
 
 

 

  

Abstract—Robust optimization over time is a practical 
dynamic optimization method, which provides two detailed 
computable metrics to get the possible robust solutions for 
dynamic scalar optimization problems. However, the robust 
solutions fit for more time-varying moments or approximate the 
optimum more because only one metric is considered as the 
optimization objective. To find the true robust solution set 
satisfying maximum both survival time and average fitness 
simultaneously during all dynamic environments, a novel 
two-layer multi-objective optimization method is proposed. In 
the first layer, considering both metrics, the acceptable optimal 
solutions for each changing environment is found. Subsequently, 
they are composed of the practical robust solution set in the 
second layer. Taking the average fitness and the length of the 
robust solution set as two objectives, the optimal combinations 
for the whole time-varying environments are explored. The 
experimental results for the modified moving peaks benchmark 
shows that the robust solution sets considering both metrics are 
superior to the robust solutions gotten by ROOT. As the key 
parameters, the fitness threshold has the more obvious impact 
on the performances of MROOT than the time window, whereas 
ROOT is more sensitive to both of them. 

I. INTRODUCTION 
N most of the practical optimization problems, many 
uncertain factors, such as the noise and disturbance, cause 
the time-varying objectives. Even the number of the 

objectives may be changed during the optimization. This kind 
of optimization problems is termed as dynamic optimization 
problems(DOPs)[1-4]. To solve the DOPs, many 
population-based optimization methods were proposed to 
detect the changed environments and improve the diversity. 
Tracking moving optimum (TMO)[5-7] is a conventional 
idea to detect where and when the environment changed. In 
case a change occurred and automatically checks out by the 
self-check operator[8], the new evolutionary algorithm is 
targeted to find the global optimum. However, the 
time-varying moment is difficult to be sensed in time and the 
global optimum may not to be found during a limited time, 
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especially in the quickly changing environment, due to large 
computation complexity and time-consuming.  

In order to get the more efficient global optimum during 
the optimization, the concept of robust optimization over 
time(ROOT) was proposed by Jin[9-10]. The purpose was to 
find a sequence of acceptable optimal or sub-optimal 
solutions, whose qualities meet the need of more than one 
changing environment in terms of certain problem-specific 
criterion. Though the framework of ROOT given by Jin is 
rational, it is not easy to computation because the complex 
integral operation. Consequently, Fu[11] proposed a more 
practical and computable method to find robust solutions over 
time. Because the fitness function only changes along certain 
time instants, DOP is converted into discrete optimization 
problem, noted as ( , ( ))F X tα

JJG . DX ∈
JJG

\  stands for the design 
variables. ( )tα  is the time-dependent problem parameters 
changed at a series of time-varying moments max(0, ]t t∈ . 

maxt  is the maximum time-varying moment. Furthermore, 

( , ( ))F X tα
JJG  is simplified into ( )tF X

JJG
 for short. To measure the 

robustness of all solutions, two metrics[10], including the 
survival time sF  and the average fitness aF , are proposed.  

The survival time is defined as maximum time interval 
starting from t , during which the fitness of tX

JJG
 stays above 

the user-defined fitness threshold δ . 
     ( ) {0 { ( ) , }}, , max ,s

iF X t F X i t i t lδδ = ∪ ≥ ∀ ≤ ≤ +
JJG JJG

        (1) 
The average fitness is defined as the average fitness value 

over the user-defined time window starting from time t. 
Suppose T is the time window: 

                  
11

( , , ) ( )
t Ta

i
i t

t T
T

F X F X
+ −

=
= ∑

JJG JJG
                       (2) 

Taking each above metric as an objective, a sequence of 
robust solutions is achieved. Each solution can approximate 
the global optimum for at least one changing environment and 
may be the sub-optimal satisfying the requirement of the 
user-defined fitness threshold. Compared with TMO, 
population-based optimization methods are not done under 
each dynamic environment, which makes the cost of 
optimization less. ROOT, consequently, fits for DOPs with 
severely and quickly changed parameters. 

Though Fu[11] proposed two detailed computable metrics, 
, only one metric is considered as the optimization objective 
to get possible robust solutions over time. That means the 
robust solutions found at each time-varying moment have 
larger fitness values or longer survive time. So it is actually a 
single-objective optimization method. How to find the true 
robust solutions set satisfying both maximum survival time 
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sF  and average fitness aF during all dynamic environments is 
an open issue.  

