
 
 

 

  

Abstract—The Permutation Flow Shop Scheduling Problem 
(PFSP) is considered to be one of the complex combinatorial 
optimization problems. For PFSPs, the schedule is produced 
under ideal conditions that usually ignore any type of process 
interruption. In practice, the production process is interrupted 
due to many different reasons, such as machine unavailability 
and breakdowns. In this paper, we propose a Genetic Algorithm 
(GA) based approach to deal with process interruptions at 
different points in time in Permutation Shop Floor scenarios. 
We have considered two types of process interruption events. 
The first one is predictive, where the interruption information is 
known well in advance, and the second one is reactive, where the 
interruption information is not known until the breakdown 
occurs. An extensive set of experiments has been carried out, 
which demonstrate the usefulness of the proposed approach.  

I. INTRODUCTION 
HE Permutation Flow Shop Scheduling Problem (PFSP) 
is a challenging issue in the manufacturing industry. A 
classical PFSP consist of processing of the n jobs on m 

machines. Makespan minimization is a common measure of 
performance for PFSPs. It can be defined as the time 
difference between the starting of the first operation in the 
first machine and the ending of the last operation in the last 
machine. To solve this, first in 1954 Johnson [1] proposed an 
algorithm that solves two machine PFSPs, as well as special 
three machine PFSPs, optimally. However, the general PFSPs 
with more than two machines are NP Hard [2]. As a 
consequence, for large problems, the mathematical 
programming based methods, like integer programming, are 
unable to provide a good quality solution within a reasonable 
amount of time. This provides an opportunity to study the 
suitability of heuristics and meta-heuristics approaches for 
solving PFSPs. Nawaz et al. [3] proposed a simple, and one of 
the best, constructive heuristics for PFSPs [4]. However, it 
deviates up to 7% from the known optimal solutions for some 
well-known problems [5]. This algorithm is based on the 
concept that the jobs with longer operating times on all of the 
machines, should be placed as early as possible in the 
sequence. To achieve better quality solutions within a 
reasonable amount of time, researchers have applied other 
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meta-heuristic such as ant colony algorithm [6], particle 
swarm optimization [7], simulated annealing [8], tabu search 
[9], Genetic Algorithms (GAs) [10], and Hybrid GAs [5, 11].    

Almost all scheduling research in PFSPs has mainly 
focused on ideal conditions, assuming an uninterrupted 
production system. However, in practice, process 
interruptions are very common events on the shop floor. The 
addition of such interruptions make the PFSP more practical, 
but also complex. Production can be interrupted due to both 
preventive and breakdown maintenances of production 
equipment. These include: machine overhaul, machine 
failure, unavailability of raw materials, order rejection, 
sudden arrival of a new job, variation in processing time, and 
change in job priority [12, 13]. Machine unavailability due to 
preventive maintenance schedule is usually known in 
advance. So it can easily be incorporated within the 
Permutation Flow Shop scheduling as a dummy job. In case 
of sudden machine breakdown, the jobs scheduled in that 
machine cannot be processed until the machine is 
appropriately repaired. Such a machine breakdown would 
delay the completion time, for some jobs already scheduled, 
in order to satisfy precedence and capacity constraints. 
However, the delay in completion can be minimized by 
re-optimizing the remaining schedule. Even after 
re-optimizing the interrupted schedule, there may be some 
delays in completing some or all of the jobs in the sequence. 

There are few studies that consider re-optimization of 
scheduling to deal with production interruptions. The planned 
process interruptions in scheduling, such as preventive 
machine maintenance, can be considered as an additional 
constraint while solving a scheduling problem in single 
machine and multi-machine environment. Sarker et al. [14] 
and Hasan et al. [15]  proposed a GA based approach to solve 
job shop scheduling problems with the machine 
unavailability condition.  

