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Abstract—New and existing optimisation algorithms are often
compared by evaluating their performance on a benchmark suite.
This set of functions aims to evaluate the algorithm across a range
of problems and serves as a baseline measurement of how the
algorithm may perform on real-world problems. It is important
that the functions serve as a good representative of commonly
occurring problems. In order to select functions that will make
up the benchmark suite, the characteristics and relationships
among the functions must be known. This paper characterises
the landscapes of two commonly used benchmark suites, and uses
these landscape characteristics to obtain a high level view of the
current state of benchmark functions. This is done by using a self-
organising feature map to cluster and analyse functions based
on landscape characteristics. It is found that while there are
numerous functions that cover a wide range of characteristics,
there are characteristics that are under represented, or not
even covered at all. Furthermore, it is discovered that common
benchmark suites are composed of functions which are highly
similar according to the measured characteristics.

I. INTRODUCTION

WHEN a new optimisation algorithm or a variation of an
existing algorithm is proposed, the performance of the algo-
rithm is commonly measured on a range of known benchmark
problems. These problems provides a baseline measurement of
the performance of the algorithm and allows the algorithm to
be compared to some other algorithm(s) in the same manner.

It is therefore important that the set of problems (the
benchmark suite) includes a sufficient number of problems
that cover a wide variety of characteristics, such that the
algorithm(s) can be evaluated under diverse conditions. The
challenge becomes how problems should be selected that will
form an unbiased set on which to test existing and future
algorithms.

Benchmark functions can be viewed as function landscapes
on which a search algorithm aims to locate an optimal
position. These landscapes contain topograhical features that
can be identified and characterised. It is these features that
allow categorisation of different functions without requiring
an understanding of the underlying mathematical properties.

The aim of this paper is not to propose a single benchmark
suite that covers all possible landscape characteristics, but
rather to provide an overview and categorisation of existing
functions in order to gain an understanding of the differences
and similarities between them. In this way, existing benchmark
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suites can be scrutinised, and new benchmark suites can be
composed with greater coverage of landscape characteristics.

The remainder of this paper is organised such that the
reader is first introduced to benchmark functions and the ways
in which their characteristics can be measured. It is then
shown how exploratory data analysis (statistical methods and
self-organising feature maps) can be used to provide a high
level view of existing benchmark suites. Section II provides
background on the function landscape characteristics used in
this paper. Following this, existing function characterisation
metrics are described. Lastly, self-organising feature maps
(SOMs) are discussed since they form an integral part of the
data analysis approach. Section III outlines the experimental
approach that was followed. Section IV provides and discusses
the results of the data analysis process. Finally, Section V
concludes the paper with a summary of the findings as well
as suggestions for further research.

II. BACKGROUND

The main focus of this paper is an analysis of boundary
constrained, continuous-valued optimization functions used
to analyse the performance of optimization algorithms. This
section provides an overview of measures used to characterise
fitness function landscapes of boundary constrained functions,
with possibly unknown optima. Most of the these metrics
require that points are sampled using random-walks through
the search space. Random-walk algorithms are beyond the
scope of this paper and the interested reader is referred to
Malan and Engelbrecht [1].

While reading this section, refer to Table I for an interpre-
tation of the output of each metric.

1) Separability: Separability (additive) refers to the concept
that a function can be reformulated as the sum of one or
more functions. Suppose F' is a function of [ variables

{z1,z9,...,xr}. Then, F is separable if there exist functions
f1, fa, ..., fr that each accept one variable such that
F(zy,20,...,21) = fi(z1) + fo(we) + ...+ fr(w1)

The notion of separability can be used as a classifier of
benchmark functions. Certain algorithms perform optimisation
on a per-dimension basis and therefore separable functions are
easier to optimise than non-separable ones for such functions.
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2) First Entropic Measure: The first entropic measure
(FEM), proposed by Vassilev et al. [2], is a measure of
ruggedness in the landscape. In this case, ruggedness refers
to the number and distribution of local optima. Entropy refers
to the uncertainty involved in sampling using some method.
Therefore, the fitness values of a number of points sampled
using a random walk on a function landscape can give an
entropic estimate of the ruggedness of the landscape.

