
 
 
 
 

  

Abstract—Multi-method and multi-operator evolutionary 
algorithms (EAs) have shown superiority to any single EAs 
with a single operator. To further improve the performance of 
such algorithms, in this research study, a united multi-operator 
EAs framework is proposed, in which two EAs, each with 
multiple search operators, are used. During the evolution 
process, the algorithm emphasizes on the best performing 
multi-operator EA, as well as the search operator.  The 
proposed algorithm is tested on a well-known set of constrained 
problems with 10D and 30D. The results show that the 
proposed algorithm scales well and is superior to the-state-of-
the-art algorithms, especially for the 30D test problems. 

Index Terms— Constrained optimization, evolutionary 
algorithms, multi-method algorithms, multi-operator 
algorithms 

I. INTRODUCTION 

ONSTRAINED optimization is a challenging research area 
in the science and engineering disciplines. Locating the 

optimal solution for such problems is often difficult, as the 
characteristics and mathematical properties do not follow 
any standard patterns or forms. The constrained optimization 
problems (COPs) may contain different types of variables, 
such as real, integer and discrete, and may have equality 
and/or inequality constraints. The objective and constraint 
functions could be either linear or nonlinear. The functions 
may be either continuous or discontinuous, and either 
unimodal or multimodal. The feasible region of such 
problems could be either a tiny or a significant portion of the 
search space. Moreover, the feasible region could be either 
one single bounded region or a collection of multiple disjoint 
regions. In some practical problems, the feasible region 
could even be unbounded. Finally, the optimal solution may 
exist either on the boundary, or in the interior, of the feasible 
region.  

Over the last decade or so, EAs have recognized as 
powerful algorithms for solving both constrained and 
unconstrained optimization problems. The EAs family 
contains many different algorithms, such as the genetic 
algorithm (GA) [1], differential evolution (DE) [2] and 
evolution strategies (ES) [3, 4] .These algorithms do not 
require the satisfaction of any standard mathematical 
properties, such as continuity and differentiability, and have 
the ability to effectively deal with large search spaces [5]. 
Although there have been many EAs introduced in the 
literature, no single algorithm performs consistently over a 
wide range of problems [6]. 
 
The authors are with the School of Engineering and Information 
Technology, University of New South Wales at Canberra, Australia, emails: 
{s.elsayed, r.sarker and d.essam}@adfa.edu.au  

 

The concept of multi-method algorithms has emerged 
recently that utilizes the strength of different EAs, within a 
single algorithm structure, to deal with different types of 
problems. Vrugt et al. [7] introduced an algorithm, known as 
AMALGAM (A Multi-ALgorithm Genetically Adaptive 
Multiobjective), that has been proven to be a powerful 
approach for solving multiobjective problems. Later, Vrugt 
et al. [8] extended their work for real valued function 
optimization. As tested on a set of benchmark problems, the 
algorithm obtained similar efficiencies as existing algorithms 
on relatively simple problems, but it was increasingly 
superior for more complex and higher dimensional 
multimodal optimization problems.  

   A brief review on the multi-operator based EAs is 
provided here. Yong et al. has recently proposed a 
composite DE algorithm (CoDE) [9], in which the algorithm 
randomly combines several trial vector generation strategies 
with a number of control parameter settings at each 
generation to create new trial vectors. CoDE has been tested 
on a set of unconstrained problems and showed competitive 
performance in comparison to other state-of-the-art 
algorithms. Elsayed et al. [10] proposed a mix of four 
different DE mutation strategies within a single algorithm 
framework to solve COPs which performed well for a set of 
constrained problems that was further extended and 
improved in [11, 12]. Elsayed et al. [13] also proposed two 
novel DE variants, each of which utilized the strengths of 
multiple mutation and crossover operators, to solve 60 
constrained problems. The algorithm demonstrated superior 
performances in comparison with the state-of-the-art 
algorithms. Caraffini et al. [14] proposed a super fit multi-
adaptive DE for solving unconstrained problems. They 
employed four DE operators with equal probability. In the 
algorithm, based on normalized relative fitness improvement 
and normalized distance to the best individual measures, the 
probabilities were updated. To add to this, the control 
parameters were adopted, in which F was generated using a 
Cauchy distribution, while Cr was generated based on a 
normal distribution. Both parameters were then adapted 
during the evolution process. To enhance the performance of 
the algorithm, the covariance matrix adaptive evolution 
strategy was also used as a local search. Brest et al. [15] 
proposed a DE algorithm which embedded a self-adaptation 
mechanism for parameter control. Here, the population was 
divided into sub-populations to apply more DE strategies, 
and a population diversity mechanism was also introduced. 
The algorithm was tested on a set of unconstrained 
problems.  

In this research, the combination of multi-operator 
algorithms is explored. The algorithm is named as united 
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multi-operator EAs (UMOEAs). In this algorithm, the initial 
population is divided into two subpopulations; and each 
subpopulation is independently evolved using a multi-
operator algorithm. The success rate of each multi-operator 
algorithm is recorded for a certain number of generations 
and the better performing multi-operator is used to evolve its 
own individuals for a number of subsequent generations 
(known as a cycle), while the other population is kept on 
hold. After this cycle, information from the best performing 
population is used to update the individuals of the worst 
performing population, and subsequently both multi-
operator algorithms rerun independently in parallel. The 
process is continued up to a predefined number of fitness 
function evaluations and then the best performing multi-
operator algorithm is selected to evolve only its assigned 
population during the rest of the evolution process.  