Production scheduling, with respect to sudden process 
interruption, is more challenging. The application of some 
dispatching rules, that appears to be the easiest approach, is 
widely used to minimize the delay after sudden machine 
breakdowns [16]. Abumaizar and Svestka [17] proposed a 
right shifting approach to repair the affected operations in a 
job shop schedule. Liu et al. [18] developed a tabu search 
based approach to solve job shop problems with machine 
breakdowns. Fahmy et al. [12] proposed an approach of 
inserting dummy jobs in the place of affected jobs, while the 
affected jobs were rescheduled later. The problems with such 
approaches are that they increase the computational 
complexity of the scheduling algorithm. Wu et al. [19] 
developed a GA, combined with a pair wise heuristic, to 
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reschedule the scheduling problems after the disruptions. The 
problem with this approach is it increases machine idle times 
by uniformly shifting every operation. Sarker et al. [14] and 
Hasan et al. [15] developed a hybrid-GA based approach to 
solve job shop scheduling problems with sudden machine 
breakdowns. From the above discussions, some studies have 
been conducted on interruptions in scheduling, due to 
machine unavailability and breakdown, in the job shop 
environment.  

 
In this paper, we have considered a Permutation Flow Shop 

environment, where production is disrupted due to machine 
unavailability and breakdowns. The process interruptions can 
be classified into three categories: the interruption is 
completely unknown, the possibilities that  the machine will 
break in some point in time in the future, and that the 
information about the interruption is fully known at the 
beginning of schedule [20].  We have considered the first 
(machine breakdowns) and third types (machine 
unavailability) of interruptions. For machine unavailability, 
the schedule can be generated by considering a dummy job 
time slot equivalent to the corresponding machine’s 
downtime. For machine breakdown, the information is only 
available after the real breakdown of some machine. In that 
case, re-optimizing the rest of the operations should help to 
minimize the delay in processing of some jobs. We have 
proposed a memetic algorithm to solve PFSPs with 
conditions of machine unavailability and breakdowns. To 
judge the effectiveness of the proposed algorithm, we have 
run a number of experiments with different interruption 
scenarios. The results showed that the revised schedule is able 
to minimize the delay if the interruptions occur in the early 
stages of the schedule. 

The paper is organized as follows. After the introduction, a 
brief outline of PFSPs with process interruptions is given. 
The MA is discussed in section III. The experimental study 
and the effectiveness of the proposed algorithm are presented 
in section IV. Section V provides the conclusions of this 
research. 

II. PROBLEM STATEMENT AND ASSUMPTIONS 
The standard PFSPs definition, with necessary 

assumptions, is described in this section.  

A. Problem Definition 
The permutation flow shop problem consists of m 

machines and n jobs. Each machine processes the same 
sequence of jobs and each job has to follow the same order of 
machines. The processing time of the jth job ( j = 1,2,….., n ) 
on the ith machine ( i = 1,2,….., m) is pi,j, and is known. If the 
completion time of the jth job on the ith machine is C(i, j) then 
makespan can be calculated as 

            
           Makespan, Cmax= C(m, n)                                     (1) 
 
 
 
So the objective is to find a job sequence, α*, from the set 

of all feasible job sequences A, so that 

 
  Cmax (α*) ≤ Cmax (α)      ∀ α∈A                              (2) 

B. Assumptions 
The following assumptions are made for PFSPs with 

process interruptions: 
•    The processing time for each operation in each 

machine is known. 
•    Operations are non-preemptive.  
•    Process may be interrupted due to machine 

unavailability and breakdowns. 
•    Set up costs, delivery, and transportation costs are 

negligible.  
•     Each machine can process only one job at a time. 
•    A machine cannot process another job until it finishes 

the current job. 
    

The objective of the problem is to identify a sequence of 
jobs to minimize the makespan while satisfying all the 
constraints. 