In order to calculate this entropy measure, the fitness values
of the landscape need to be encoded in some way. A random
walk through the landscape yields a sample of points and
corresponding fitness values that can be grouped as distinct
three-point objects. Each three-point object is a point on
the path together with its adjacent neighbours. A three-point
object on the landscape is categorised as being either neu-
tral (equal fitness), smooth (increasing/decreasing fitness), or
rugged (both increasing and decreasing fitness). The entropic
measure of ruggedness is calculated as the average ruggedness
of all three-point objects.

Since fitness values are continuous, a margin of error,
€, is used to calculate if two fitness values are ‘equal’ or
not. Because the fitness range of a benchmark function may
be unknown, this margin of error is computed such that
the end result is a measurement which yields the maximum
number of rugged objects. The reader is referred to Malan and
Engelbrecht [1], [3] for a more detailed explanation.

Two ruggedness measures are used in this study: FEMy ¢;
(micro ruggedness) refers to ruggedness measured at step sizes
of 1% of the function’s domain. FEM; ; (macro ruggedness)
refers to ruggedness measured at steps sizes of 10% of the
domain.

3) Dispersion: Many functions exhibit an underlying uni-
modal structure in the fitness landscape when viewed over a
larger domain. This structure can said to be a funnel: a global
basin shape that consists of clustered local optima [4]. Lunacek
and Whitley [5] introduced the dispersion metric (DM) as a
way of measuring the global topology of a function landscape.
In this case, the dispersion of a sample of points refers to
how spread out the points are. The metric is calculated by
comparing the overall dispersion of points to a subset of points
which have superior fitness values. Low dispersion indicates
the presence of a global single funnel (unimodal), while a high
dispersion indicates the presence of multiple funnels (globally
multimodal).

Malan and Engelbrecht [6] proposed an extension to the
dispersion metric where points in the sample are normalised
to allow comparison of functions with different domains.

4) Gradient: A random walk through a function landscape
starting at position x(¢) with T steps results in a sample of
T + 1 points, x(t),x(t +1),...,x(T). The gradient between
two points can then be computed as

_ S +1)) - f(x(1))
9(t) = x(t+1) — x(t)

Therefore a walk of T steps produces 1T' gradient values [6].
These values are used to quantify both the average gradient

of the landscape, i.e.

S 9]

Gavg =

T
as well as the standard deviation of gradient values, i.e.

T
Gyoy = \/Zt_l(Gavzg: — |g(t)])?

If the walk through the search space provides a good sample
of neighbouring points, the G4,y measure will be a good
estimate of the average gradient between points in the entire
search space. The G4, measure gives an indication of how
much the gradient between two points differs from the average
gradient. Therefore, a low Gy, indicates that the Gg,4 is a
reliable estimator of the gradient. On the other hand a high
Gyeo indicates that there are extreme areas on the landscape
that have sudden ‘cliffs’ or ‘valleys’ where the gradient differs
from the rest of the landscape.

5) Fitness-Distance Correlation: The fitness-distance cor-
relation (FDC) metric was proposed by Jones and Forest [7]
as a way of measuring the performance of algorithms with
known optima. It is a correlation of the fitness of a solution
and its distance to the nearest optimum. For a landscape to
be easy to search, the fitness values should become better as
solutions approach an optimum.

Malan [8] proposed an extension to FDC to measure func-
tions with unknown optima. This new measure, FDCg, requires
a sample of points {x1,...,%,} and corresponding fitness
values S = {s1,...,8,}, where the fittest point is denoted
as x*. The Euclidean distance between every x; and z* is
calculated and denoted as Dist* = {d7,...,d}}. The metric
is then defined as:

iz (si —3)(df — d¥)
Z:’L:l(si -35)? Z?:l(df - ﬁ)Q

where 3 is the mean of S, and d* is the mean of Dist*.

6) Information Landscape: Borenstein and Poli [9] intro-
duced the information landscape metric which uses a matrix of
all pairwise comparisons between the fitness values of points
in a random sample. Consider X points in a sample. The
information matrix has |X| x |X| entries m;; = t(x;,X;),
where

FDC, =

Loif fxi) < f(x)
0 if f(xi) > f(x5)

for minimisation problems.