In this paper, multi-objective robust optimization over time 
(MROOT) is defined and a novel two-layer multi-objective 
optimization method is discussed. Its goal is to find a 
sequence of robust solutions considering both the survival 
time sF  and the average fitness aF  simultaneously. In the 
first layer, the acceptable non-domination solutions satisfied 
both metrics are found for each changing environment. 
Subsequently, taking the average fitness and the length of the 
robust solution set as the objectives, the sequences of robust 
solutions having the optimal performances during the whole 
time-varying moments are found in the second layer. 
Obviously, the dynamic scalar optimization problem ( )tF X

JJG
 is 

transformed to a two-objective optimization problem.   
This paper is organized as follows. Section 2 describes the 

detailed algorithm steps of two-layer multi-objective ROOT. 
The simulation results are compared with the ROOT[11] and 
analyzed in Section 3. At last, the strength of the proposed 
algorithm is summarized in Section 4. 

II. TWO-LAYER MULTI-OBJECTIVE OPTIMIZATION METHOD 
TO FIND ROBUST SOLUTIONS OVER TIME 

The robust solutions over time, which have longest 
survival time or largest average fitness at each time-varying 
moment, can be found by Fu[11]. In order to obtain the 
sequence of robust solutions having both maximum survival 
time and average fitness simultaneously during all dynamic 
environments, a two-layer multi-objective optimization 
method based on NSGA-II is proposed. We call this 
multi-objective robust optimization over time. 

In the first layer, all acceptable non-domination solutions 
with the longer survival time and better average fitness are 
explored for each time-varying environment. They are 
actually composed of a Pareto front, which provides the 
alternative acceptable solutions for the second layer. Taking 
the survival time sF  and the average fitness aF  as two 
objectives, a multi-objective optimization problem is formed. 

 
  ( ) { ( ), ( )}max , , , ,s a

tF X F X t F X t Tδ=
JJG JJG JJG

                (3) 

                         s.t.  min maxX X X≤ ≤
JJG JJG JJG

 
                                max0 t t< ≤  

 
δ  stands for the fitness threshold assigned by human in 

advance. It reflects the tolerance of robust non-domination 
solutions apart from the optimum. T is the time window, 
which restricts maximum time interval about how many 
consecutive dynamic environments

tX
JJG

 has the acceptable 
average fitness over δ . Considering above multi-objective 
optimization problem, the acceptable non-domination robust 
solutions at each time-varying moment, denoted by Pt, are 
gotten by NSGA-II[12]. NSGA-II proposed by Deb is a 
conventional multi-objective optimization algorithm and has 
been widely used. The non-dominated sort and the crowd 
operator are the effective approaches to ensure the 

approximation and distribution of the Pareto front. The 
pseudo code is listed as follows: 

For t 
BEGIN 

0g = ;
 

Initialize (0)tP ; 
   while ( g G< ) 
  { 

get  ( )tQ g  from ( )tP g  by crossover and mutation; 
    calculate ( ( ))s i

tF X g
JJG

, ( ( ))a i
tF X g
JJG

;
 

    ( ) ( ) ( )t t tR g Q g P g← ∪ ; 

( ( ))i
tr X g
JJG

=non-dominated_sort( ( )tR g ); 

( ( ))i
td X g
JJG

=crowding_distance_assignment( ( )tR g ); 

( ) ( ), ( ( )){ | 1 0}i i
t t tX g P g r X g∈ + =
JJG JJG

; 

{ ( ) | ( 1),min ( ( ))and ( ( )) 0}i i i
t t t tX g P g d X g r X g∈ + >
JJG JJG JJG

; 

1g g= + ; 
} 

Output *
tP  

END 
Compared with the optimal Pareto front on any time instant 

shown in Fig.1(a), only one robust solution is gotten at the 
same time by Fu[11] because only one metric is considered, 
as shown in Fig.1(b)-(c). They present the robust solution 
under 40=δ  or 6T =  respectively. No matter the robust 
solutions found by ROOT or the robust Pareto front gotten by 
MROOT, both of them just reflect the robustness of solutions 
at any time-varying moment. They are not the true sequence 
of robust solutions, which directly apply to solve the practical 
DOPs.  

 
In the second layer, the sequence of robust solutions for the 

whole dynamic environments are constituted based on Pt and 
the optimal robust solution set is found by multi-objective 
optimization method. The key issues in the optimization 
process are: (i) How to construct a sequence of robust 
solutions during the optimization? (ii) How to measure the 
performance of each robust solution set? 

