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Abstract—Most optimization problems in the field of engi-
neering design involve constraints. These constraints are often
due to statutory requirements (e.g. safety, physical laws, user
requirements/functionality) and/or limits imposed on time and
resources. Population based stochastic optimization algorithms
are a preferred choice for solving design optimization problems
due to their ability to deal with nonlinear black-box functions.
Having a good constraint handling technique embedded within
the algorithm is imperative for its good performance. With
the final aim of achieving feasible optimum solutions, feasibility
first techniques, i.e., those which prefer feasible solutions over
infeasible, have been commonly used in the past. However, in
recent studies more emphasis has been laid on intelligent use of
infeasible solutions (instead of their indiscreet rejection) during
the course of optimization; particularly because optimum solu-
tions often lie on the constraint boundary. The preservation of
good infeasible solutions in the population is likely to improve
the convergence in constricted or disconnected feasible regions.
In addition, it provides a set of marginally infeasible solutions
for trade-off considerations. However, in the case of a problem
consisting of a mix of hard (non-negotiable) and soft (negotiable)
constraints, such trade-off solutions are practically useful if
they violate the soft constraints only. In this paper, previously
introduced Infeasibility Driven Evolutionary Algorithm (IDEA)
is modified to deliver solutions which strictly satisfy the hard
constraints and offer tradeoff solutions with respect to the soft
constraints. The performance of the algorithm is demonstrated
on three benchmark problems.

I. INTRODUCTION

In real life, one often encounters problems in which one or
more objectives have to be optimized simultaneously, subject
to a set of constraints. In recent years, population-based
metaheuristic optimization algorithms (such as Evolutionary
Algorithms / EAs) have been largely preferred for solving
optimization problems, particularly multi-objective problems,
as they do not have prerequisites on mathematical properties
of objective functions and can provide Pareto-optimal set
of solutions in a single run. For constrained optimization
problems, these algorithms need to be augmented by con-
straint handling mechanisms, the quality of which affects the
performance of the algorithm significantly. A detailed review
of various constraint handling techniques used with EAs is
presented in [1], [2], [3].

Some of the most commonly used constraint-handling
techniques are listed below.

• Penalty function-based methods: Penalty function
methods are one of the most commonly adopted forms
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of constraint handling. In this approach, the fitness of
infeasible solutions is degraded using a weighted sum
of constraint violations. Variants of the penalty function
based approach include static penalty [4], [5], dynamic
penalty [6], annealing penalty [7], adaptive penalty [8]
and death penalty [9]. Implementations of most of these
schemes require additional parameters. The choice of
these parameters is often not trivial, and the result of
the optimization process is known to be highly sensitive
to these parameters.

• Dominance-based approaches: “A dominance based”
constraint handling technique implies that while per-
forming a Pareto-dominance ranking of solutions, the
constraints (or a quantity calculated based on them) are
also considered as objectives. Ray et al. [10] developed
an EA based on the non-dominance of solutions in
both the objective and the constraint space. Ho and
Shimizu [11] converted the objective function value and
the constraint violation into numerical values of the
same order of magnitude. Often, a single-objective con-
straint problem is solved by converting it into a multi-
objective problem by adding constraints as objectives.
A comparison of performance of various multi-objective
evolutionary algorithms (MOEAs) on constrained op-
timization (single-objective non-linear problems) using
concepts of Pareto-dominance can be found in [12]. For
multi-objective problems, Vieira et al. [13] used con-
straints as additional objectives. In above approaches,
convergence issues may arise if number of constraints
is high, as Pareto-dominance sorting does not work well
for high number of objectives. There is also a risk of
generating solutions with excellent objective function
values but poor constraint satisfaction.