III. PFSPS WITH MACHINE UNAVAILABILITY AND 
BREAKDOWNS 

We have considered machine unavailability and 
breakdowns within the classical PFSPs. The most important 
aspect of preventive maintenance and breakdown, is that an 
overhauled or broken machine cannot process jobs until it 
achieves its full operating condition or it is being replaced by 
a new one. If a job is incomplete due to an overhauled or 
broken machine, the job has to wait for a certain period of 
time. In PFSPs, jobs are interrelated. If there is any delay in 
processing a job, all jobs in the right of the schedule will be 
affected. For convenience of analysis, in this paper, we have 
assumed that the interruption would occur only in the first or 
the last machine. 

In case of machine breakdowns, we classify all the jobs in 
the sequence into two types: a) affected, and b) unaffected.   

 
•    Affected jobs: Any job or set of jobs that has not begun 

processing in the first machine when a breakdown 
starts are considered as affected jobs. It is noted that 
even if the breakdown occurs in the last machine, the 
list of affected jobs starts from the jobs that are waiting 
to be processed in the first machine after the 
interruption starts. The reason for this is that the 
affected jobs need to be rescheduled and in PFSP each 
machine has to follow the same processing order of 
jobs. Considering this precedence constraint, it is 
possible to determine the set of waiting jobs that can 
be rescheduled with a revised starting time in each 
machine. For example, assume 6 jobs are processed in 
a flow shop and the processing order of the jobs is 
2-1-4-5-6-3. If a breakdown starts in the last machine 
while the job-5, 6, and 3 are waiting to be processed by 
the first machine, then these jobs are the affected jobs. 
 

•    Unaffected jobs: Any job that has completed 
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processing in the first machine before the breakdown 
starts are known as the unaffected jobs, or more 
simply, the jobs which are not affected in the job 
sequence are called the unaffected jobs. Following the 
above example jobs-2, 1, and 4 are the unaffected jobs 
in the sequence. Unaffected jobs do not need any 
rescheduling or reactive scheduling.  

  

Abumaizar and  Svestka [17] classified the interruptions 
into two modes: resume and repeat. When the tasks are 
preemptive, they can be resumed at the time when the 
interruption occurred. However, tasks in the repeat mode 
should be restarted whenever they are interrupted. In this 
study we have considered that tasks are non-preemptive. So 
we only consider repeat mode. In the following section, we 
describe the machine breakdown and machine unavailability 
events with examples. 

A. Machine Breakdown:  
Whenever a breakdown happens, there are some delays in 

completing the affected jobs. This effect can be minimized by 
rescheduling those jobs. In this research, we proposed and 
implemented a memetic algorithm (MA) to schedule and 
reschedule (after breakdown) the jobs in PFSPs.   

                                      

                           Breakdown      
                             

 

                                                              Breakdown    

Fig. 1.  Job processing flow diagram with machine breakdown 

 
The job processing flow diagram with machine breakdown 

constraints is presented in Figure 1. At the beginning of a 
production plan, a set of jobs is scheduled by the MA.  
Whenever a machine breaks, the affected jobs have been 
identified and the jobs are rescheduled by re-runing the MA.  

The Gantt chart in Figure 2 shows an example of a Flow 
Shop with a machine breakdown. In this example, we 
consider a10 job machine 5 machine flowshop with a single 
breakdown in the first machine (represented by a black 
rectangle). At the beginning of the planning horizon, the 
initial sequence obtained by the MA is 5-4-9-3-1-7-6-10-2-8. 
Assume that while processing job-9 (3rd job in the sequence), 
machine-1 breaks after 15 units of times from the start of the 
production. After 19 units of times (say downtime duration is 
4) machine-1 returns to operating condition. As 
no-preemption is allowed, machine-1 repeats the processing 
of job-9. Meanwhile, jobs 3-1-7-6-10-2-8 are the affected 
jobs. With the traditional Right Shifting technique, all the 
affected jobs are shifted to the right and the makespan with 
this approach is 108 (Figure 2(a)).  However if MA 
re-optimizes the affected jobs, then revised schedule is 
5-4-9-1-6-7-3-10-2-8 (Figure 2(b)). After rescheduling, the 
makespan, Cmax, is 106. 
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Fig. 2.  Gantt chart of Permutation Flow Shop with machine breakdown 

 

B. Machine Unavailability: 
As indicated earlier, a machine’s unavailability start time 

and duration is known at the beginning of a schedule. So there 
is no need to classify the jobs as affected and unaffected. We 
consider machine unavailability as a constraint which 
represents forbidden time periods that cannot be used to 
process any job. 