The performance of the proposed algorithm is tested on a 
well-known set of constrained problems [16] which contains 
18 test problems, with different mathematical properties, 
with 10 and 30 dimensions.  From the results, the proposed 
algorithm shows consistently excellent performance in 
comparison with the state-of-the-art algorithm, as it is able to 
obtain better results, especially for the 30D test problems, 
and statistically significant. 

 This paper is organized as follows: after the introduction, 
section II presents a brief overview on GA and DE. In 
section III, the design of the proposed algorithm is 
discussed. The experimental results and analysis are 
demonstrated in section IV. Finally, the conclusions and 
future work are given in section V. 

II. BASIC ALGORITHMS AND OPERATORS  
The proposed framework can consider any number of 

EAs. In this section, we describe the algorithms and the 
operators we considered in this research.  

A.  Differential Evolution  

In DE, two search operators are usually used as discussed 
below.  

A.1. Mutation 

In the standard mutation strategy, DE/rand/1, a mutant 
vector (ݒԦ௭,௧ሻ is generated by multiplying the amplification 
factor ܨ by the difference of two random vectors, and the 
result is added to another third random vector (equation 1). ݒԦ௭,௧ ൌ Ԧ௥భ,௧ݔ ൅ .ܨ ൫ݔԦ௥మ,௧ െ  Ԧ௥య,௧൯                  (1)ݔ

where ݎଵ, ,ଶݎ ଵݎ ,ଷ are random numbers {1,2, ..., PS}ݎ ് ଶݎ ଷݎ് ്  Ԧ is a decision vector, PS is the population size, t isݔ  ,ݖ
the current generation and F is a positive control parameter 
(amplification factor) for scaling the difference vector. 

The purpose of the mutation operation is to explore the 
search space and maintain diversity. In the literature, there 
are many strategies for mutation, such as: DE/rand-to-best/2 

[17], rand/2/dir [18], DE/current-to-best/1[19], and 
DE/Current-to-pbest [20]. 

A.2. Crossover 

DE algorithms usually use two type of crossover 
operators. In this paper, we use the binomial crossover, 
because it is widely accepted and is superior to the 
exponential one [21]. 

The crossover operator is performed on each of the ݆௧௛variables whenever a randomly picked number ∈ [0,1] is 
less than or equal to a crossover rate (Cr). In this case, the 
number of parameters inherited from the mutant vector has a 
(nearly) binomial distribution ݑ௭௝,௧ ൌ ൜ݒ௭௝,௧,      ݂݅ ሺ݀݊ܽݎ ൑ ൌ ݆ ݎ݋ ݎܥ  ݆௥௔௡ௗሻݔ௭௝,௧,                                        ݁ݏ݅ݓݎ݄݁ݐ݋                 (2) 

where ݀݊ܽݎ ∈ ሾ0,1ሿ, and ݆௥௔௡ௗ ∈ ሾ1,  ሿ is a randomlyܦ
chosen index, which ensures trial vector ሺݑሬԦ௭,௧ሻ gets at least 
one component from ݒԦ௭,௧. 

B.  Genetic Algorithms 

 In this paper, we use GA with simulated binary 
crossover (SBX) [22] and a non-uniform mutation (NU-M) 
[23] as well as MPC-GA [24, 25]. The reason for choosing 
these operators is that GA-MPC has shown its superiority to 
many other algorithms [24], and GA with SBX plus NU-M 
outperformed nine different GA variants, as reported in [26].   

B.1. MPC-GA 

In this algorithm, an initial population is generated 
randomly, with a size of PS. An archive pool (ܣ௔௥௖௛) is filled 
with the best m individuals (based on their constraint 
violations and/or fitness function). A tournament selection 
with size ܿݐ is applied, from which the best individual is 
selected and saved in the selection pool. Using the crossover 
operation, for a given crossover rate, three individuals from 
the selection pool is used to generate three offspring as 
follows: ݕԦଵ ൌ Ԧଵݔ ൅  β ൈ ሺݔԦଶ െ Ԧଶݕ Ԧଷሻ                                 (3)ݔ ൌ Ԧଶݔ ൅  β ൈ ሺݔԦଷ െ Ԧଷݕ Ԧଵሻ                                   (4)ݔ ൌ Ԧଷݔ ൅  β ൈ ሺݔԦଵ െ  Ԧଶሻ                                   (5)ݔ

 On each new individual ݕԦ௜, a diversity operator is applied 
that helps to escape from any local minima and to move to 
better regions in the search space.  In this case, for each 
individual a uniform random number ∈ [0, 1] is generated, if 
it is less than a predefined probability, ݌, then ݕ௜௝ ൌ ௔௥௖௛௝ݔ . 
Subsequently, the individuals from the archive pool are 
merged with all of the offspring, and the best ܲܵ individuals 
are selected as the population for the next generation.  