• Maintaining infeasible solutions: A few researchers
have proposed maintaining a proportion of infeasible so-
lutions in the population during the course of evolution.
For single-objective optimization, Coello Coello [14]
proposed splitting the population into various sub-
populations, each of which use either the objective or
one of the constraints as the fitness function. Hamida
and Schoenauer [15] developed an Adaptive Segrega-
tional Algorithm (ASCHEA) in which the proportion of
feasible solutions in the population is controlled using
an adaptive penalty. This approach used a single penalty
coefficient for all constraints and was later extended [16]
to incorporate a separate penalty coefficient for each
constraint. Hinterding and Michalewicz [17] proposed
another approach (CONGA) for constraint handling
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using effective parent matching in which mating is done
between two infeasible solutions satisfying different
constraints in order to create children which will satisfy
all constraints. Mezura-Montes and Coello Coello [18]
suggested a Simple Multimembered Evolutionary Strat-
egy (SMES) in which the “best” infeasible solution
determined by its objective function value is allowed
to be copied into the next generation. In [19], ε-level
control is used in order to deal effectively with equality
constraints. In an attempt to simultaneously generate
solutions to unconstrained and constrained optimization
formulations of a multi-objective problem, Isaacs, Ray
and Smith [20] introduced a Constraint Handling Evo-
lutionary Algorithm (CHEA). In CHEA, some of the
infeasible solutions are preserved during the search. The
infeasible solutions in the population are ranked using
the original objectives along with an additional objec-
tive, the number of constraint violations. The incorpo-
ration of search through the infeasible space improves
the efficiency of the algorithm. However, CHEA does
not have any provisions for quantifying the amount of
constraint violation and the infeasible solutions obtained
are not suitable for trade-off studies. Trade-off studies
imply searching for a possibility of deriving benefits
in the objective value(s) by marginal compromise on
the constraints. To overcome this drawback and focus
the search on constraint boundaries with an aim of
achieving good quality feasible as well as marginally
infeasible solutions, Infeasibility Driven Evolutionary
Algorithm (IDEA) was proposed in [21], [22]. Instead
of using number of violated constraints as an objective,
IDEA uses a constraint violation measure based on
the relative ranks of the solutions with respect to each
constraint violation; thus delivering good quality feasi-
ble solutions as well as marginally infeasible solutions
for trade-off considerations. This algorithm is further
extended later in this paper.

• Other constraint-handling methods: These include
special representation schemes for maintaining feasi-
bility [23], [24], repair algorithms [25], [26], handling
constraints and objectives separately [27], and incorpo-
ration of heuristic rules such as linear ranking [28] and
binary tournament [29] to compare individuals in the
population. The main drawbacks of these approaches
include the need to develop problem-specific repair
mechanisms, the unavailability of a feasible starting
point, and early loss of diversity.

In the methods discussed above, there is usually no differ-
entiation made between the constraints based on how critical
it is to satisfy them in the final design. The methods which
operate on feasibility first principles effectively consider that
all constraints are hard constraints and must be satisfied
in the final design. On the other hand, the methods that
prefer or preserve infeasible solutions during the search do
so considering all of them are soft constraints. However,
it is not uncommon to encounter situations in which there

could be a mix of hard and soft constraints. In engineering
design problems, hard constraints are often a result of statu-
tory requirements e.g. stresses should not exceed prescribed
values, metacentric height should be more than certain value
for a vessel, etc. Violating these constraints would imply
critical failure of design. On the other hand, soft constraints
refer to those whose infraction does not compromise the
purpose of the design; for example cost, geometry, time
schedule constraints can be flexible in many cases. In such
problems, the trade-off solutions obtained may be practically
useful only if they satisfy all hard constraints and marginally
violate the soft constraints only. For example, consider the
case shown in Figure 1, in which Constraint 1 is hard and
Constraint 2 is soft. If a feasibility first EA (e.g. NSGA-II)
is used, the most likely solutions obtained will be contained
in the feasible region, as shown in Figure1(a). If infeasible
solutions are preserved during the search (such as in IDEA),
situations shown in Figures 1(b) and 1(c) may arise. In 1(b)
the infeasible solutions include those that violate either of the
constraints or both. Although in this case the solutions which
satisfy the hard constraint may be filtered out, a preference
strategy incorporated within the search process could deliver
more diverse tradeoff set. In 1(c) only the solutions violating
the hard constraint are obtained, which are of no practical
use, whereas in 1(d), the desirable set of solutions is shown,
which satisfy the hard constraint and marginally violate soft
constraints.