    
(a)MROOT( 40=δ ,T=6)             

       
  (b) ROOT( 40=δ )                    (c) ROOT(T=6) 

Fig.1.  The robust solutions in any time-varying moment 

24.5 25 25.5 26 26.5 27 27.5 28 28.5
58

58.5

59

59.5

60

60.5

61

Fa

F
s

0.5 1 1.5 2 2.5 3
54.5

55

55.5

56

56.5

57

Fa

F
s

42.5 43 43.5 44 44.5 45
30.5

31

31.5

32

32.5

33

Fa

F
s

1529



 
 

 

Suppose i
t tX P∈
JJG

 is the ith non-domination robust solution 

at t . Its survival time denoted by ( ) 1i
tl X ≥
JJG

 means how many 
continuously changed environments i

tX
JJG

 fits for. A sequence 
of robust solutions consists of more than one i

tX
JJG  in proper 

order. At first, 1 1
iX P∈

JJG
 is chosen randomly. 

1( ) 1il X ≥
JJG

 means the 
performances of 

1
iX

JJG
 are acceptable under consecutive 

dynamic environments from 1t=  to 1( )it l X=
JJG

. Thus 
1
iX

JJG
 is 

assigned as the robust solution when 
1[1, ( )]it l X∈
JJG

. 

Subsequently, from 11 ( )it l X= +
JJG

, any robust solution is chosen 

from 
11 ( )il X

P
+
JJJG  so as to construct a robust solution set with 

1
iX

JJG
. 

In case 
11 ( )

( ) 1i

j

l X
l X

+
≥JJJG

JJJJJJJG
, 

11 ( )i

j

l X
X

+
JJJG

JJJJJJJG
 is assigned as the robust solution 

from 11 ( )it l X= +
JJG

 to 
1

1 1 ( )
1 ( ) ( )i

i j

l X
t l X l X

+
= + + JJJG

JJG JJJJJJJG
. This process is not 

ended until maxt t= , as shown in Fig.2. The sequence of robust 
solutions covering all time-varying moments is called the 
robust solution set, denoted by

 1
1 1 ( )

{ , , }i

i j

l X
S X X

+
= JJJG
JJG JJJJJJJGJG

" ,
max1 | |S t≤ ≤

JG

. 

 
The robust solution set containing less i

tX
JJG

 or having larger 
average fitness is better. Hence, two metrics are defined to 
measure the performance of each S

JG . One is the length of S
JG , 

denoted by ( ) | |VF S S=
JG JG

. Obviously, 
max1 ( )VF S t≤ ≤

JG
. As ( ) 1VF S =

JG
, 

1{ }iS X=
JJGJG

 and
 1 max( )il X t=
JJG

. That means 1 1
iX P∈
JJG

 stays above the fitness 
threshold δ  during all dynamic environments and the 
robustness of S

JG
 is best. On the contrary, 

max( )VF S t=
JG

 means 

1 max2, ,{ }i j k
tS X X X= "

JJG JJJJGJJGJG
 and ( ) 1i

tl X =
JJG

. Each i
tX

JJG
does not satisfy the 

fitness constrain under dynamic environment at t+1. The 
other metric is the average fitness of S

JG , denoted by ( )aF S
JG

.  
 

                  ( )

1

1( ) ( )
( )

VF S
a i

V i
F S f S

F S =
= ∑

JG JJGJG
JG

                    
(4) 

                       ( ) ( )i k
tf S f X=

JJG JJG
  

                                 
(5) 

 
Taking ( )VF S

JG
 and ( )aF S

JG
as two objectives, to find the 

optimal robust solution set is in fact a multi-objective 
optimization problem.  

 
                 max   ( ) { ( ), ( )}V aF S F S F S=

JG JG JG
                   (6) 

NSGA-II is adopted to find the optimal robust solution 
sets. The pseudo code of the second layer of MROOT is 
shown as follows: 

BEGIN 
0g = ;

 
construct (0)iS

JJG
 from *

tP ; 
Initialize (0)PS ; 

  while( g G< ) 
   { 

get ( )QS g   from ( )PS g  by crossover and mutation; 
    calculate ( ( ))V iF S g

JJG
, ( ( ))a iF S g

JJG
;
 

    ( ) ( ) ( )RS g QS g PS g← ∪ ; 