B.2. SBX 

We use SBX crossover as it is widely used in practice. 
The probability distribution of β in this crossover is similar 
to the probability distribution of β in binary-coded crossover. 
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Using a pair of parents ݔԦଵ ൌ ሺݔଵଵ, ,ଶଵݔ … , Ԧଶݔ ௡ଵሻ andݔ ൌሺݔଵଶ, ,ଶଶݔ … , Ԧଵݕ ௡ଶሻ, two offspringݔ ൌ ሺݕଵଵ, ,ଶଵݕ … , Ԧଶݕ ௡ଵሻ  andݕ ൌ ሺݕଵଶ, ,ଶଶݕ … ,   :௡ଶሻ are generated as followsݕ

 
1. Generate a uniform random number ݀݊ܽݎ ∈ ሾ0,1ሿ. 
2. Generate a random number βത as follows: 

ҧߚ ൌ ൞ሺ2. ሻ݀݊ܽݎ భభశആ,                                rand ൑ 0.5ቀ ଵଶሺଵି௥௔௡ௗሻቁ భభశആ ,                               otherwise
      (6) 

3. Generate two offspring as follows: ݕ௝ଵ ൌ ଵଶ ൣሺ1 ൅ .ҧ൯ߚ ௝ଵݔ ൅ ሺ1 െ .ҧሻߚ ௝ଶݕ  ௝ଶሿ                            (7)ݔ ൌ ଵଶ ൣሺ1 െ .ҧ൯ߚ ௝ଵݔ ൅ ሺ1 ൅ .ҧሻߚ                     ௝ଶሿ                            (8)ݔ

When compared to other real-coded crossover 
implementations, SBX works well in many test problems 
that have a continuous search space. The SBX operator can 
restrict child solutions to any arbitrary closeness to the 
parent solutions, thereby not requiring any separate mating 
restriction scheme for better performance. SBX is very 
useful for the problems in which the bounds of the optimum 
are not known and where multiple optima may exist [22].  

To maintain the genetic diversity from one generation to 
another, the use mutation operator is well-established. The 
performance of non-uniform mutation is well-known in this 
regard. In the process, the step size is decreased as the 
generation is increased, thus it helps to making bigger search 
steps in the initial stage and smaller steps at the later stages 
[23]. The offspring ݔ௭′ ሺݐሻ ൌ ሺݔ௭,ଵ′ ሺݐሻ, ′௭,ଶݔ ሺݐሻ, … , ′௭,஽ݔ ሺݐሻሻ is 
mutated according to: ݔ௭,௜′ ሺݐሻ ൌ ሻݐ௭,௜ሺݔ ൅  ሻ                (9)ݐ௭,௜ሺߜ

using the random variation: ߜ௭,௝ሺݐሻ ൌቐቀݔҧ௝ െ ሻቁݐ௭,௜ሺݔ . ቀ1 െ ሾrandሺݐሻሿሺଵି೟೅ሻ್ቁ ,     ݂݅ rand ൑  0.5ቀݔ௝ െ ሻቁݐ௭,௜ሺݔ . ቀ1 െ ሾrandሺݐሻሿሺଵି೟೅ሻ್ቁ ,    ݂݅ rand ൐ 0.5      (10) 

where ݔҧ௝ and ݔ௝ are the upper and lower bound of 
individual ݔ௭,௝, respectively, ݀݊ܽݎሺݐሻ is a random number ∈ሾ0, 1ሿ, t is the generation number, T is the maximum number 
of generations, and b is a parameter to control the speed at 
which the step length decreases. This operator performs very 
well for problems when a solution only needs to be refined 
during the later stages of the execution of an algorithm 

III. UNITED MULTI-OPERATOR EVOLUTIONARY 
ALGORITHMS (UMOEAS) 

In this section, we discuss the proposed algorithm, the 
improvement measure and the constraint handling technique 
used in this paper. 

A. UMOEAs 

The pseudo-code of the proposed algorithm is provided in 
this Algorithm 1. The algorithm starts with an initial popul-  

ALGORITHM I. UNITED MULTI-OPERATOR EVOLUTIONARY ALGORITHMS 
PSEUDO-CODE 

- Generate initial population; each variable is generated within its 
boundaries. 

- Divide the population into two groups (ܲ ଵܵ, ܲܵଶ) with equal size 
- Initialize each algorithm’s parameters and set ݏ =݀݋݅ݎ݁݌ଵ= ݏଶ= ݏଷ=ݏସ=0;  ܾ݋ݎ݌ଵ=ܾ݋ݎ݌ଶ=0.5; 

while ݏܧܨܨ ൏  ݏܧܨܨݔܽ݉ 
- if ݏܧܨܨ &&  ܵܥ > ݀݋݅ݎ݁݌ ൏  ݁݃ܽݐܵݔ݅ܯ

 ;1+ ݀݋݅ݎ݁݌ = ݀݋݅ݎ݁݌ -
- evolve ܲ ଵܵ using multi-operator DE, such that 

        if ݀݊ܽݎ ൏  ଵܾ݋ݎ݌
- generate a new solution vector using DE1 
- if it is better than its parent, set  1_ݏ ൌ 1_ݏ  ൅ 1;  

        else 
- generate a new solution vector using DE2 
- if it is better than its parent, set 2_ݏ ൌ 2_ݏ  ൅ 1; 

        end 
- update  ܾ݋ݎ݌ଵ ൌ ,ሺ0.05ݔܽ݉ ௦భ௦భା௦మሻሻ  

- evolve ܲܵଶ using multi-operator GA: 
if 2ܾ݋ݎ݌>݀݊ܽݎ 

- generate new solutions vector using MPC-GA;   
else 

- generate new solutions vector using SBX-NUM 
end 
- calculate the success of each GA and updated ݏଷ and ݏସ 
- update ܾ݋ݎ݌ଶ ൌ ,ሺ0.05ݔܽ݉ ௦య௦యା௦రሻሻ 
- calculate the improvement of each multi-operator at 

generation 1݌݉݅ ,ݐሺݐሻ, ݅݉2݌ሺݐሻ 
- end 
- if  ݉݀݋ሺ݀݋݅ݎ݁݌, ሻܵܥ ൌ 0 

- if ݉ݑݏሺ݅݉1݌ሻ  ൏  2ሻ݌ሺ݅݉݉ݑݏ 
 else         ;1= ܣܧ_ݐݏܾ݁ -
 ;2= ܣܧ_ݐݏܾ݁ -

- end 
- end 
- if ݀݋݅ݎ݁݌ ൐ ݀݋݅ݎ݁݌ && ܵܥ ൏   ܵܥ2

- if ܾ݁1== ܣܧ_ݐݏ 
- evolve ܲ ଵܵ using multi-operator DE;        else 
- evolve ܲܵଶ using multi-operator GA; 