Very limited research has been reported in numerical con-
strained optimization domain which differentiates between
hard and soft constraints during the search. Most of them
deal with specific applications. In [30], [31] a stochastic
algorithm was developed to deal with MAX-SAT problems.
In [32] industrial columns was optimized while considering
hard and soft constraints on the manipulated variables. In
the context of combinatorial optimization, hard and soft
constraints were considered for creating nurse schedules for
a hospital in [33]. In all these applications, the preferences
for hard and soft constraints were imposed using weighting
parameters on the constraints (high weights for hard and
low weights for soft constraints). This introduces a number
of user-defined parameters to be set, the choice of which
can affect the performance significantly. At the same time,
appropriate normalization methods have to be employed in
order to effectively enforce the preferences.

In this paper, the earlier proposed algorithm IDEA is
modified in order to deal with problems involving hard
and soft constraints. Instead of using weighting factors,
the algorithm segregates the solutions satisfying the hard
constraints and ranks them. Rest of the paper is organized
as follows. The proposed algorithm, Infeasibility Driven
Evolutionary Algorithm for Mixed constraints (IDEA-M) is
discussed in Section II. The performance of the algorithm on
three benchmark problems is reported in Section III. Finally,
a summary of the findings paper is presented in Section IV.
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(a) Only feasible solutions obtained (b) Marginally violated solutions for all con-
straints obtained

(c) Marginally violated solutions for hard
constraint obtained

(d) Marginally violated solutions for soft
constraint obtained

Fig. 1: Final population of solutions using an Evolutionary Algorithm. The optimum lies at the intersection point of constraint
boundaries

II. INFEASIBILITY DRIVEN EVOLUTIONARY ALGORITHM

FOR MIXED CONSTRAINTS (IDEA-M)

The proposed algorithm is a modification of Infeasibil-
ity Driven Evolutionary Algorithm (IDEA) proposed ear-
lier [22], [34]. IDEA aimed at delivering: (a) the set of
optimal solutions (best objective values for single-objective
and Pareto fronts for multi-objective problems); (b) a few
marginally infeasible solutions for trade-off studies; and (c)
an improvement in the rate of convergence by effectively
utilizing the infeasible solutions during the search. The mod-
ified algorithm, IDEA-M presented in this section aims to
retain the above goals, while focusing on obtaining infeasible
solutions which only violate the soft constraints.

Infeasibility Driven Evolutionary Algorithm [22] differs
from the conventional EAs significantly in the terms of
ranking and selection of the solutions. IDEA ranks solu-
tions based on the original objectives along with additional
objective representing constraint violation measure (CV M ).
Thereafter, the best ranked infeasible solutions are explicitly
preserved in the population by assigning them higher ranks
compared to the feasible solutions in the overall ranking of
the population. Consequently the search proceeds through
both feasible and infeasible regions, resulting in greater rate
of convergence towards optimal solution(s). In IDEA, all the
constraints are treated as soft/negotiable, which means that
the additional objective CV M is represents overall rank sum
considering violations of all objectives. However, in IDEA-
M, this ranking process is modified to handle the solutions
that violate hard constraints differently from others. The
modified ranking process, and main steps involved in IDEA-

M algorithm are described in the following subsections. The
pseudo code of IDEA-M is shown in Algorithm 1.

Algorithm 1 Infeasibility Driven Evolutionary Algorithm for
Mixed constraints (IDEA-M)
Require: N {Population Size}
Require: NG > 1 {Number of Generations}
Require: 0 < α < 1 {Proportion of infeasible solutions}

1: Ninf = α ∗ N
2: Nf = N − Ninf

3: pop1 = Initialize()
4: Evaluate(pop1)
5: for i = 2 to NG do
6: childpopi−1 = Evolve(popi−1)
7: Evaluate(childpopi−1)
8: (Sf , Sinf ) = Split(popi−1 + childpopi−1)
9: (Sinf−hs, Sinf−hv) = Split(Sinf )

10: Rank(Sf ) {non-dominance+crowding sort}
11: Rank(Sinf−hs) {non-dominance+crowding sort}
12: Rank(Sinf−hv) {sort based on CV Mh}
13: Sinf = Sinf−hs+Sinf−hv

14: popi = Sinf (1, Ninf ) + Sf (1, Nf )
15: end for

1) Problem reformulation: A generic k-objective opti-
mization problem with m inequality constraints can be posed
as shown in Equation 1.