Figure 3 represents a job processing flow diagram with the 
machine unavailability condition. At the beginning of 
production, the schedule generated by the MA considers each 
and every unavailability start time and duration.   

A simple illustration of scheduling PFSPs with machine 
unavailability conditions is shown in Figure 4. Assume that 
the first machine is unavailable from 15 to 19 units of time. 
With respect to forbidden that time period in machine-1, a 
new schedule is generated by MA. The new schedule is 
1-9-5-3-4-6-7-10-2-8 and the makespan, Cmax, is 105.  

 
 
 
                                    Unavailability 
 

 
 

 
Fig. 3.  Job processing flow diagram with machine unavailability  
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Fig. 4.  Gantt chart of Permutation Flow Shop with machine unavailability 

IV. THE PROPOSED ALGORITHM 
For solving PFSPs, GA is a popular technique to find 

optimal or near optimal solutions. According to the definition 
of the problem, the sequence of jobs used by each and every 
machine is given. In this case, the schedule can be evaluated 
by calculating the makespan.  

A. Representation of Chromosome and Initial Generation  
In GA, chromosomes can be represented by integer, binary 

or real numbers. In PFSPs, the most popular encoding is the 
sequence of jobs, where the job sequence represents the 
processing order of jobs by each machine. Traditionally, a 
GA starts with a random initial population, but in complex 
problem like PFSPs, a random initial population may not help 
to achieve quality schedules within a reasonable time [10, 
11]. We have proposed a non-random initialization where 
certain sets of solutions in the initial population are generated 
by the NEH [3] and Johnson’s algorithms [1]. In the first 
approach, we generate some individuals by randomly 
swapping two jobs from the NEH generated solution.  In the 
second approach, the m machine (more than two machine 
problem) flow shop is divided into two machine PFSPs, and 
these sub-problems are solved by Johnson’s algorithm. In 
summary, a certain set of solutions are generated from these 
techniques, and the rest of the solutions are generated 
randomly.  

B. Selection approach and enhancement in population 
The parents are selected by a traditional tournament 

selection technique. The parents are replaced by their 
offspring directly. In combinatorial optimization problems, 
the evaluation process usually generates many duplicate 
individuals in every generation, which can cause the 
algorithm to stagnate in local optima. To avoid this, in every 
generation duplicate individuals are directly replaced by the 

random ones. It has been observed that different job 
sequences may have the same fitness value [10], so the 
duplication is checked according to the same job sequence. 
After some generations, if there is no improvement in the 
solution, then a restart scheme has been applied [5, 10, 11]. If 
the solution becomes stuck for a certain number of 
generations, all the individual are splited into three sections: 
best 5%, middle 85% and 10% bottom. The middle set is then 
replaced by shift mutations of the best group, and the 10% 
members are replaced by new randomly generated 
individuals. An elite member from each generation is also 
saved and transferred directly to the next generation. 

C. Crossover and Mutation 
We have selected Similar Job Order Crossover (SJOX) [10] 

and shift mutation as the genetic operators as they have 
performed well in earlier experiments. In SJOX, the same 
jobs are in the same position for both parents, then they are 
inherited directly in the same position of both offspring.  
After that, all other jobs up to a random crossover cutting 
point from each of the parents are directly inserted into their 
offspring. Next, the missing jobs from each offspring are 
inserted from the other parent in the relative job sequence of 
that parent. In shift mutation, a job is chosen randomly from 
the job sequence. Next the selected job is inserted into a 
randomly selected position.  

D. Local Search 
Local search is used to achieve quality solutions within a 

reasonable amount of time. In this algorithm, a three stage 
local search has been applied. The local search process 
contains three steps: first, the selected individuals go through 
the Insertion Neighbourhood search, then through Gap Filling 
process and finally, through Job Shifting process.   