- end 
- end 
- if ܵܥ2 == ݀݋݅ݎ݁݌   

- calculate the mean(ݔ) and standard deviation (ߪ) vectors of the ߤ best individuals of the ܾ݁ܣܧ_ݐݏ 
- generate new population for the worst performing multi-operator 

algorithm, such as: 
ݖ where ,(ߪ,ݔ)ܰ = Ԧ௭ݔ - ൐ 1 
 ;ଶ=0.5ܾ݋ݎ݌=ଵܾ݋ݎ݌  ;ସ=0ݏ=ଷݏ =ଶݏ =ଵݏ =݀݋݅ݎ݁݌ -

- end 
    update FFEs; ݐ ൌ ݐ ൅ 1; 
end 

ation of size ܲܵ, that is randomly generated using a uniform 
distribution, in which each decision variable must be within 
its bounds. The individuals of the population is then divided 
into two subpopulations (ܲ ଵܵ and ܲܵଶ). For a predefined 
number of generations, evolve the subpopulation ܲ ଵܵusing a 
multi-operator DE algorithm, while ܲܵଶ is evolved using a 
multi-operator GA algorithm. 

In the multi-operator DE algorithm, for each individual in ܲ ଵܵ a random number (݀݊ܽݎ ∈ ሾ0,1ሿ) is generated, if it is 
less than a predefined probability (ܾ݋ݎ݌ଵ), a new individual 
is generated using (11), otherwise it will be generated using 
(12).  
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Ԧ௜,௧ݒ  ൌ Ԧఝ,௧ݔ ൅ .ܨ ൫ݔԦ௥భ,௧ െ  Ԧ௥మ,௧൯            (11)ݔ

where ߮ is a random integer number between ௉ௌభଵ଴  and ௉ௌభଶ Ԧ௜,௧ݒ . ൌ Ԧ௜,௧ݔ ൅ .ܨ ቀ൫ݔԦ௥భ,௧ െ Ԧ௥మ,௧൯ݔ ൅ ൫ݔԦఝ,௧ െ  Ԧ௜,௧൯ቁ    (12)ݔ

where ߮ is a random integer number between [1, ௉ௌభସ ሿ. It is 
worthy to mention here that ߮ is selected after ܲ ଵܵ is sorted, 
based on the fitness function and/or constraint violation. 
Note also that the binomial crossover is considered in this 
study, as in the literature [21], it showed superiority to the 
exponential one.  

If the new offspring is better than its parent (based on the 
fitness function and/or constraints violation), the success of 
the corresponding mutation (ݏଵ or ݏଶ, respectively) is 
increased by one.  After each generation, ܾ݋ݎ݌ଵ is updated, 
such that ܾ݋ݎ݌ଵ ൌ ௦భ௦భା௦మ.  

Following the same methodology, in the multi-operator 
GA, to generate new individuals, a random number (݀݊ܽݎ ∈ሾ0,1ሿ) is generated, then if it is less than a predefined 
probability (ܾ݋ݎ݌ଶ), three individuals are generated using 
MPC-GA, otherwise two individuals are produced using 
SBX-NU. MPC-GA uses an archive of individuals, as shown 
in section II.B, once new ܲܵଶ individuals are generated, 
those individuals in the archive and the new ܲܵଶ are merged, 
and the best ܲܵଶ are passed on to the next generations. Next 
that, the number of individuals generated by MPC-GA and 
that passed on to the next generation is assigned to ݏଷ, while 
those generated by SBX-NU and passed on to the next 
generation are assigned to  ݏସ. Consequently, ܾ݋ݎ݌ଶ is ௦య௦యା௦ర.  

Subsequently, the improvements of each multi-operator 
algorithm at generation (ݐ) (݅݉݌ଵሺݐሻ and ݅݉݌ଶሺݐሻ) are 
calculated as shown in the following section.  

The abovementioned process is repeated for ܵܥ generation 
(named as a cycle). The summation of both improvements 
are calculated, such that ∑ ௢,௖஼ௌ௖ୀଵ݌݉݅ , where ݋ is 1 or 2. 
Then, the best performing multi-operator is selected to 
evolve only its population for ܵܥ generations, while the 
other population is kept on hold. Once this step is over, all 
parameters are re-set to their initial values and the 
population which is on hold is injected using information 
from that population which was successful, such that: for the 
best ߤ individuals in the successful population, the mean and 
standard deviation vectors (ݔ and ߪ, respectively) are 
calculated, as: ݔ௝ ൌ ∑ ௫೔,ೕഋ೔సభఓ                                (13) 

௝ߪ ൌ ට∑ ሺ݅ݔ,݆െ݆ݔሻ2 ݅ߤൌ1 ఓ                  (14) 

and hence, the population which was on hold is updated by 
generating a Gaussian number random with ݔ௝ and ߪ௝:  ݔ௭,௝ ൌ  ܰሺݔ௝ߪ௝ሻ, where ݖ ൐ 1                  (15) 