Since the matrix contains a full pairwise comparison of
points, duplicate values occur. Therefore, only a subset of
the matrix is needed to describe the information landscape.
Diagonal entries are always 0.5 and can be ignored. Similarly,
the matrix is symmetrical about the diagonal, and the lower
half can also be ignored. Lastly, the row and column of the
optimal solution can be ignored since it is known that this is
always one.

t(X,;,Xj) =
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The information matrix can then be reduced to a vector
that contains only the relevant entries in the matrix, i.e. V =
(v1,v2,...,v,). A number of calculations can be performed
on this vector. Borenstein and Poli proposed that the distance
between this vector and the information landscape vector of
an ‘optimal’ landscape, such as Sphere, be measured.

In order to compare two information landscapes, it is
necessary that both landscapes are aligned with respect to their
global optimum, which may be unknown. Malan [8] proposed
an extension (IL, ) to this method where the Sphere function
is shifted such that its global optimum is the same as the best
solution in the sample. The distance between the two vectors
then gives an indication of the searchability of the landscape,
with low values indicating high (easy) searchability, and high
values indicating low (hard) searchability.

7) Fitness Cloud Index: Veral et al. [10] introduced the
concept of a fitness cloud as a way of visualising the evolv-
ability of an evolutionary search algorithm. The fitness cloud is
a plot of parent and offspring points, showing the relationship
between them. The offspring in this case are created via some
evolutionary operator such as crossover or as a result of an
iteration of a particle swarm. Malan [8] proposed a fitness
cloud index metric that makes use of cognitive-only and social-
only PSO update equations. These two metrics give a measure
of the evolvability of a function landscape with respect to local
and global search heuristics.

To do this, an initial sample of parent points X =
{X1,...,Xn} is generated. Two PSO particle update iterations
are performed in order to generate offspring points. Two
iterations are needed as particles have an initial velocity of
zero. The resulting offspring X’ = {x],...,x],} are compared
to the parent population X. The final metric then is calculated
as the ratio of offspring that have an improved fitness value
compared to their respective parent.

A. Self-Organising Feature Maps

This section describes self-organising feature maps in order
for the reader to understand how they were used in the
experimental procedure.

Kohonen developed the self-organising feature map (SOM)
[11] using the human cerebral-cortex as motivation. A SOM is
a method of scaling an /-dimensional input space to a discrete
output space, usually in the form of a two-dimensional grid.
The SOM can therefore be considered as a compression al-
gorithm which attempts to approximate the distribution of the
input space while maintaining its topological characteristics.
That is, if two vectors are similar in input space, they will be
similar in the map representation.

The first step in the SOM process is to decide on the number
and structure of elements (neurons) in the grid. The grid is
usually square but can be any rectangular shape. The number
of neurons is ideally the same as the number of unique training
patterns. Each neuron on the map is assigned an I dimensional
weight vector wy, where I is the number of attributes in
the dataset. There are many weight initialisation schemes and

TABLE I
FUNCTION METRIC RANGES AND THEIR INTERPRETATIONS

Metric
Separability

Range and Interpretation

{0, 1}: where O indicates a non-separable
function and 1 indicates a separable function
[0, 1]: where O indicates a flat landscape and
1 indicates maximal ruggedness

[—dispp, /D — dispp): where dispp is
the dispersion of a large uniform random
sample of a D-dimensional space nor-
malised to [0, 1] in all dimensions. A posi-
tive value for DM indicates the presence of
multiple funnels.

A positive real number, where a higher
value indicates higher average gradients.

A positive real number, where a higher
value indicates higher deviations from av-
erage gradients.

[—1, 1]: For a minimisation problem, 1 in-
dicates the highest measure of searchability
(perfect correlation between fitness values
and distance to the fittest solution).

[0, 1]: A value of O indicates maximum
searchability (no difference from the refer-
ence landscape vector vr).

[0, 1]: indicating the proportion of fitness
improving solutions after two PSO updates.

FEM

DM

Gavg

Gde'u

FDCs

ILns

FCloog
FClyoc

the reader is referred to Engelbrecht [12] for a more detailed
explanation.

Once weights have been initialised, the network of neurons
is trained competitively. For each neuron and training pattern
z,, the weight vector is updated as:

Wi (t + 1) = Wi (t) + R ks () [Zp — Wi ()]

where mn is the index of the winning neuron; the neuron that
best matches the current input pattern. The winning neuron
is computed as the shortest Euclidean distance between the
weight vector and the input pattern.