Minimize f1(x), . . . , fk(x)
Subject to gi(x) ≥ 0, i = 1, . . . , m

(1)
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In IDEA/IDEA-M, to focus the search near constraint
boundaries, the first step is to reformulate the original
problem as an unconstrained (k + 1)-objective problem as
shown in Equation 2

Minimize f ′
1(x) = f1(x), . . . , f ′

k(x) = fk(x)
f ′

k+1(x) = CV M
(2)

The additional objective, CV M , is based on the amount of
relative constraint violations among the population members.
Consider one of the constraints (gi). All solutions in the pop-
ulation are sorted in ascending order based on the value of the
constraint violation for gi. The solutions that do not violate
the constraint gi are assigned a constraint violation value of 0.
The rest of the solutions are assigned constraint violation for
the constraint gi based on the sorted list, starting with rank 1
for the solution with least constraint violation. Solutions with
the same value of constraint violation get the same rank. This
ranking procedure is repeated for all constraints. The CV M
for each solution is then calculated as the sum of the ranks
(based on their constraint violations) obtained for all the
constraints. The process of calculating CV M for a set of 10
solutions is illustrated for a problem with 3 constraints (C1,
C2 and C3) in Table I. A corresponding quantity, CV Mh is
also calculated following exactly the same process, but only
considering the set of hard constraints. This quantity is also
used in IDEA-M ranking process as will be further discussed
in Section II-3. In this example, constraint C1 is assumed to
be hard.

TABLE I: Calculation of Constraint Violation Measure for all
constraints (CV M ) and for hard constraints only (CV Mh).
The solutions with CV Mh = 0 satisfy hard constraint(s)

Violations Relative ranks
Individual C1 C2 C3 C1 C2 C3 CV M CV Mh

1 3.50 90.60 8.09 3 8 7 18 3
2 5.76 7.80 6.70 4 6 5 15 4
3 0.00 3.40 7.10 0 4 6 10 0
4 1.25 0.00 0.69 1 0 1 2 1
5 13.75 90.10 5.87 6 7 4 17 6
6 100.70 2.34 3.20 7 3 2 12 7
7 0.00 5.09 4.76 0 5 3 8 0
8 1.90 0.00 0.00 2 0 0 2 2
9 0.00 0.56 0.00 0 1 0 1 0

10 8.90 2.30 9.80 5 2 8 15 5

2) Evolution: In IDEA, the parent solutions are selected
through binary tournament. For crossover, Simulated Binary
Crossover (SBX) [35] operator is applied variable by vari-
able. For mutation, a polynomial mutation [36] operator is
used.

3) Ranking and reduction: The main modification in the
proposed IDEA-M compared to IDEA is the mechanism of
elite preservation. The difference is pictorially illustrated in
Figure 2. In IDEA, the combined (parent and offspring) pop-
ulation is divided into a feasible set (Sf ) and an infeasible set
(Sinf ). All solutions in the feasible and the infeasible sets are
separately ranked using non-dominated sorting and crowding
distance sorting of k+1 objectives. For the feasible solutions,

non-dominated sorting using k+1 objectives is equivalent to
non-dominated sorting using the original k objectives, as the
additional objective value (which is based on the constraint
violations) for feasible solutions is always 0. The next step is
to choose the solutions that form the population for the next
generation. A user-defined parameter α is used to identify
the proportion of the infeasible solutions to be retained in
the population. The numbers Nf (= (1 − α) × N ) and
Ninf (= α×N ) denote the number of feasible and infeasible
solutions in the population respectively, where N is the
population size. If the infeasible set Sinf has more than Ninf

solutions, the first Ninf solutions are selected based on their
ranking; otherwise all the solutions from Sinf are selected.
The rest of the solutions are selected from the feasible set
Sf , provided there are at least Nf feasible solutions. If Sf

has fewer solutions, all the feasible solutions are selected and
the rest are filled with remaining infeasible solutions from
Sinf . The solutions are ranked from 1 to N in the order they
are selected. Hence, the infeasible solutions selected first (at
most Ninf ) receive a higher rank than the feasible solutions.