The process of using two multi-operator algorithms is used 
up to a predefined number of fitness function evaluations 
݁݃ܽݐܵݔ݅ܯ.i.e ,(݁݃ܽݐܵݔ݅ܯ) ൌ ௠௔௫ிிா௦ଷ , not for all the 
evolution process. So that if this condition is met, the best 
performing multi-operator algorithm is selected to evolve 
only its population individuals, while the other population is 
kept on hold until the end of the evolution process 

B. Improvement Measure 

To measure the improvement of each algorithm or each 
operator in a given generation, we consider both the 
feasibility status and the fitness value, with the consideration 
that any improvement in feasibility is always better than any 
improvement in the infeasibility. For any generation ݐ ൐ 1, 
there arises one of three scenarios. These scenarios, in order 
from least, to most desirable, are discussed below. 

1. Infeasible to infeasible: For any multi-operator algorithm 
i, if the best solution was infeasible at generation ݐ െ 1 and 
is still infeasible in generation ݐ, then the improvement 
index is calculated as follows: ܸܫ௜,௧  ൌ  ቚ ௏௜௢೔,೟್೐ೞ೟ି௏௜௢೔,೟షభ್೐ೞ೟ ቚ௔௩௚.௏௜௢೔,೟ ൌ   ௜,௧                    (16)ܫ

where ܸ݅݋௜,௧௕௘௦௧  is the constraints violation of the best 
individual at generation ݐ and ܽ݃ݒ. ௜ܸ௢௜,௧ the average 
violation. Hence ܸܫ௜,௧ ൌ  ௜,௧ above represents the relativeܫ
improvement in comparison to the average violation in the 
current generation. 

2. Feasible to feasible: For any multi-operator algorithm i, if 
the best solution was feasible at generation ݐ െ 1 and was 
still feasible in generation ݐ, then the improvement index 
is:  ܫ௜,௧ ൌ max௜ሺܸܫ௜,௧ሻ ൅ ห ܨ௜,௧௕௘௦௧ െ ௜,௧ିଵ௕௘௦௧ܨ ห ൈ   ௜,௧     (17)ܴܨ

where  ܫ௜,௧ is the improvement for ݅௧௛ multi-operator 
variant at generation ܨ ,ݐ௜,௧௕௘௦௧  the objective function for the 
best individual at generation ݐ, and  the feasibility ratio of a 
variant ݅ at generation t is: ܴܨ௜,௧ ൌ ே௨௠௕௘௥ ௢௙ ௙௘௔௦௜௕௟௘ ௦௢௟௨௧௜௢௡௦ ௜௡ ௔ ௦௨௕௣௢௣௨௟௔௧௜௢௡ ௜ௌ௨௕௣௢௣௨௟௔௧௜௢௡ ௦௜௭௘ ௔௧ ௜௧௘௥௔௧௜௢௡ ௧   (18) 

To assign a higher index value to a multi-operator 
algorithm with a higher feasibility ratio, the improvement 
of fitness value is multiplied by the feasibility ratio. To 
differentiate between the improvement index of feasible 
and infeasible groups of individuals, a term max௜ሺܸܫ௜,௧ሻ is 
added to (17). If all the best solutions are feasible, then max௜ሺܸܫ௜,௧ሻ will be zero. 

3. Infeasible to feasible: For any multi-operator algorithm i, 
if the best solution was infeasible at generation ݐ െ 1 and it 
is feasible in generation ݐ, then the improvement index is:  ܫ௜,௧ ൌ max௜ሺܸܫ௜,௧ሻ ൅ ห ݋݅ݒ௜,௧ିଵ௕௘௦௧ ൅ ௜,௧௕௘௦௧ܨ െ ௜,௧ିଵ௕௩ܨ ห ൈ     ௜,௧(19)ܴܨ

where ܨ௜,௧ିଵ௕௩  is the fitness value of the least violated 
individual  in generation t-1. 
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To assign a higher index value to an individual that 
changes from infeasible to feasible, ݋݅ݒ௜,௧ିଵ௕௘௦௧   is added with 
the change of fitness value in (19). 

C. Discussion 

Here, some issues, regarding the design of the proposed 
algorithm, are discussed. 

1- The reason for generating new individuals for the 
worst performing multi-operator algorithm, instead of 
directly copying them from the best performing one, 
is to maintain diversity. However, it may not be 
efficient to generate a totally random population, as 
this may cost fitness evaluations without any valuable 
outcome. Therefore, information from the best ߤ 
individuals in the successful population is considered, 
as shown in (13) - (15). 

2- The reason for using different values for ߮ in (11) 
and (12) is that to maintain diversity as well as to 
enhance the intensification. Note that equation (12) is 
similar to the DE/Current-to-best/1 variant if ߮ ൌ 1.   

3- The reason for using two multi-operator algorithms 
only up to ݁݃ܽݐܵݔ݅ܯ fitness evaluations (here equal 
to ௠௔௫ிிா௦ଷ ), and not for all the evolution process, is to 
reduce the time complexity of the algorithm to reach 
the optimal solution, especially at this stage the 
decision of which multi-operator algorithm performs 
best can usually be justifiably made.  

4- The point behind reusing two multi-operator 
algorithms, instead of one, after every 2ܵܥ 
generations, is that passing good information for a 
poor multi-operator algorithm may help it to reach 
better solutions latter on. 