•    Insertion Neighbourhood: Insertion Neighbourhood 
act well in PFSPs [11, 21]. For it, each job is selected 
and placed in every possible position in the current job 
sequence, and if a better job sequence is found, then it 
replaces the current best.   

•    Gap Filling technique: In PFSPs, jobs in the first 
machine are compact, because no inter-job gap is 
allowed in the first machine.  However due to 
precedence constraints, it is common to leave some 
gaps between the consecutive tasks processed on other 
machines. Preliminary experiments shows that the 
makespan of a job sequence can be improved if the 
inter-gap in the last couple of machines can be 
removed or reduced by inserting a job from the right of 
the gap’s position. The procedure is: the total 
processing time of all jobs in the job sequence is 
computed, and the job with the minimum total 
processing time is directly inserted into the gap. If the 
movement minimizes the makespan, then the new job 
sequence has been selected. Else, insert the job with 
the second best total processing time. If one of the jobs 
has the least total processing time, then insert another 
job which has the second best total processing time. 
For each gap, trials are limited for up to three times.  

•   Job Shifting: The Makespan of a job sequence can be 
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improved if the job with (a) the longer operating time 
is at the last few machines and (b) the shorter operating 
times in the first few machines are placed as early as 
possible in the sequence. The procedure is: calculate 
the ratios (processing time in the last machine divided 
by the processing time in the first machine) for all jobs 
in the schedule. If the last three jobs (limited up to 
three bigger ratios) have the greater ratios in the 
schedule, then they will be placed as early as possible 
in the job sequence.  

E. The Algorithm: 
The proposed memetic algorithm (MA) can be described as 
follows. Assume that P is the total number of individuals in 
each generation and G is the maximum number of 
generations. (Cmax)p

 is the makespan of the pth individual in a 
generation. 
1. Generation Initialization, set g = 1 
2. while g < G (Repeat until the stopping criteria is met) 

a. set p =1 
b. Repeat until  p > P 

i. Selection: Select parents from the selection 
pool 

ii. Crossover: child 1, child 2 (Similar Job 
order Crossover) 

iii. Mutation:  child 1, child 2 (Shift mutation) 
iv. Duplication scheme 
v. Local Search 

o Insertion neighbourhood 
o Gap Filling 
o Job Shifting 

vi. Evaluate the makespan, (Cmax)p 
vii. Elitism strategy (select the elite member 

from the current generation) 
viii. Set p = p +1 

       [End of Loop 2 (b)] 
c. Restart Mechanism (Restart the generation, if the 

required condition is met) 
d. Set g=g +1 

 [End of Loop 2] 
 3.  Select the best sequence. 
  
[End of the algorithm]. 
 

V. EXPERIMENTAL ANALYSIS AND RESULTS 
We implemented MA to solve PFSPs with machine 

breakdowns and unavailability as interruptions. Recall that in 
Permutation Flow shop problems each job has to follow the 
same processing order of machines. So any job which is in 
process in the 1st machine or has already been processed by 
the 1st machine, cannot be revised or re-optimized. Due to this 
restriction, we divide the total processing time of the 1st 
machine into two equal segments and generate interruption 

events in those segments. Interruption events on the first 
machine are randomly generated in the first half of the 
segments and interruption events on the last machine are 
generated on the last half of the segments.  

The algorithm was coded in C++ and ran on a personal 
computer under the windows operating system. To test the 
performance of the algorithm in a systematic manner, we 
have chosen 24 problems from Taillard’s benchmark [22], 
where the first two problem instances have been selected 
from each problem group.    

A. Parameters Selection  
Interruption events are generated randomly. For an 

interruption event we choose the following parameters. 
•    Number of breakdowns: either single interruption in a 

single machine or two non-overlapping interruptions in 
two different machines (one interruption in the 1st 
machine and another in the last machine). 

•    Choose a machine or machines: in this study we consider 
that either the first machine, or the last machine, or both 
machine breakdown. 

