

Abstract—The Permutation Flow Shop Scheduling Problem
(PFSP) is considered to be one of the complex combinatorial
optimization problems. For PFSPs, the schedule is produced
under ideal conditions that usually ignore any type of process
interruption. In practice, the production process is interrupted
due to many different reasons, such as machine unavailability
and breakdowns. In this paper, we propose a Genetic Algorithm
(GA) based approach to deal with process interruptions at
different points in time in Permutation Shop Floor scenarios.
We have considered two types of process interruption events.
The first one is predictive, where the interruption information is
known well in advance, and the second one is reactive, where the
interruption information is not known until the breakdown
occurs. An extensive set of experiments has been carried out,
which demonstrate the usefulness of the proposed approach.

I. INTRODUCTION
HE Permutation Flow Shop Scheduling Problem (PFSP)
is a challenging issue in the manufacturing industry. A
classical PFSP consist of processing of the n jobs on m

machines. Makespan minimization is a common measure of
performance for PFSPs. It can be defined as the time
difference between the starting of the first operation in the
first machine and the ending of the last operation in the last
machine. To solve this, first in 1954 Johnson [1] proposed an
algorithm that solves two machine PFSPs, as well as special
three machine PFSPs, optimally. However, the general PFSPs
with more than two machines are NP Hard [2]. As a
consequence, for large problems, the mathematical
programming based methods, like integer programming, are
unable to provide a good quality solution within a reasonable
amount of time. This provides an opportunity to study the
suitability of heuristics and meta-heuristics approaches for
solving PFSPs. Nawaz et al. [3] proposed a simple, and one of
the best, constructive heuristics for PFSPs [4]. However, it
deviates up to 7% from the known optimal solutions for some
well-known problems [5]. This algorithm is based on the
concept that the jobs with longer operating times on all of the
machines, should be placed as early as possible in the
sequence. To achieve better quality solutions within a
reasonable amount of time, researchers have applied other

Mr. Humyun F. Rahman, Associate Professor Ruhul A. Sarker, and Dr
Daryl L. Essam are with the School of Engineering and Information
Technology, the University of New South Wales, Canberra, Australia.
(E-mail: md.rahman4@student.adfa.edu.au, r.sarker@adfa.edu.au,
d.essam@adfa.edu.au).

Associate Professor Guijuan Chang (Lucy) is with the School of Science
and Information Science, Qingdao Agricultural University, Shandong,
China. (E-mail: lucycgj@163.com).

This work is supported by the University of New South Wales, Canberra,
ACT 2600, Australia in the form of a Postgraduate Research Scholarship.

meta-heuristic such as ant colony algorithm [6], particle
swarm optimization [7], simulated annealing [8], tabu search
[9], Genetic Algorithms (GAs) [10], and Hybrid GAs [5, 11].

Almost all scheduling research in PFSPs has mainly
focused on ideal conditions, assuming an uninterrupted
production system. However, in practice, process
interruptions are very common events on the shop floor. The
addition of such interruptions make the PFSP more practical,
but also complex. Production can be interrupted due to both
preventive and breakdown maintenances of production
equipment. These include: machine overhaul, machine
failure, unavailability of raw materials, order rejection,
sudden arrival of a new job, variation in processing time, and
change in job priority [12, 13]. Machine unavailability due to
preventive maintenance schedule is usually known in
advance. So it can easily be incorporated within the
Permutation Flow Shop scheduling as a dummy job. In case
of sudden machine breakdown, the jobs scheduled in that
machine cannot be processed until the machine is
appropriately repaired. Such a machine breakdown would
delay the completion time, for some jobs already scheduled,
in order to satisfy precedence and capacity constraints.
However, the delay in completion can be minimized by
re-optimizing the remaining schedule. Even after
re-optimizing the interrupted schedule, there may be some
delays in completing some or all of the jobs in the sequence.

There are few studies that consider re-optimization of
scheduling to deal with production interruptions. The planned
process interruptions in scheduling, such as preventive
machine maintenance, can be considered as an additional
constraint while solving a scheduling problem in single
machine and multi-machine environment. Sarker et al. [14]
and Hasan et al. [15] proposed a GA based approach to solve
job shop scheduling problems with the machine
unavailability condition.