In IDEA-M, the approach is modified as follows. After
division into feasible and infeasible solutions, Sf is ranked
the same way as above, but Sinf is further split into set
of solutions that satisfy hard constraints (Sinf−hs) and
those which violate (any of) the hard constraints (Sinf−hv).
Evidently, for all the solutions in Sinf−hs, the quantity
CV Mh = 0. For the set of solutions Sinf−hs only, the
ranking is done using (non-dominance sorting + crowding
distance) of original objectives and CV M . On the other
hand, the infeasible solutions which form the set Sinf−hv

are separately sorted (in ascending order) only based on their
CV Mh values (i.e., non-dominance and crowding distance
sorting are not performed for these solutions). Thereafter,
the solutions are recombined to get sorted Sinf , in which
solution set Sinf−hs placed above the solution set Sinf−hv .
The rationale behind this ordering is that solutions that satisfy
the hard constraints are of more more practical importance
than those which violate them and for these solutions, the
drive is towards getting better tradeoffs in objectives and
soft constraints. On the other hand, the solutions that violate
the hard constraints are sorted based on CV Mh in order
to promote solutions with lower hard constraint violation
and eventually drive them to satisfy the hard constraints.
Thereafter, the selection of next generation population is
done the same way as described above for IDEA.

III. NUMERICAL EXPERIMENTS

Three constrained problems are considered for studies
presented in this section. For each problem, results obtained
using different constraints as hard/soft are discussed. For all
experiments, a population size of 200 is evolved for 500
generations. The proportion of infeasible solutions α is set to
0.2, while the crossover probability, crossover index mutation
probability and polynomial mutation index are set as 0.9, 10,
0.1 and 20 respectively. Thirty independent runs are done for
each problem.
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Fig. 2: Difference in ranking process between IDEA and IDEA-M

A. g6 problem

First example studied here is g6 problem from the con-
strained g-series test suite [37]. The problem contains two
constraints, both of which are active at the optimum solution.
Three different variations of the problem are solved, first
considering both constraints as soft, second considering only
g1 as soft and third considering g2 as soft.

In Figure 3, the solutions obtained for the above three
cases are shown in the variable space in the vicinity of the
optimum (14.095, 0.84296). The narrow region between the
two constraints for x1 ≥ 14.095, x2 ≥ 0.84296 comprise the
feasible space. For each case, two graphs are presented, one
to show behavior for a typical run, and other to ascertain the
behavior over multiple runs. For the run shown in Figure 3(a),
it is seen that the population contains a mix of solutions that
violate g1 or g2. The multiple run plot in Figure 3(d) further
shows solutions that violated both constraints simultaneously.
Figures 3(b) and 3(c) shows solutions which satisfy hard
constraint (g2 and g1 in respective cases) and show marginal
violations in the soft constraints (g1 and g2 respectively).
Figures 3(e) and 3(f) show the consistency in this behavior
across multiple runs.

The numerical results obtained using IDEA-M are summa-
rized in Table II. In terms of the quality of feasible solutions
obtained, the statistics for all three cases are very close, with
median results for the cases with one soft constraint being
marginally better. The table also lists some of the infeasible
solutions obtained during the experiments. Once again, for
Case 1, there is a mix of solutions with either g1 or g2

violated. For Case 2, all solutions satisfy g2, with marginal
violation in g1. The advantage of focusing the search on soft
constraint boundary can be seen from the tradeoff solutions
obtained. For example, a solution with a violation of 0.15817
in g1 for Case 2 gives an objective value of -7124.0. By
comparison, a solution for Case 1 has a violation of 0.35043
in g1 with a worse objective value of -7035.8. Focusing
the search on the soft constraint boundary increases the
probability of getting better tradeoff solutions such as these.
Similarly, for Case 3, there exists a solution with violation of
0.0047218 in g2, which has almost the same objective value
as a solution with much higher violation of 0.042193 in g2

for Case 1 (-6964.4 v/s -6966.0).

B. CTP8 problem

Next, bi-objective constrained CTP8 problem from the
CTP test suite [38] is studied. The CTP8 problem has two
constraints, which intersect each other forming alternate fea-
sible and infeasible regions in the objective space, resulting
in a disconnected (three segments) Pareto front as shown in
Figure 4. Once again, three cases are studied. For a typical
run, Figure 4(a) shows the distribution of final population for
Case 1. The feasible solutions lie on the Pareto front, whereas
the infeasible solutions are present in either g1 and/or g2

violated region. In Case 2 (Figure 4(b)), all solutions satisfy
the constraint g2 strictly, while for Case 3 (Figure 4(c)),
all solutions satisfy g1 strictly. The behavior is consistent
among multiple runs, as seen from Figures 4(d)-(f). In terms
of hypervolume, the median results are very close to each
other for all three cases, as seen from Table III. The reference
point taken for the calculation is the maximum of f1 and f2

obtained across all runs, and the code available from [39] is
used for estimating hypervolumes.