•    Start time and recovery duration: Start time of an 
interruption is calculated by a Poission distribution and 
an Exponential distribution is used to identify the 
recovery duration, which is more similar to realistic 
interruption events [15]. 

 
Other  parameters are selected on the basis of our earlier 

study [11]: population size is 100, the crossover rate is 90% 
and the mutation rate is 60%. The first individual in the initial 
generation is produced by the NEH algorithm [3], 40% of 
individuals are produced from the modified NEH algorithm, 
10% of individuals are generated from the modification of 
Johnson’s algorithm [1], and rest of the individuals are 
produced randomly . Tournament pool size is 5. Except the 
initial generation, the first 30 members from each generation 
go through the local search process. If there is no 
improvement in the fitness for 10 consecutive generations, 
the restart scheme attempts to escape from the local optima. 
For each problem instance, we ran the experiments for 10 
times with different random seeds. 

B. Results and Analysis:  
To judge the performance of our approach, we compared 

our approach with the Right Shifting technique (RST) [14, 
15]. We implemented both RST and MA based Revision 
scheduling (MA-RSV) independently with the same 
interruption scenarios. Moreover, to see how machine 
breakdown (MBD) differs from machine unavailability 
(MUN), we implemented the same downtime scenarios 
(downtime start time, duration and location) to both MBD 
and MUN.   

 Recall that, we consider three different interruption 
scenarios (for both MBD and MUN): i) single disruption in 
the first machine, ii) single disruption in the last machine, and 
iii) combination of both disruption (one in the first machine 
and another in the last machine). 
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TABLE I.  COMPARISION OF RHT AND RSV WITH   A MACHINE 
BREAKDOWN SCENARIO (SINGLE DISRUPTION IN THE FIRST MACHINE) 
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20×5 Ta001 1278 45 358 1642 1 1642 3 
20×10 Ta011 1582 51 408 1996 1 1987 8 
20×20 Ta021 2297 40 309 2599 2 2542 12 
50×5 Ta031 2724 66 565 3289 1 3256 13 
50×10 Ta041 3025 53 434 3482 1 3428 30 
50×20 Ta051 3893 56 460 4349 1 4283 40 
100×5 Ta061 5493 43 333 5843 3 5843 45 

100×10 Ta071 5770 58 486 6273 3 6250 89 
100×20 Ta081 6268 229 2519 8836 3 8798 107 
200×10 Ta091 10885 89 820 11816 5 11735 152 
200×20 Ta101 11348 88 808 12185 8 12131 185 
500×20 Ta111 26265 63 457 26786 10 26712 390 

 
Table I demonstrates the experimental results for  both 

Right Shifting and Rescheduling approaches under single 
breakdown scenario in the first machine. The first two 
columns represent the problem size and problem instances 
respectively. In this table the comparative results for the first 
problem instance from each group has been presented. Next 
column presents the makespan value for the initial schedule. 
These makespan values are generated assuming that 
schedules are uninterrupted over the span of production. The 
column headed with Single Breakdown presents the relative 
first machine breakdown information. The two columns 
under the heading of Right Shifting show the makespan value 
obtained by repairing the disrupted schedule after a 
breakdown in the first machine and the computational times 
to evaluate the makespan of the schedule. The final two 
columns present the makespan values and the computational 
times required for by proposed algorithm after repairing the 
schedule under the same disruption scenario. From 
comparative analysis, it is clear that, for most of the cases 
(except the first instance Ta 001 and Ta 061), after 
breakdown, proposed rescheduling strategy shows superior 
performance (reduce the makespan) with respect to 
traditional Right Shifting techniques. Another observation is 
that, with respect to Right Shifting strategy, Rescheduling 
approach is bit more computationally expensive. The reason 
is, in Right Shifting approach, the initial schedule is repaired 
directly by shifting the affected jobs to the right of the 
schedule. On the other hand, in Rescheduling approach the 
affected jobs are re-optimized by the proposed MA. 
However, in contrast to quality of the final schedule after an 
interruption, the increase computational time may be 
acceptable.  