Production scheduling, with respect to sudden process
interruption, is more challenging. The application of some
dispatching rules, that appears to be the easiest approach, is
widely used to minimize the delay after sudden machine
breakdowns [16]. Abumaizar and Svestka [17] proposed a
right shifting approach to repair the affected operations in a
job shop schedule. Liu et al. [18] developed a tabu search
based approach to solve job shop problems with machine
breakdowns. Fahmy et al. [12] proposed an approach of
inserting dummy jobs in the place of affected jobs, while the
affected jobs were rescheduled later. The problems with such
approaches are that they increase the computational
complexity of the scheduling algorithm. Wu et al. [19]
developed a GA, combined with a pair wise heuristic, to

A Memetic Algorithm for solving Permutation Flow Shop problems
with Known and Unknown Machine Breakdowns

Humyun F. Rahman, Ruhul A. Sarker, Daryl L. Essam, and Guijuan Chang

T

42

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

reschedule the scheduling problems after the disruptions. The
problem with this approach is it increases machine idle times
by uniformly shifting every operation. Sarker et al. [14] and
Hasan et al. [15] developed a hybrid-GA based approach to
solve job shop scheduling problems with sudden machine
breakdowns. From the above discussions, some studies have
been conducted on interruptions in scheduling, due to
machine unavailability and breakdown, in the job shop
environment.

In this paper, we have considered a Permutation Flow Shop

environment, where production is disrupted due to machine
unavailability and breakdowns. The process interruptions can
be classified into three categories: the interruption is
completely unknown, the possibilities that the machine will
break in some point in time in the future, and that the
information about the interruption is fully known at the
beginning of schedule [20]. We have considered the first
(machine breakdowns) and third types (machine
unavailability) of interruptions. For machine unavailability,
the schedule can be generated by considering a dummy job
time slot equivalent to the corresponding machine’s
downtime. For machine breakdown, the information is only
available after the real breakdown of some machine. In that
case, re-optimizing the rest of the operations should help to
minimize the delay in processing of some jobs. We have
proposed a memetic algorithm to solve PFSPs with
conditions of machine unavailability and breakdowns. To
judge the effectiveness of the proposed algorithm, we have
run a number of experiments with different interruption
scenarios. The results showed that the revised schedule is able
to minimize the delay if the interruptions occur in the early
stages of the schedule.

The paper is organized as follows. After the introduction, a
brief outline of PFSPs with process interruptions is given.
The MA is discussed in section III. The experimental study
and the effectiveness of the proposed algorithm are presented
in section IV. Section V provides the conclusions of this
research.

II. PROBLEM STATEMENT AND ASSUMPTIONS
The standard PFSPs definition, with necessary

assumptions, is described in this section.

A. Problem Definition
The permutation flow shop problem consists of m

machines and n jobs. Each machine processes the same
sequence of jobs and each job has to follow the same order of
machines. The processing time of the jth job (j = 1,2,….., n)
on the ith machine (i = 1,2,….., m) is pi,j, and is known. If the
completion time of the jth job on the ith machine is C(i, j) then
makespan can be calculated as

 Makespan, Cmax= C(m, n) (1)

So the objective is to find a job sequence, α*, from the set

of all feasible job sequences A, so that

 Cmax (α*) ≤ Cmax (α) ∀ α∈A (2)

B. Assumptions
The following assumptions are made for PFSPs with

process interruptions:
• The processing time for each operation in each

machine is known.
• Operations are non-preemptive.
• Process may be interrupted due to machine

unavailability and breakdowns.
• Set up costs, delivery, and transportation costs are

negligible.
• Each machine can process only one job at a time.
• A machine cannot process another job until it finishes

the current job.

The objective of the problem is to identify a sequence of
jobs to minimize the makespan while satisfying all the
constraints.

III. PFSPS WITH MACHINE UNAVAILABILITY AND
BREAKDOWNS

We have considered machine unavailability and
breakdowns within the classical PFSPs. The most important
aspect of preventive maintenance and breakdown, is that an
overhauled or broken machine cannot process jobs until it
achieves its full operating condition or it is being replaced by
a new one. If a job is incomplete due to an overhauled or
broken machine, the job has to wait for a certain period of
time. In PFSPs, jobs are interrelated. If there is any delay in
processing a job, all jobs in the right of the schedule will be
affected. For convenience of analysis, in this paper, we have
assumed that the interruption would occur only in the first or
the last machine.

In case of machine breakdowns, we classify all the jobs in
the sequence into two types: a) affected, and b) unaffected.

• Affected jobs: Any job or set of jobs that has not begun

processing in the first machine when a breakdown
starts are considered as affected jobs. It is noted that
even if the breakdown occurs in the last machine, the
list of affected jobs starts from the jobs that are waiting
to be processed in the first machine after the
interruption starts. The reason for this is that the
affected jobs need to be rescheduled and in PFSP each
machine has to follow the same processing order of
jobs. Considering this precedence constraint, it is
possible to determine the set of waiting jobs that can
be rescheduled with a revised starting time in each
machine. For example, assume 6 jobs are processed in
a flow shop and the processing order of the jobs is
2-1-4-5-6-3. If a breakdown starts in the last machine
while the job-5, 6, and 3 are waiting to be processed by
the first machine, then these jobs are the affected jobs.