( ( ))ir S g
JJG

=non-dominated_sort( ( )RS g ); 

( ( ))id S g
JJG

=crowding_distance_assignment( ( )RS g ); 

{ ( ) | ( 1), ( ( )) 0}i iS g PS g r S g∈ + =
JJG JJG

;                    

{ ( )| ( 1),min ( ( ))and ( ( )) 0}i i iS g PS g d S g r S g∈ + >
JJG JJG JJG

; 
1g g= + ; 

} 
Output *SP  
END 

III. SIMULATION RESULTS AND THEIR ANALYSIS 
Taking the modified moving peaks functions as the 

benchmark, the strength and weakness of MROOT and 
ROOT are compared by the following experiments. 

A. The Benchmark Functions 
The moving peaks function is the most commonly used 

benchmark for DOPs. In this paper, all experiments are done 
on the modified moving peaks benchmark (mMPB)[13]. 

 

21,
( ) max{ * || || }i i i

t t t ti m
F X H W X C

=
= − −

"

JJGJJG JJG                 (7) 

where  
_ * (0,1)i i i

t tH H height severity N= +  

_ * (0,1)i i i
t tW W width severity N= +  

1 1
i i i
t t tC C v+ += +
JJJG JJG JJJG

 

1
((1 ) *

|| (1 )* * ||

i
i t
t i

t

s r vv
r v

λ λ
λ λ

+ =
∗ − ∗ +

− +

JGGJJJG
JGG  

i
tH , i

tW  and i
tC
JJG

 respectively stand for the height, width 

and center of the ith peak at t . X
JJG

 is the variable. (0,1)N  
represents a random number drawn from Gaussian 
distribution with zero mean and one variance. The parameters 
of mMPB and the algorithms are summarized in Table I. 

 

TABLE I 
THE PARAMETERS OF MMPB 

Peaks 
m 

Change 
frequency 

Dimension 
D 

Trend 
parameter 

Scale 
parameter 

5 2500 2 1 1 

Initial 
height Initial width Height 

range Width range Search 
range 

50 6 [30,70] [1,12] [0,50] 

Height_sev
erity range 

Width_seve
rity range 

Population 
size θ Generatio

n 

[1,10] [0.1,1] 50 1 1000 

1( ) 1il X ≥
JJG

1t = "2t = 3t = " 1( )it l X=
JJG

maxt t=
1( ) 1it l X= +
JJG

The robust sol uti on i s 1
iX
JJG

1( ) 1
( ) 1i

i

l X
l X

+
≥JJJG

JJJJJJJG
1

1 ( ) 1
( ) ( )i

i j

l X
t l X l X

+
= + JJJG
JJG JJJJJJJG

The robust sol uti on i s 
1( ) 1i

j

l X
X

+
JJJG

JJJJJJJG

1
1 ( ) 1

1 ( ) ( )i

i j

l X
t l X l X

+
= + + JJJG

JJG JJJJJJJG

 
Fig. 2.  Construct a robust solution set 
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B.   Comparison and analysis of the experimental results 
Nine groups of experiments are designed to further explain 

the concept of MROOT and compare the difference and the 
strength between ROOT and MROOT. 

(1)Comparison on the robust solutions and their 
performances gotten by ROOT and MROOT 

All of the experiments are done for the mMPB and the 
main parameters are same: 40δ = , 6T= . The robust solutions 
gotten by ROOT are the optimal one satisfying maximum 
survival time or maximum average fitness, shown as Fig.3.  

                                                            
Taking 67t =  as example, we see from Fig.4 that each 

robust solution gotten by ROOT is a point, which has best 
performance in one side at each time-varying moment. To be 
different with ROOT, the acceptable robust solutions found in 
the first layer of MROOT contain more than one solution. 
They compose of a robust Pareto front, as shown in Fig.4. 
Furthermore, the optimal robust solution sets gotten by 
NSGA-II in the second layer of MROOT are shown in Fig.5.  

 

Three typical robust solution sets are chosen from the 
optimal robust Pareto front shown in Fig.5 to compare the 
average survival time and average fitness with the robust 
solutions gotten by ROOT. Point A and C are the terminal 
point of the optimal robust Pareto front. B is its midpoint. 
From Fig.6, we see that average survival time and fitness of 
any robust solution set are superior to the robust solutions 
gotten by ROOT.  