5- It is important to mention here that a minimum 
threshold to use an operator in each multi-operator 
algorithm is set, i.e. 5%, to keep the benefit from 
poorly performing operators as they may perform 
better at later generations. 

D. Constraint Handling 

In this paper, we consider the selection of the individuals 
for the purposes of a tournament [27] as follows: i) between 
two feasible solutions, the fittest one (according to fitness 
function) is better, ii) a feasible solution is always better than 
an infeasible one, iii) between two infeasible solutions, the 
one having the smaller sum of constraint violations is 
preferred. 

In this approach, no penalty factor is required, since the 
selection procedure only performs pair-wise comparisons. 
Therefore, feasible solutions have fitness equal to their 
objective function value, and the use of constraint violation 
in the comparisons aims to push infeasible solutions towards 
the feasible region. 

The equality constraints are also transformed to 
inequalities of the following form, where ߝ is a small value, 
here it is equal to 0.0001:  

TABLE I. DETAILS OF ALL PARAMETERS VALUES

General: ܲܵ ൌ 200 ܲ ଵܵ ൌ ܲܵଶ  ൌ ܵܥ ,100  ൌ ߤ ,25 ൌ 25 and ݁݃ܽݐܵݔ݅ܯ = ௠௔௫ிிா௦ଷ . 
 
DE: ݎܥ ൌ  ሼ0.4, 0.85, 0.99ሽ and ܨ ൌ  ሾ0.4 , 0.95ሿ , ߮ ∈ ሾ௉ௌభଵ଴ , ௉ௌభଶ ሿ in (11) 

[28], while it is ߮ ∈ ሾ1, ௉ௌభଶ ሿ in (12). 
 
GA: ݌ ൌ ݄ܿݎܽ ,0.2 ൌ ௉ௌభଶ  mutation rate =0.1, tournament ,%100=ݎܥ ,
selection size = 2 or 3 randomly, ߟ ൌ 3 and ܾ ൌ 5 [26]. |݄௘ሺݔԦሻ| െ ൑ ߝ 0, ݁ ݎ݋݂ ൌ 1, … ,  (20)              ܧ

where E is the number of equality constraints. 

IV. EXPERIMENTAL RESULTS  
In this section, the performance of the proposed algorithm 

is discussed and analyzed by solving a well-known set of 
constrained problems which contain 18 test problems with 
both 10 and 30 dimensions [16]. The algorithm was run 25 
times for each test problem, where the stopping criterion was 
to run for up to 200K FEs for the 10D instances, and 600K 
FEs for the 30D problems.  

To begin with, all parameter values are provided in Table 
I. It is worthy to mention here that multiple ݎܥ values used, 
instead of one, as it is confirmed in the literature that small 
values of ݎܥ are good for separable functions, while large 
values are suitable for non-separable functions. Hence for 
each new individual a random value from the ݎܥ list was 
selected, while ܨ was selected within a range, which is well-
known in the literature. 

A. Comparison with the state-of-the-art-algorithms 
Here the computational results of UMOEAs are 

compared with the state-of-the-art algorithms, εDEag [29], 
which won the CEC2010 constrained optimization 
competition, and improved jDE (jDEsoco). The detailed 
results are shown in Appendix A. 

It is important to highlight that UMOEAs was able to 
reach 100% feasibility ratios for both the 10D and 30D 
instances, but ߝDEag obtained 100% and 95.11% feasibility 
ratios for the 10D and 30D test problems, respectively. The 
average feasibility ratio for jDEsoco was 98%. 

Considering the quality of the solutions obtained, a 
summary is reported in Table I.  From this table, UMEAs 
was found superior performance to the other algorithms for 
the majority of the test problems, especially for the 30D 
instances. 

Furthermore, the Wilcoxon signed rank test [30]  was 
used which allowed us to statistically judge the difference 
between paired scores when it was not possible to make the 
assumptions required by the ݐ test, such as that the 
population should be normally distributed. The results based 
on the best and average fitness values are presented in the 
last column in Table II. As a null hypothesis, it is assumed 
that there is no significant difference between the best and/or  
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TABLE II. COMPARISON AMONG UMOEAs, ΕDEAG  AND JDESOCO 

D Comparison Results  Better Equal Worse Dec. 

10D 

UMOEAs 
– to – ࢿDEag 

Best 5 12 1 ൎ
Average 10 6 2 ൅ 

UMOEAs 
– to – 

jDEsoco 

Best 6 12 0 ൅ 

Average 15 1 2 ൅ 

30D 

UMOEAs 
– to – ࢿDEag 

Best 16 1 1 ൅ 

Average 15 1 2 ൅ 
UMOEAs 

– to – 
jDEsoco 

Best 16 0 2 ൅ 

Average 17 0 1 ൅ 

mean values of two samples whereas the alternative 
hypothesis is that there is a significant difference at a 5% 
significance level. Based on the results, one of three signs 
(+, -, and ൎ) was assigned for the comparison of any two 
algorithms, where “+” means the first algorithm was 
significantly better than the second, “-”  means that the first 
algorithm was significantly worse, and “ൎ ” means that there 
was no significant difference between the two algorithms. 
From Table II, it is clear that UMOEAs was statistically 
better than ߝDEag, in regard to both the best and average 
results for the 30D test problems, while the performance of 
UMOEAs was statistically better in regard to the average 
results for the 10D test problems. The performance of 
UMOEAs was also better than jDEsoco in regards to both 
the best and average results 