C. Pressure vessel design

Lastly, an engineering optimization problem of pressure
vessel design [40] is studied, which involves 4 variables and
3 constraints, with minimization of total manufacturing cost
as the objective. Four different cases are considered; Case 1
with all constraints treated as soft, and Cases 2, 3, 4 with g1,
g2 and g3 soft respectively. The results obtained are presented
in Table IV. In terms of the statistics for the feasible
solutions, it is seen that Cases 2 and 4 clearly outperform
Cases 1 and 3. Thus, it is clear than depending on the
problem landscape, ensuring feasibility in certain constraints
can drive the population towards the optimal regions quicker
as compared to considering maintaining infeasible solutions
for all constraints. Some of the previously reported best
solutions include 6288.7445 [40] and 6119.97 [41], whereas
the best solution found for Case 2 here is 5888.05 with
x∗ = {12.4696, 6.16741, 40.3807, 199.152}. Some of the
sample infeasible solutions obtained during the runs are also
shown in Table IV, which respect the hard constraints as
prescribed. Again, it can be seen that some of the solutions
with better tradeoffs with respect to specifically prescribed
constraints are obtained. For example, for one of the solutions
in Case 2, the objective value is reduced to 5523.7, with
0.050855 units violation in g1 only.
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Fig. 3: Final populations obtained for g6 for a typical and multiple (30) runs

TABLE II: Results obtained for g6 problem using IDEA-M

Feasible solutions A few Sample infeasible solutions obtained
(statistics for 30 runs) (Negative value implies violated constraint)

x1 x2 f g1 g2

Case 1: Both constraints soft

Median: -6959.86 14.096 0.84439 -6960.2 0.0018778 -0.00036388
Best: -6961.30 14.046 0.77824 -7035.8 -0.35043 0.25201
Mean: -6958.78 14.096 0.84439 -6960.2 0.0018872 -0.00037333
Worst: -6952.95 14.096 0.83916 -6966.0 0.043498 -0.042193
Std.: 2.06391 14.085 0.82845 -6978.3 -0.060416 0.040472

Case 2: Constraint 1 (g1) soft

Median: -6959.88 14.068 0.79267 -7018.7 -0.071339 0.01716
Best: -6961.41 14.069 0.79287 -7018.4 -0.052075 0.00020966
Mean: -6959.55 14.095 0.84339 -6961.3 -0.0068064 0.0064545
Worst: -6956.37 14.020 0.7001 -7124.0 -0.15817 0.0073188
Std.: 1.47356 14.037 0.73328 -7086.1 -0.1225 0.0070838

Case 3: Constraint 2 (g2) soft

Median: -6960.92 14.068 0.77978 -7033 0.034831 -0.089278
Best: -6961.69 14.094 0.84069 -6964.4 0.0029734 -0.0047218
Mean: -6960.33 14.067 0.78227 -7030.2 0.0010702 -0.056921
Worst: -6951.60 14.085 0.81796 -6989.9 0.034712 -0.053826
Std.: 1.89789 14.045 0.7335 -7085.5 0.0092845 -0.10992

We end this section with a remark relating to generic
mixed constraint problems, especially ones with high number
of constraints. While for the given problems the prescribed
constraint conditions (hard/soft) were met, some of the
required combinations may not be achievable for certain
problems. For example, if two constraints have high cor-
relation, reduction in violation of one would also drive the
other constraint towards feasibility, and hence if one of them
is prescribed as hard whereas other as soft, an infeasible
solution with such a combination may not be achieved.