 
The number of dynamic environments that each robust 

solution fits for are shown in Fig.7. Compared with the robust 
solutions found by ROOT shown in Fig.7(d)-(e), AS

JJG
, BS
JJG

, CS
JJG

contain less robust solutions. That means their robustness are 
better.  

 

      
(a)MROOT( ( ) 64V

AF S =
JJG

)               (b)MROOT( ( ) 60V
BF S =
JJG

) 

      
        (c)MROOT( ( ) 56V

CF S =
JJG

)           (d)ROOT( ( ) 68VF X =
JJG

)( 40δ = ) 

 
(e)ROOT( ( ) 77VF X =

JJG )( 40T = ) 
Fig.7. The robust solutions for 150 dynamic moments 
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(a) The average survival time 

 
(b) The average fitness 

Fig.6.Comparison of the robust solution’s performance between 
ROOT and MROOT 
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The average survival time of MROOT A point is 2.84•

The average survival time of MROOT B point is 2.8933•

The average survival time of MROOT C point is 2.9267•

The average survival time of ROOT ST=40  is 2.6467•

The average survival time of ROOT TW=6 is 2.2533•

MROOT  point A

MROOT  point B

MROOT  point C

ROOT ST=40

ROOT TW=6
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The average fitness of MROOT A point is 48.6083•

The average fitness of MROOT B point is 48.2812•

The average fitness of MROOT A point is 47.7986•

The average fitness of ROOT TW=6 is 42.544•

The average fitness of ROOT ST=40  is 46.6948•

MROOT A point
MROOT B point
MROOT C point
ROOT ST=40
ROOT TW=6

          
Fig.5. The optimal non-domination robust solution set found by the 
second layer of MROOT 
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Fig.4.The robust solutions gotten by ROOT and the first layer of 
MROOT(t=67) 
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(b) ( 6)aF T =  

Fig. 3.  The robust solutions by ROOT 
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ST40 in ROOT
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By compared the performances between the optimal robust 
Pareto front found by MROOT and the robust solutions 
gotten by ROOT listed in TableⅡ, it has shown that the 
former averagely fits for more time-varying moments with 
better average fitness. In other words, less robust solutions are 
contained in the non-domination robust solution set.  

 
 (2)Analysis of the performance under different parameters 
The fitness threshold and time window directly influence 

the evaluation criterion for the robust solutions. We further 
compare and analyze the performances of the optimal robust 
solutions under different δ  or T . The simulation results 
under 40,45,50=δ  and 2,4,6T =  are listed in Table Ⅲ . 
Corresponding average survival time and average fitness are 
shown in Fig.8-Fig.15.  

 
On the following parts, we compare above experimental 

results deeply and further analyze them from four sides. 
(i)  By comparing the performances of three robust solution 

sets(A,B,C) located at the robust Pareto front gotten by 
MROOT under the same parameters, we see that the robust 

 

 
 
solution set A has shorter average survival time and better 
average fitness than C. That means there are more robust 
solutions composed of the robust solution set A. By 
analyzing, we known that during the optimization process, if 
we pay more attention to the average fitness, the robust 
solution set A will be gotten. On the contrary, the robust 
solution set C means the survival time is more important than 
average fitness. By compared with A and C, the robust 
solution set B has the compromise performance between the 
survival time and average fitness. In practical application, any 
solution set located in the robust Pareto front can be chosen in 
terms of the preference of the decision maker.  

TABLE III 
COMPARISON OF THE PERFORMANCES BETWEEN THE OPTIMAL ROBUST 

SOLUTIONS BY ROOT AND MROOT UNDER DIFFERENT δ  AND T  

δ T Algorithm 
Average 
survival 

time 

Average 
fitness 

The length 
of robust 

solution(set) 

40 

2 

ROOT(ST=40) 2.7538 46.3659 63 
ROOT(TW=2) 3.0600 49.7000 56 
MROOT(A) 2.9800 51.2391 62 
MROOT(B) 2.9867 51.2167 61 
MROOT(C) 3.000 50.7822 57 

4 

ROOT(ST=40) 2.7733 47.3449 64 
ROOT(TW=4) 2.7200 47.2177 67 
MROOT(A) 2.8267 48.5586 62 
MROOT(B) 2.8200 48.5206 61 
MROOT(C) 2.8133 48.4310 60 

6 

ROOT(ST=40) 2.6467 46.6948 68 
ROOT(TW=6) 2.6533 42.5440 77 
MROOT(A) 2.8400 48.6083 64 
MROOT(B) 2.8933 48.2812 60 
MROOT(C) 2.9267 47.7986 56 