B. Scaling Analysis 

In this analysis, the relationship between the 
dimensionality of the test problem and the average number 
of function evaluations needed to find the best solutions with 
the tolerance limit (here equal to 0.0001) was derived. Due 
to the number of pages limitation, only one test problem, 
C07, was chosen for the purpose. The problem is known to 
be difficult as the objective function is non-separable, multi-
modal and is shifted by a matrix ݄݅ݏ, while the constraint is 
separable, multi-modal and also shifted by the same matrix. 
The optimal solution of this problem is at ݂ሺכݔሻ ൌ 0.  The 
problem was solved using different dimensions, i.e. D = 5, 
10, 15, 20, 25 and 30 variables. For each D, the algorithm 
was run over 50 trials, and the average FFEs, to reach the 
stopping criteria, were recorded. It should be noted that the 
evaluation of a constraint was counted as one. It is also 
worthy to mention here that up to only 30 variables were 
used, as the available data are up to 30 dimensions. 

Figure 1 shows the average FFEs for each dimension. For 
a further investigation, a regression line [31] is fitted to help 
readers to approximate the average fitness evaluations that 
are required for different dimensions.  

So, the regression equation for C07 was: ݏܧܨ  ൌ ଶܦ139.2   ൅ –ܦ7820   2017        (18) 

and the coefficient of determination [31] was 99.68%. This 
means that the line is highly fitted to predict future values. 

Fig.1. Average number of FFEs versus the problem dimension for C07 
using 50 runs. The line represents the quadratic regression fitting of the 
data. 

C. A Brief Discussion 

Here the effects of CS and ݁݃ܽݐܵݔ݅ܯ are analyzed. 
However, due to the maximum number of pages limitation, 
the detailed results are not presented here. 

Firstly, each 30D constrained problem was solved with 
three different values for 50 ,25 =ܵܥ ,ܵܥ and 75 generations. 
The ranking mechanism presented in [10] was used to rank 
all variants. Based on that, the variant with ܵܥ ൌ 50 is the 
best. 

In regards to ݁݃ܽݐܵݔ݅ܯ, each 30D problem was solved 
with two different values, such that ݁݃ܽݐܵݔ݅ܯ ൌ௠௔௫ிிா௦ଷ  and ௠௔௫ிிா௦ଶ .  Based on the ranking mechanism, ݁݃ܽݐܵݔ݅ܯ ൌ ௠௔௫ிிா௦ଷ  was found the best. 

V. CONCLUSIONS AND FUTURE WORK  

In the last decade, many EAs have been introduced to 
solve constrained optimization problems. Most of those 
algorithms were designed to use a single crossover and/or a 
single mutation operator. In this paper, we adopted the 
concept of multiple algorithms empowered by multiple 
operators, in which the initial population was divided into 
two subpopulations, and each subpopulation was 
independently evolved using its assigned multi-operator 
algorithm. After a predefined number of fitness evaluations, 
the best performing multi-operator continued to evolve its 
own subpopulation, while the other group of individuals was 
on hold. Then, after a few generations, information from the 
best performing subpopulation was used to update the worst 
performing subpopulation, and hence the two multi-operator 
algorithms were rerun in parallel again. The procedure was 
continued until a defined stage and then the best performing 
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algorithm was selected to evolve its population and the worst 
one was totally disregarded.  

The algorithm was tested on the CEC2010 constrained 
benchmark problems, and showed better performance in 
comparison with the-state-of-the-art algorithms. 

For future work, we wish to deeply analyze the 
algorithm’s components and to also test it on real-world and 
dynamic problems. 
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APPENDIX A 

FUNCTION VALUES ACHIEVED BY UMOEAs, ߝDEAG AND JDEsoco FOR THE CEC2010 TEST PROBLEMS 

Prob. Alg. 10D 30D 
Best Mean St. d Best Mean St. d 

C01 UMOEAs -7.473104E-01 -7.473104E-01 2.766290E-16 -8.218844E-01 -8.177187E-01 4.068346E-03 
εDEag -7.473104E-01 -7.470402E-01 1.323339E-03 -8.218255E-01 -8.208687E-01 7.103893E-04 

jDEsoco -0.7473103 -7.3836E-01 1.6006E-02 -0.8218841 -8.1238E-01 1.3187E-02
C02 UMOEAs -2.2777104E+00 -2.277631E+00 2.674215E-04 -2.280972E+00 -2.276652E+00 3.215291E-03 

εDEag -2.277702E+00 -2.269502E+00 2.3897790E-02 -2.169248E+00 -2.151424E+00 1.197582E-02 
jDEsoco -1.1176240 5.6359E-01 1.1044 0.6792295 1.5603 8.4705E-01

C03 UMOEAs 0.000000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 6.441640E-24 1.398980E-23 
εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 2.867347E+01 2.883785E+01 8.047159E-01 

jDEsoco 0.00000E+00 7.8105 2.9437 9.993685E-22 6.1447E+01 5.7577E+01 
C04 UMOEAs -1.000000E-05 -1.000000E-05 8.879988E-17 -3.333331E-06 -3.333299E-06 2.710191E-11 

εDEag -9.992345E-06 -9.918452E-06 1.5467300E-07 4.698111E-03 8.162973E-03 3.067785E-03 
jDEsoco -1.00000E-05 -1.00000E-05 9.4831E-16 8.0490978E-05 3.5187E-04 2.3948E-04 

