-26 1.418552E-24 8.103770E-21 1.859545E-20

εDEag 3.731440E-20 9.678765E-19 1.8112340E-18 1.226054E+00 8.754569E+01 1.664753E+02
jDEsoco 0.1100901 4.0500E+02 7.3762E+02 17.5655328 3.0849E+02 3.0538E+02

1013