45 

2 

ROOT(ST=45) 2.2667 50.4401 78 
ROOT(TW=2) 2.2667 52.8932 79 
MROOT(A) 2.4067 51.9935 76 
MROOT(B) 2.4067 51.9461 75 
MROOT(C) 2.4267 51.9256 74 

4 

ROOT(ST=45) 2.3400 49.8702 78 
ROOT(TW=4) 2.0467 48.5826 95 
MROOT(A) 2.3000 52.0505 75 
MROOT(B) 2.3100 52.0040 74 
MROOT(C) 2.3300 51.8036 73 

6 

ROOT(ST=45) 2.2800 50.3388 79 
ROOT(TW=6) 1.7533 42.5500 106 
MROOT(A) 2.3067 51.7803 74 
MROOT(B) 2.3067 51.7543 73 
MROOT(C) 2.3333 51.6035 72 

50 

2 

ROOT(ST=50) 1.7933 53.3959 98 
ROOT(TW=2) 1.7533 55.2953 100 
MROOT(A) 1.8133 55.7652 96 
MROOT(B) 1.8200 55.7314 95 
MROOT(C) 1.8267 55.6954 94 

4 

ROOT(ST=50) 1.7667 53.5350 99 
ROOT(TW=4) 1.4067 49.5130 119 
MROOT(A) 1.8333 55.5228 95 
MROOT(B) 1.8467 55.5056 94 
MROOT(C) 1.8533 55.3511 93 

6 

ROOT(ST=50) 1.7533 53.6832 97 
ROOT(TW=6) 1.3600 43.5366 123 
MROOT(A) 1.8000 56.1983 99 
MROOT(B) 1.8067 56.1746 98 
MROOT(C) 1.8133 56.1416 97 

 
(a)the optimal robust solutions 

 
(b)average survival time 

 
(c)average fitness 

Fig.8.Comparison of the performances between the optimal 
robust solutions by ROOT and MROOT under 40, 4δ T= =  
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The average survival time of two-objective A point is 2.8267

The average survival time of two-objective B point is 2.82

The average survival time of two-objective C point is 2.8133•

The average survival time of single-objective ST40  is 2.7733•

The average survival time of single-objective TW4 is 2.72•
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Two-objective B point
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Single-objective ST40
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The average fitness of two-objective A point is 48.5586•

The average fitness of two-objective B point is 48.5206•

The average fitness of two-objective C point is 48.431•

The average fitness of single-objective ST40  47.3449•

The average fitness of single-objective TW4 is 47.2177•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST40
Single-objective TW4

TABLE II 
COMPARISON BETWEEN THE PERFORMANCES OF THE ROBUST 

SOLUTIONS BY ROOT AND MROOT( 40, 6δ T= = ) 
Algorithm Average 

survival 
time 

Average 
fitness 

The length of 
robust 

solutions (set) 
ROOT(ST=40) 2.6467 46.6948 68 
ROOT(TW=6) 2.6533 42.5440 77 
MROOT(A) 2.8400 48.6083 64 
MROOT(B) 2.8933 48.2812 60 
MROOT(C) 2.9267 47.7986 56 
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(a)the optimal robust solutions 

 
(b)average survival time 

 
(c)average fitness 

Fig.11.Comparison of the performances between the optimal robust 
solutions by ROOT and MROOT under 45, 4δ T= =  
 

   
(a)the optimal robust solutions 

 
(b)average survival time 

 
(c)average fitness 

Fig.12.Comparison of the performances between the optimal robust 
solutions by ROOT and MROOT under 45, 2δ T= =  
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The average survival time of MROOT A point is 2.3067•

The average survival time of MROOT B point is 2.3067•

The average survival time of MROOT C point is 2.3333•

The average survival time of ROOT ST=45  is 2.34•

The average survival time of ROOT TW=4  is 2.0467•

MROOT point A
MROOT point B
MROOT point C
ROOT ST=45
ROOT TW=4
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The average fitness of MROOT A point is 52.0505•

The average fitness of MROOT B point is 52.004•

The average fitness of MROOT C point is 51.8036•

The average fitness of ROOT is ST=45 is 49.8702•

The average fitness of ROOT is TW=4 is 48.5826•

MROOT  point A
MROOT  point B
MROOT  point C
ROOT ST=45
ROOT TW=4
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The average survival time of two-objective A point is2.4067•