The function h,p () is the neighbourhood function. It
is used to define an area around the winning neuron that
will be affected by weight updates. Neurons outside of this
neighbourhood will have their weights updated negligibly, or
not at all.

The training process continues until a ‘good’ map has been
constructed. The quantisation error is generally used as an
indicator of the map’s accuracy. The end-result is a two-
dimensional structure that represents the entire dataset of -
dimensional data patterns while maintaining the topographical
relationship between them.

In the context of this work, the SOM is trained using
data gathered from the various function metrics. Analysis of
the relationships between function characterstics is performed,
and additionally, by labelling neurons using functions from
benchmark suites, it is possible to observe the distribution of
these functions across all charactersitics.

III. EXPERIMENTAL APPROACH

This section provides an overview of the experimental
process followed. Section III-A summarizes the functions
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used, the function metrics are listed in Section III-B, and the
experimental procedure is given in Section III-C.

A. Benchmark Functions Dataset

1) Functions: Seventy-six boundary constrained bench-
mark functions are included in the function dataset. These
include a wide variety of separable and non-separable func-
tions and functions of other characteristics. The majority of
functions are defined and used in 10 dimensions, however there
are functions that are only defined for low dimensions (1, 2,
5) and these are used accordingly.

The full list of unconstrained benchmark functions can be
found in the Computational Intelligence Library (Cllib) [13].

2) Suites: In addition to the above functions, two com-
monly used benchmark suites are included in the function
dataset. The CEC 2005 [14] benchmark suite contains 25
shifted and rotated functions. All functions in this suite are
tested in 10 dimensions. The BBOB 2009 [15] benchmark
suite contains 24 asymmetric and conditioned functions which
are again used in 10 dimensions.

This results in a total of 125 benchmark functions in the
function dataset.

B. Function Metrics

All function metrics described in Section II were used in
the experimental procedure. Each metric made use of 1000
sampled points, regardless of the domain and dimension of
the function. The number of sampled points is roughly 27,
which was found in [16] to be the number of points which
yielded a similar distribution to uniform sampling. The way
in which the points were sampled is listed below in Table II.

TABLE 11
FUNCTION METRICS SAMPLING METHODS

Metric Sampling Method

FEM Progress Random Walk
DM Uniform

Gavg, Gdev Manhattan Random Walk
FDC, Uniform

IL,s Uniform

FCIC()g, FCISOC Uniform

C. Experimental Procedure

For each benchmark function and function metric combina-
tion, the metric was calculated 30 times, due to the stochastic
nature of the sampling methods. Mean and standard deviations
were calculated over the 30 runs. The final mean values were
then used to calculate distributions as well as to serve as input
to the SOM.

The SOM was trained using 125 neurons, the same as
the number of functions in the dataset. Each input vector
corresponds to one function, where the input vector consists
of the nine values described in Table I. Data values have not
been normalised.

IV. EXPERIMENTAL RESULTS

The results and findings are discussed in this section. This
is done in two parts: Section IV-A considers an analysis with
respect to frequency distributions of the different function
metrics, while Section IV-B performs an exploratory analysis
using a SOM.

A. Analysis Based on Metric Distributions

Fig. 1 illustrates the distribution of the recorded functions
metrics.

The dataset is fairly evenly distributed with regards to sep-
arability. Separable functions account for 40% of the dataset
and non-separable functions account for 60%.

With regards to landscape micro ruggedness, FEMg o1,
functions are roughly distributed around 0.5, indicating that
many function landscapes contain both flat and highly rugged
areas. However, more functions are classified as being highly
rugged (> 0.7) than being flat (< 0.3). This indicates that
more functions which contain flat or neutral landscapes in
small areas (1% of the landscape) are needed.

Macro ruggedness, FEMj 1, shows a similar trend. However,
the middle of the distribution is at 0.6. Indeed there are more
functions with high ruggedness and there are no functions with
very large (10% of the landscape) neutral areas.

The dispersion metric, DM, highlights that there are ex-
tremely few multi-funnelled landscapes. The dataset has only
11 (8.8%) functions characterised as being multi-funnelled.
This means that when selecting a function to be used in a
benchmark suite, one does not have access to a large set of
multi-funnelled functions.

Both the average gradient, G4, and standard deviation of
gradients, G4, are low. There are, however, several outliers
with very high gradients or with gradients that vary greatly.
This indicates that functions with medium-high gradients are
needed. The functions with high gradients and high gradient
variations can be useful when constructing benchmark suites
to test gradient-based optimisation methods as these may pose
significant difficulties to these algorithms.