C05 UMOEAs -4.836106E+02 -4.836106E+02 0.00000E+00 -4.83611E+02 -4.83611E+02 2.850879E-06 
εDEag -4.836106E+02 -4.836106E+02 3.89035E-13 -4.531307E+02 -4.495460E+02 2.899105E+00 

jDEsoco -483.6106247 -3.0217E+02 3.0256E+02 -19.9503700 1.0822E+02 1.5203E+02 
C06 UMOEAs -5.786624E+02 -5.786624E+02 3.268074E-08 -5.306375E+02 -5.306351E+02 4.396221E-03 

εDEag -5.786581E+02 -5.786528E+02 3.6271690E-03 -5.285750E+02 -5.279068E+02 4.748378E-01 
jDEsoco -578.662366 -5.7408E+02 1.6461E+01 -530.6377271 -4.7284E+02 1.2743E+02 

C07 UMOEAs 0.00000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 5.043447E-26 5.859419E-26 
εDEag 0.00000E+00 0.000000E+00 0.0000000E+00 1.147112E-15 2.603632E-15 1.233430E-15 

jDEsoco 0.00000E+00 6.4192E-27 1.3515E-26 4.2197747E-26 8.7396E-24 3.2529E-23 
C08 UMOEAs 0.00000E+00 4.522781E+00 4.806185E+00 0.0000000E+00 2.218930E-26 3.449849E-26 

εDEag 0.00000E+00 6.727528E+00 5.560648E+00 2.518693E-14 7.831464E-14 4.855177E-14 
jDEsoco 0.00000E+00 3.7421 1.0330E+01 7.2310934E-26 8.2585E+01 2.4395E+02 

C09 UMOEAs 0.00000E+00 0.000000E+00 0.0000000E+00 7.354649E-28 5.092577E-25 9.259689E-25 
εDEag 0.00000E+00 0.000000E+00 0.0000000E+00 2.770665E-16 1.072140E+01 2.821923E+01 

jDEsoco 0.00000E+00 5.2898E-01 1.4620 2.7729234E-25 2.4743 8.7782 
C10 UMOEAs 0.00000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 1.376304E-25 1.413405E-25 

εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 3.252002E+01 3.326175E+01 4.545577E-01 
jDEsoco 0.00000E+00 3.1712E+01 1.8188E+01 1.0862047E-25 2.9386E+01 7.1786

C11 UMOEAs -1.52271E-03 -1.52271E-03 1.559697E-12 -3.92344E-04 -3.92344E-04 1.35647E-10 
εDEag -1.52271E-03 -1.52271E-03 6.3410350E-11 -3.268462E-04 -2.863882E-04 2.707605E-05 

jDEsoco -0.0015227 -8.2555E-03* 2.3807E-02 -0.0003920 1.1667E-03 5.2690E-03 
C12 UMOEAs -1.992458E-01 -1.992458E-01 5.970216E-11 -1.99264E-01 -1.99263E-01 4.08248E-08 

εDEag -5.700899E+02 -3.367349E+02 1.7821660E+02 -1.991453E-01 3.562330E+02* 2.889253E+02 
jDEsoco -0.1992457 -2.2365E+01* 1.1083E+02 -0.1992634 -1.9925E-01 2.3453E-05 

C13 UMOEAs -6.842937E+01 -6.640174E+01 2.260741E+00 -6.561403E+01 -6.334698E+01 1.229909E+00 
εDEag -6.842937E+01 -6.842936E+01 1.0259600E-06 -6.642473E+01 -6.535310E+01 5.733005E-01 

jDEsoco -68.4293648 -6.8315E+01 5.7018E-01 -68.4293209 -6.7537E+01 5.0553E-01 
C14 UMOEAs 0.00000E+00 0.000000E+00 0.0000000E+00 0.0000000E+00 1.558464E-25 2.326714E-25 

εDEag 0.000000E+00 0.000000E+00 0.0000000E+00 5.015863E-14 3.089407E-13 5.608409E-13 
jDEsoco 0.00000E+00 9.1221E-01 2.4538 5.7101696E-26 1.5946E-01 7.9732E-01

C15 UMOEAs 0.00000E+00 2.893417E-21 1.446705E-20 6.323509E-27 8.833195E-23 2.391952E-22 
εDEag 0.000000E+00 1.798980E-01 8.8131560E-01 2.160345E+01 2.160376E+01 1.104834E-04 

jDEsoco 2.0257948E-26 1.2452E+09 3.8127E+09 9.6993452E-16 1.5357E+09 1.6045E+09 
C16 UMOEAs 0.000000E+00 0.000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00 0.0000000E+00 

εDEag 0.000000E+00 3.702054E-01 3.7104790E-01 0.000000E+00 2.168404E-21 1.062297E-20 
jDEsoco 0.000000E+00 4.1102E-01 3.8359E-01 0.0812907 7.3206E-01 2.9943E-01

C17 UMOEAs 5.694188E-23 1.210981E-17 2.126749E-17 5.186611E-22 9.653885E-03 1.320570E-02 
εDEag 1.463180E-17 1.249561E-01 1.9371970E-01 2.165719E-01 6.326487E+00 4.986691E+00 

jDEsoco 0.0302187 8.8958E+01 9.9131E+01 2.9943E-01 5.0398E+02 4.4832E+02 
C18 UMOEAs 2.451780E-27 7.761344E-26 7.179142E-26 1.418552E-24 8.103770E-21 1.859545E-20 

εDEag 3.731440E-20 9.678765E-19 1.8112340E-18 1.226054E+00 8.754569E+01 1.664753E+02 
jDEsoco 0.1100901 4.0500E+02 7.3762E+02 17.5655328 3.0849E+02 3.0538E+02
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