IV. SUMMARY

In this paper, a modification to earlier reported Infeasibility
Driven Evolutionary Algorithm (IDEA) is proposed to deal

with optimization problems involving a mix of hard and
soft constraints. The proposed algorithm (IDEA-M) aims to
deliver a set of solutions which satisfy hard constraints, and
achieve tradeoffs with respect to the soft constraints. This
is achieved by altering the ranking process used in IDEA.
Three problems have been studied to highlight the benefits of
the proposed approach. The results obtained using IDEA-M
are consistent with the behavior prescribed in terms of hard
and soft constraints. In addition, significant benefits are also
seen in terms of convergence and the best feasible solutions
obtained for some cases.
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(c) Case 3: Constraint 2 treated as soft (typ-
ical run)
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IDEA−M: feasible solns.
IDEA−M: infeasible solns.
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(d) Case 1: Both constraints treated as soft
(multiple runs)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

f
1

f 2

 

 

IDEA−M: feasible solns.
IDEA−M: infeasible solns.
Constraint 1
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(e) Case 2: Constraint 1 treated as soft (mul-
tiple runs)
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IDEA−M: feasible solns.
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(f) Case 3: Constraint 2 treated as soft (mul-
tiple runs)

Fig. 4: Final populations obtained for CTP8 using IDEA-M for a typical and multiple (30) runs

TABLE III: Hypervolume metric results for CTP8 problem (over 30 runs)

Case 1: Constraint 1 & 2 soft Case 2: Constraint 1 soft Case 3: Constraint 2 soft
Mean Std. Mean Std. Mean Std.

CTP8 0.279 0.0122219 0.275 0.0115333 0.280 0.0138508

TABLE IV: Results obtained for pressure vessel problem using IDEA-M

Feasible solutions A few Sample infeasible solutions obtained
(statistics for 30 runs) (Negative value implies violated constraint)

x1 x2 x3 x4 f g1 g2 g3

Case 1: All constraints soft

Median: 6123.73 0.8125 0.4375 42.09 176.74 6060.7 0.00015618 0.035958 -0.11457
Best: 6060.7 0.6875 0.4375 31.428 176.24 3697 0.080938 0.13768 -6.1908e+05
Mean: 6258.49 0.125 0.0625 10 23.425 33.597 -0.068 -0.0329 -1.2845e+06
Worst: 6826.74 0.0625 0.0625 10 19.578 19.746 -0.1305 -0.0329 -1.2857e+06
Std.: 189.975 0.625 0.4375 30.301 176.74 3250.9 0.040193 0.14843 -6.6968e+05

Case 2: Constraint 1 (g1) soft

Median: 5928.55 11.656 6.1674 40.381 199.15 5523.7 -0.050855 0.00023345 0.019355
Best: 5888.05 11.123 6.1674 40.381 199.15 5289 -0.084172 0.00023257 0.0086405
Mean: 5950.87 10.357 6.1674 40.381 199.15 4957.4 -0.13204 0.0002332 0.0021459
Worst: 6314.82 5.7579 6.1675 40.381 199.15 3104.3 -0.41948 0.00023604 0.011776
Std.: 85.3576 8.6635 6.1674 40.381 199.15 4247.6 -0.23788 0.00023317 0.38278

Case 3: Constraint 2 (g2) soft

Median: 6233.33 18.757 1 60.719 30.952 3571.2 0.00043487 -0.51676 182.71
Best: 5993.23 15.912 7.8651 51.527 86.683 6367.8 5.2608e-06 -4.0648e-09 90.523
Mean: 6289.61 18.757 3.474 60.718 30.958 4585.1 0.00046394 -0.36212 201.11
Worst: 6788.87 18.757 1.6108 60.728 30.952 3822.1 0.00025497 -0.47867 712.27
Std.: 222.125 18.756 3.1968 60.717 30.953 4470.9 0.00043265 -0.37944 63.095

Case 4: Constraint 3 (g3) soft

Median: 5988.77 14.814 7.3225 47.972 115.3 6188.9 2.7461e-05 7.8201e-07 -3.7184e-05
Best: 5988.77 14.814 7.3225 47.972 108.08 5969.7 2.7475e-05 7.6034e-07 -52190
Mean: 6009.13 11.111 5.4171 34.789 184.99 4125.4 0.022997 0.0066822 -4.1628e+05
Worst: 6217.01 10.425 5.5907 32.458 200 3829.3 0.025126 0.039766 -4.9082e+05
Std.: 90.803 10.448 5.2606 31.362 157.62 3062.1 0.047708 0.029597 -6.7977e+05

989
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