Fitness-distance correlation, FDC, is slightly skewed to
the left, with a concentration (mean) around 0.37, indicating
that there are more functions with low searchability. Overall,
fitness-distance correlation is the metric that is the most evenly
distributed, meaning that across the entire range of used func-
tions there exist functions that range from low searchability to
high searchability.

The information landscape metric, IL, s, is skewed to the
right, with a concentration around 0.35. No functions have a
value greater than 0.6 and few functions have a value less
than 0.1. This indicates that there are few (or no) functions
that are as searchable as the Sphere function and that there are
no functions that differ substantially from the Sphere function,
a limitation of benchmark suites. It is important the functions
that have a maximum negative searchability, i.e. an IL,,s value
of one, are defined and included in benchmark suites.

The cognitive fitness-cloud index, FCl.,,, exhibited ex-
pected results. Only one function performed poorly with
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respect to the fitness values of offspring and parents. That
is, only one function had offspring with poorer fitness than
their respective parents.

The social fitness-cloud index, FCl,,, behaved similarly
to the cognitive model, except that there are more functions
with greater proportion of worse offspring. This distribution
is still greatly skewed to the right, meaning that there are
many functions that, when only globally searched, have 90%
searchability.

B. Exploratory Analysis using Self-Organising Feature Maps

1) Observations: Fig. 2 and 3 provide component maps
for the different metrics, obtained from a SOM trained on the
landscape characteristics of the 125 functions. The SOM gives
a visual overview of the entire set of benchmark functions.
From these components, it is possible to see how the different
landscape characteristics relate to one another. There are many
observations that can be made, of which the most prominent
are described below.

Considering ruggedness (FEM), functions with micro
ruggedness generally have similar macro ruggedness proper-
ties. However, there are functions with high micro ruggedness,
but low macro ruggedness. When comparing the rugged-
ness component planes to separability, it is observed that
high ruggedness corresponds to non-separability, except for
a distinct cluster of high micro ruggedness functions who
are all separable. This is a limitation of benchmark suites
having functions with similar micro and macro ruggedness
characteristics, as well as lacking separable functions with high
ruggedness.

Dispersion, DM, has low values across the entire map except
for a small cluster of functions at the bottom of the map which
have high dispersion. What is interesting is that these functions
are a mixture of separable and non-separable functions and
these are functions which have a mixture of micro ruggedness
but all have low macro ruggedness. This is another limitation
of benchmark suites lacking multi-funnelled functions with
high macro ruggedness. Also, the functions with high dis-
persion have low gradients, low fitness-distance correlations,
and high information landscape values (bad searchability). It
would be good to be able to find functions that have positive
dispersion (multi-funnels) that are also varied with regards to
the other characteristics such as ruggedness and gradient.

Gradient values, G4y and Gge,, are low in most parts of
the map except in the top right cluster. In this cluster we see
that functions have both high average gradients as well as high
variations in gradient. However, there is a group of functions
which have higher deviations in gradient while still maintain-
ing a low average gradient. It is important to have functions
which may have sudden gradients but with underlying flat
landscapes. Another observation worth mentioning is that all
functions with high gradients are non-separable. However, the
opposite is not true, there are non-separable functions with
low gradients.

Fitness-distance correlation (FDC) and information land-
scape maps are almost exact inverses. This is to be expected

as the information landscape describes negative searchability
with respect to the Sphere function whereas FDC describes
positive searchability (and the best FDC landscape is Sphere).
Note that areas with high FDC values (good searchability) cor-
respond with areas that have low dispersion (single funnelled).
The converse is also true, areas with worst searchability are
multi-funnelled landscapes. It is therefore important to find
more multi-funnelled landscapes and thus increase the number
of functions with poor FDC values.

The cognitive fitness-cloud index, FClo,, has high values
across the map except in the top right region. It is exactly
this region that has high gradients. This makes intuitive
sense because the cognitive-only PSO is a hill climber and
thus may overshoot optima on functions with high gradients
and narrow basins. The social fitness-cloud index, FCl,.,
has higher values in those regions with high gradients. An
interesting observation is that the social FCI has one very low
region which corresponds to the exact same area of macro
ruggedness. This is again intuitive as areas with very low
ruggedness may not yield enough information to guide a global
search process.