The average survival time of two-objective B point is2.4067•

The average survival time of two-objective C point is2.4267•

The average survival time of single-objective ST45 is2.2667•

The average survival time of single-objective TW2 is2.2667•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST45
Single-objective TW2

0 50 100 150
0

10

20

30

40

50

60

70

time

tim
e 

w
in

do
w

 (
2)

 

 

The average fitness of two-objective A point is 51.9935•

The average fitness of two-objective B point is 51.9461•

The average fitness of two-objective C point is 51.9256•

The average fitness of single-objective ST45 is 50.4401•

The average fitness of single-objective TW2 is 52.8932•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST45
Single-objective TW2

 
(a)the optimal robust solutions 

 
(b)average survival time 

 
(c)average fitness 

Fig.9.Comparison of the performances between the optimal robust 
solutions by ROOT and MROOT under 40, 2δ T= =  
 

 
(a)the optimal robust solutions 

 
(b)average survival time 

 
(c)average fitness 

Fig.10.Comparison of the performances between the optimal 
robust solutions by ROOT and MROOT under 45, 6δ T= =  
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The average survival time of two-objective A point is 2.8267

The average survival time of two-objective B point is 2.82

The average survival time of two-objective C point is 2.8133•

The average survival time of single-objective ST40  is 2.7733•

The average survival time of single-objective TW4 is 2.72•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST40
Single-objective TW4
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The average fitness of two-objective A point is 48.5586•

The average fitness of two-objective B point is 48.5206•

The average fitness of two-objective C point is 48.431•

The average fitness of single-objective ST40  47.3449•

The average fitness of single-objective TW4 is 47.2177•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST40
Single-objective TW4
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The average survival time of MROOT A point is 2.3067•

The average survival time of MROOT B point is 2.3067•

The average survival time of MROOT C point is 2.333 •

The average survival time of ROOT ST=45  is 2.28•

The average survival time of ROOT TW=6  is 1.7533•

MROOT  point A
MROOT  point B
MROOT  point C
ROOT ST=45
ROOT TW=6
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The average fitness of MROOT A point is 51.7803•

The average fitness of MROOT B point is 51.7543•

The average fitness of MROOT C point is 51.6035•   

The average fitness of ROOT ST=45 is 50.3388•

The average fitness of ROOT TW=6 is 42.5533•

MROOT  point A
MROOT  point B
MROOT  point C
ROOT ST=45
ROOT TW=6
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(ii) The robust solutions gotten by ROOT and MROOT 

under the same parameters show that no matter which aspect 
is considered, the survival time or average fitness, the robust 
solution sets gotten by MROOT have superior performances 
than them by ROOT generally. The reason for that is through 
the two-layer optimization process in MROOT, the optimal 
combinations of the robust solutions are further explored 
based on the non-domination solutions at each time-varying 
moment. Especially, the combination optimization strategy in 
the second layer of MROOT provides the possibility to find 
the realizable robust solution set used in practice. 

(iii) The experimental results under different T indicate that 
the time window has less impact on the performance of the 
robust solution set by MROOT. Because MROOT is 
multi-objective optimization actually, it is difficult to get a 
robust solution set with longer survival time than the time 
window by considering the constraint of average fitness at the 
same time. However, the time window plays a more obvious 
role in the optimization process of ROOT. It directly restricts 
the quality and quantity of the possible robust solutions at 
each time-varying moment. Less T makes the average 
survival time shorter and average fitness worse. 

(iv) By compared the robust solution sets gotten by 
MROOT under different δ , it is obvious that δ  has the large 
influence on MROOT. The robust solution sets’ average 
survival time are decreasing and their average fitness 
becoming larger with the increasing of δ . Meanwhile, the 
robust solution sets contain more elements. That means the 
robustness of the robust solution sets deteriorate so as to 

    
(a)the optimal robust solutions 

 
(b)average survival time 

 
(c)average fitness 

Fig.15.Comparison of the performances between the optimal 
robust solutions by ROOT and MROOT under 50, 2δ T= =
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The average survival time of two-objective A point is 1.8133•

The average survival time of two-objective B point is 1.82•

The average survival time of two-objective C point is 1.8267•

The average survival time of single-objective ST50 is 1.7933•

The average survival time of single-objective TW2 is 1.7533•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST50
Single-objective TW2
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The average fitness of two-objective A point is 55.7652•