 
 
 
 

TABLE II.  COMPARISION OF RHT AND RSV WITH A MACHINE 
UNAVAILABILITY SCENARIO (SINGLE DISRUPTION IN THE FIRST MACHINE) 
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20×5 Ta001 1278 45 358 1642 1 1278 3 
20×10 Ta011 1582 51 408 1996 1 1622 9 
20×20 Ta021 2297 40 309 2599 1 2311 14 
50×5 Ta031 2724 66 565 3323 1 2768 16 
50×10 Ta041 3025 53 434 3483 1 3077 34 
50×20 Ta051 3893 56 460 4347 1 3960 51 
100×5 Ta061 5493 43 333 5861 3 5493 80 

100×10 Ta071 5770 58 486 6274 3 5832 104 
100×20 Ta081 6268 229 2519 8828 3 8565 120 
200×10 Ta091 10885 89 820 11831 5 11615 140 
200×20 Ta101 11348 88 808 12167 8 12025 200 
500×20 Ta111 26253 63 457 26795 9 26681 380 

 
The structure of Table II is same as the structure of Table I. 

The only difference is in Table II, we demonstrate the 
experimental results for machine unavailability or preventive 
maintenance scenario in first machine. The comparative 
analysis between Right Shifiting and MA based Rescheduling   
shows that Rescheduling or scheduling approach considering 
the machine unavailability constraints or dummy job, at the 
beginning of the schedule is more effective than repairing the 
schedule once the first machine is overhauled.   

Effectiveness of RSV (for MBD or MUN) for each problem 
instance can be represented by the following equation- 

 

Average Percentage of Improvement, API= ( r
CRSV

CRSVCRSTr

i
/)(

1
∑

=

− ) ×100   (3) 

*CRST- the makespan value by RST; CRST - the makespan by MA-RSV,r- 
number of independent runs. 

TABLE III.  API COMPARISION OF RHT AND RSV WITH MACHINE 
BREAKDOWN SCENARIOS 

Pr
ob

le
m

 

Pr
ob

le
m

 
In

st
an

ce
 

gr
ou

p Single Breakdown Multiple Breakdown 

1st machine Last machine Combined  

20×5 Ta001-002 0 0 0 
20×10 Ta011-012 0.317649 0 0.317685 
20×20 Ta021-022 0.560930 0 0.560938 
50×5 Ta031-032 0.384430 0 0.55526 
50×10 Ta041-042 1.208755 0 1.215738 
50×20 Ta051-052 0.875744 0 0.902247 
100×5 Ta061-062 0.164407 0 0.333729 

100×10 Ta071-072 0.867567 0 0.226151 
100×20 Ta081-082 0.381126 0 0.336008 
200×10 Ta091-092 0.311720 0.073584 0.108946 
200×20 Ta101-102 0.107240 0 0.250141 
500×20 Ta111-112 0.634800 0 0.786134 
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Table III presents the simulation data to demonstrate the 
superiority of our approach under different machine 
breakdown scenarios. The table starts with a column of 
problem size (number of jobs × number of machines). The 
next column represents the problem instance group and each 
group contains the first two problem instances from Taillard’s 
benchmark [22]. The column headed with 1st machine under 
the heading of Single Breakdown shows the average of API 
(average of 10 independent runs) of the single breakdown 
scenario in the first machine. The following column, headed 
last machine, represents the average API of the single 
breakdowns on the last machine. The final column shows the 
average of API for the two machine breakdown case.  In case 
of early stage breakdown and two machine breakdown, our 
proposed algorithm clearly dominates the traditional RST.  

From the experimental results we have observed that the 
location of breakdown within the early stage influences the 
makespan of the revised schedule. 