2) CEC 2005 and BBOB 2009: Fig. 2 and 3 respectively
illustrate how the CEC 2005 and BBOB 2009 benchmark func-
tions map to the different clusters shown on the component
planes.

With reference to Fig. 2, the lower-left region of the map
contains no functions from the CEC 2005 benchmark suite.
This means that for the CEC 2005 benchmark suite there are

« very few separable functions, which may be disadvanta-
geous to certain algorithms;

o no functions with low micro and macro ruggedness, i.e.
neutral functions;

o many functions with high micro and macro ruggedness;

« no multi-funnelled functions and very few functions with
low dispersion;

o very few functions with low gradients (the majority are
medium-high gradients);

o few functions with low or high fitness-distance correlation
(most lie in the medium range);

o most functions have medium cognitive (hill-climbing)
properties;

« no functions that have low hill-climbing properties;

« no functions that have low global-search properties (al-
though such functions are difficult to find); and

e 10 functions with very similar characteristics (they are
contained within a single cluster).

Fig. 3 shows that the BBOB 2009 functions are more spread
out over the map than the CEC 2005 functions. However, there
are still areas on the map which are sparsely populated. This
means that for the BBOB 2009 benchmark suite there are

o very few separable functions;

o very few (only one) functions with very low (neutral)
micro and macro ruggedness;

o very few functions with high micro and macro rugged-
ness;
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o no multi-funnelled functions; however there are more
functions with low dispersions when compared to the
CEC 2005 suite;

« more functions with low gradients than with high gradi-
ents;

« very few (only one) functions with negative FDC search-
ability; and

« most functions that have both high hill-climbing and high
global-search properties.

Based on the points above, the CEC 2005 and BBOB 2009
benchmark suites should include more functions with low
ruggedness in order to provide neutral landscapes. Addition-
ally, both benchmark suites should include multi-funnelled
functions in order to have landscapes with underlying mul-
timodal structures. The CEC 2005 suite requires functions
with low gradients whereas the BBOB 2009 suites requires
additional functions with medium and high gradients. Finally,
both benchmark suites are lacking functions with low hill-
climbing properties and these should be included in order to
evaluate algorithms that rely on local search methods.

V. CONCLUSION

Benchmark functions are commonly used to compare the
performance of optimisation algorithms. These benchmark
functions can be considered to be a function landscape on
which the entities of an optimisation algorithm search to find
optimal solutions. In this regard, the topographical features of
a function landscape play a crucial role in determining the
performance of new and existing algorithms.

This paper analysed a wide range of individual benchmark
functions and functions taken from two common benchmark
suites. The topographical features of the function landscapes
have been characterised according various function metrics.
After obtaining characteristics for all functions in the dataset,
the functions were analysed by observing the distributions of
values of the individual metrics. Additionally, an unsupervised
learning approach, namely a self-organising feature map, was
used to further identify areas of characteristics and the rela-
tionships between these characteristics.

The CEC 2005 and BBOB 2009 benchmark suites were
labelled on to the SOM in order to identify landscape charac-
teristics that are under represented by these benchmark suites.
It has been found that both these suites are lacking functions in
certain areas of the characteristic space. In particular, the CEC
2005 benchmark suite contains 10 functions that have similar
characteristics (they are contained within a single cluster). By
using this information it is possible to see how benchmark
suites have been composed and to identify their limitations.

An important finding of this study is that, of the used func-
tions, there are currently characteristics for which benchmark
suites lack representative functions. For example, there are
very few functions that are multi-funnelled. It is important
to then find functions with these characteristics such that a
diverse function portfolio can be maintained and utilised.

This study is by no means an exhaustive survey of all current
benchmark functions. Possible further research includes

 using metrics to characterise constrained functions;

e observing how the relationships between functions
change at varying dimensions;
performing additional statistical and clustering methods
to find further relationships;
testing the hypothesis that if an algorithm performs well
on a function, that it will perform similarly on functions
with similar characteristics (in the same cluster);
using function characteristics to compose new benchmark
suites that aim to fully cover the range of available
function types.
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Fig. 1. Distributions of all benchmark functions according to specific function metrics
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Fig. 2. SOM component planes with CEC 2005 functions labelled
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