The average fitness of two-objective B point is 55.7314•

The average fitness of two-objective C point is 55.6954•

The average fitness of single-objective ST50 is 53.3959•

The average fitness of single-objective TW2 is 55.2593•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST50
Single-objective TW2

 
(a)the optimal robust solutions 

 
(b)average survival time 

 
(c)average fitness 

Fig.13.Comparison of the performances between the optimal 
robust solutions by ROOT and MROOT under 50, 6δ T= =  
 

  
(a)the optimal robust solutions 

 
(b)average survival time 

 
(c)average fitness 

Fig.14.Comparison of the performances between the optimal 
robust solutions by ROOT and MROOT under 50, 4δ T= =  

-99 -98.8 -98.6 -98.4 -98.2 -98 -97.8 -97.6 -97.4 -97.2 -97
56.14

56.15

56.16

56.17

56.18

56.19

56.2

56.21

The number of robust solutions

T
h

e 
av

er
ag

e 
fit

ne
ss

 o
f r

ob
us

t s
ol

ut
io

ns

A

B

C

0 50 100 150
0

1

2

3

4

5

6

7

8

9

10

time

su
rv

iv
al

 t
im

e 
(f
itn

es
s 

th
re

sh
ol

d 
50

)

 

 

The average survival time of MROOT A point is 1.8•

The average survival time of MROOT B point is 1.8067•

The average survival time of MROOT C point is 1.8133•

The average survival time of ROOT ST=50 is 1.7533•

The average survival time of ROOT TW=2 is 1.36•

MROOT point A
MROOT point B
MROOT point C
ROOT ST=50
ROOT TW=6
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The average fitness of MROOT A point is 56.1983•

The average fitness of MROOT B point is 56.1746•

The average fitness of MROOT C point is 56.1416•

The average fitness of ROOT ST=50 is 53.6832•

The average fitness of ROOT TW=6 is 43.5366•

MROOT  point A
MROOT  point B
MROOT  point C
ROOT ST=50
ROOT TW=6
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The average survival time of two-objective A point is 1.8333•

The average survival time of two-objective B point is 1.8467•

The average survival time of two-objective C point is 1.8533•

The average survival time of single-objective ST50 is 1.7667•

The average survival time of single-objective TW4 is 1.4067•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST50
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The average fitness of two-objective A point is 55.5228•

The average fitness of two-objective B point is 55.5056•

The average fitness of two-objective C point is 55.3511•

The average fitness of single-objective ST50 is 53.535•

The average fitness of single-objective TW4 is 49.513•

Two-objective A point
Two-objective B point
Two-objective C point
Single-objective ST50
Single-objective TW4
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satisfy the higher requirements of average fitness. In practice, 
δ  reflects the tolerance of the robust solutions apart from the 
true optimum at each time-varying moment. So it needs to be 
cautiously assigned in terms of the detail optimization 
problems. 

IV. CONCLUSIONS 
Though Fu[11] provides the detailed computable metrics 

for ROOT to get the possible robust solutions over time of 
DOPs, only one metric is considered as the optimization 
objective. Moreover, the obtained robust solutions only 
reflect the single performance at each time-varying moment. 
They are not the sequence of robust solutions during the 
optimization in nature. In order to find the true robust solution 
set satisfying maximum both survival time and average 
fitness simultaneously during all dynamic environments, a 
scalar dynamic optimization problem is converted to a 
two-layer two-objective optimization problems. In the first 
layer, the acceptable robust Pareto front considering both 
metrics is found at each time-varying moment. In the second 
layer, taking the average fitness and the length of the robust 
solution set as two objectives, the sequences of robust 
solutions chosen from the first layer during all time-varying 
moments are explored. NSGA-II is adopted as the 
multi-objective optimization method to solve two-objective 
optimization problems in both layers. The experimental 
results for the modified moving peaks benchmark show that 
the robust solution sets found by MROOT have larger 
average fitness and longer average survive time than the 
robust solutions gotten by ROOT. As the key parameters, the 
fitness threshold has the obvious impact on MROOT whereas 
the time window influences the performances of the robust 
solution sets less. However, ROOT is more sensitive to both 
of them. 

In the future work, suitable test functions need to be 
constructed. Moreover, since the dynamic system is 
performed online, the solutions’ fitness in the past or future 
dynamic moment shall be considered in MROOT. So the 
estimate and prediction task are inevitable. 
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