TABLE IV.  API COMPARISION OF RHT AND RSV WITH MACHINE 
UNAVAILABILITY SCENARIOS 

Pr
ob

le
m

 

Pr
ob

le
m

 
In

st
an

ce
 

gr
ou

p Single Unavailability Multiple 
Unavailability 

1st machine Last machine Combined  

20×5 Ta001-002 11.51140 7.499140 16.22089 
20×10 Ta011-012 23.34450 4.709435 23.07040 
20×20 Ta021-022 24.16805 0 24.16805 
50×5 Ta031-032 16.01200 2.669505 18.08260 
50×10 Ta041-042 20.66265 2.633590 20.34855 
50×20 Ta051-052 8.746920 0.016144 8.893040 
100×5 Ta061-062 11.61425 2.124630 13.36810 

100×10 Ta071-072 10.23710 2.320190 11.23655 
100×20 Ta081-082 9.820530 0.595439 9.87410 
200×10 Ta091-092 4.627278 0.241446 4.693970 
200×20 Ta101-102 8.14650 0.146860 6.587410 

500×20 Ta111-112 3.48120 0.214610 3.95740 

Table IV presents the average API of MA-RSV (MUN) 
over RST with both single and multiple machine 
unavailability events. For a better understanding of the 
advantage of knowing disruption information in advance, we 
ran the experiments using the same interruption scenarios for 
both MA-RSV (MBD) and MA-RSV (MUN). The results 
show that when machine interruption information is known in 
advance, the effect is very high compared with machine 
breakdown. A sample comparison has been given in the 
Appendix. 

VI. CONCLUSION 
In almost all research on PFSPs, schedules were generated 

with the assumption that during the production, there will be 
no interruption. This paper has considered a PFSP with 
known and unknown process interruption. We have solved 24 
benchmark problems and we use different distributions to 
generate interruption scenarios. From the experimental 
results, we have seen that the machine breakdown has more 
impact on a production schedule, than an unavailability event, 
as the information is known only after the breakdown. 

Another observation is that if a breakdown occurs at the early 
stage in the schedule, the schedule can be improved by 
rescheduling the effected tasks. As an initial attempt, we 
study the effect of machine related disruptions in first 
machine and in last machine. From this study it can be 
observed that the location of interruptions within the 
scheduling horizon, influence the quality of the revised 
schedule. In future, the proposed algorithms can be extended 
to study the effect of machine disruptions at any machine. 
Besides, some other aspects of disruptions, such as change in 
processing time, delay in machine set up, change in job 
priority and so on can also be introduced in conjunction with 
our proposed approach.  

APPENDIX  
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Fig. 5 (a).  Comparing machine breakdown with respect to machine 
unavailability for problem Ta 011 
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Fig. 5 (b).  Comparing machine breakdown with respect to machine 
unavailability for problem Ta 041 
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Fig. 5 (c).  Comparing machine breakdown with respect to machine 
unavailability for problem Ta 071 

 
The results of the comparative study between MA-RSV 
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(MBD) and MA-RSV (MUN) for three problem instances (Ta 
011, Ta 041, and Ta 101) have been plotted in Figure 5. For 
each test problem, the comparison has been carried out 
considering single (either 1-interruption in the first machine 
or in the last machine) and double interruptions in both 
machines (first and last machine) with the same interruption 
information (star time and duration of interruptions). The 
only difference is, either interruption is known after it 
happens or known in advance. In both cases, MA-RSV 
(MBD) and MA-RSV (MUN) have been compared with 
Right Shifting heuristics and the corresponding API has been 
calculated. From the graph, it is clear that, at similar 
interruption scenario (like single interruption in the first 
machine with same start time and disruption durations) API 
under Machine Unavailability is much higher than API with 
Machine Breakdown scenario. So, it is clear that scheduling 
with known interruption information has greater scope of 
minimizing the effects of interruptions.  

The graph also demonstrates that, with respect to scope of 
minimizing the effect of single breakdowns in the last 
machine, the rescheduling approach is more effective in 
minimizing the delay in single breakdown at the first machine 
or combination of two breakdowns. For Machine 
Unavailability, the similar pattern can be found.  
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