• Unaffected jobs: Any job that has completed

43

processing in the first machine before the breakdown
starts are known as the unaffected jobs, or more
simply, the jobs which are not affected in the job
sequence are called the unaffected jobs. Following the
above example jobs-2, 1, and 4 are the unaffected jobs
in the sequence. Unaffected jobs do not need any
rescheduling or reactive scheduling.

Abumaizar and Svestka [17] classified the interruptions
into two modes: resume and repeat. When the tasks are
preemptive, they can be resumed at the time when the
interruption occurred. However, tasks in the repeat mode
should be restarted whenever they are interrupted. In this
study we have considered that tasks are non-preemptive. So
we only consider repeat mode. In the following section, we
describe the machine breakdown and machine unavailability
events with examples.

A. Machine Breakdown:
Whenever a breakdown happens, there are some delays in

completing the affected jobs. This effect can be minimized by
rescheduling those jobs. In this research, we proposed and
implemented a memetic algorithm (MA) to schedule and
reschedule (after breakdown) the jobs in PFSPs.

 Breakdown

 Breakdown

Fig. 1. Job processing flow diagram with machine breakdown

The job processing flow diagram with machine breakdown

constraints is presented in Figure 1. At the beginning of a
production plan, a set of jobs is scheduled by the MA.
Whenever a machine breaks, the affected jobs have been
identified and the jobs are rescheduled by re-runing the MA.

The Gantt chart in Figure 2 shows an example of a Flow
Shop with a machine breakdown. In this example, we
consider a10 job machine 5 machine flowshop with a single
breakdown in the first machine (represented by a black
rectangle). At the beginning of the planning horizon, the
initial sequence obtained by the MA is 5-4-9-3-1-7-6-10-2-8.
Assume that while processing job-9 (3rd job in the sequence),
machine-1 breaks after 15 units of times from the start of the
production. After 19 units of times (say downtime duration is
4) machine-1 returns to operating condition. As
no-preemption is allowed, machine-1 repeats the processing
of job-9. Meanwhile, jobs 3-1-7-6-10-2-8 are the affected
jobs. With the traditional Right Shifting technique, all the
affected jobs are shifted to the right and the makespan with
this approach is 108 (Figure 2(a)). However if MA
re-optimizes the affected jobs, then revised schedule is
5-4-9-1-6-7-3-10-2-8 (Figure 2(b)). After rescheduling, the
makespan, Cmax, is 106.

5

4

1

2

3

5 4 9 3 1 7 6 10 2 8
Processing time

M
ac

hi
ne

14 1915 108

(a)

5

4

1

3

2

5 4 9 1 6 7 3 10 2 8

Processing time

M
ac

hi
ne

106191514

(b)

Fig. 2. Gantt chart of Permutation Flow Shop with machine breakdown

B. Machine Unavailability:
As indicated earlier, a machine’s unavailability start time

and duration is known at the beginning of a schedule. So there
is no need to classify the jobs as affected and unaffected. We
consider machine unavailability as a constraint which
represents forbidden time periods that cannot be used to
process any job.

Figure 3 represents a job processing flow diagram with the
machine unavailability condition. At the beginning of
production, the schedule generated by the MA considers each
and every unavailability start time and duration.

A simple illustration of scheduling PFSPs with machine
unavailability conditions is shown in Figure 4. Assume that
the first machine is unavailable from 15 to 19 units of time.
With respect to forbidden that time period in machine-1, a
new schedule is generated by MA. The new schedule is
1-9-5-3-4-6-7-10-2-8 and the makespan, Cmax, is 105.

 Unavailability

Fig. 3. Job processing flow diagram with machine unavailability

Planning
stage and
schedule a

job set

Production
Starts

Revise
the

schedule

Production
Continues

Product

Planning stage
and schedule a

job set
Production

Starts
Production
Continues Product

44

5

4

1

2

3

5 4 9 3 1 7 6 10 2 8
Processing time

M
ac

hi
ne

14 1915 108

(a)

1

3

4

2

5
1 9 5 3 4 6 7 10 2 8

Processing time

M
ac

hi
ne

15 19 105
(b)

Fig. 4. Gantt chart of Permutation Flow Shop with machine unavailability

IV. THE PROPOSED ALGORITHM
For solving PFSPs, GA is a popular technique to find

optimal or near optimal solutions. According to the definition
of the problem, the sequence of jobs used by each and every
machine is given. In this case, the schedule can be evaluated
by calculating the makespan.

A. Representation of Chromosome and Initial Generation
In GA, chromosomes can be represented by integer, binary

or real numbers. In PFSPs, the most popular encoding is the
sequence of jobs, where the job sequence represents the
processing order of jobs by each machine. Traditionally, a
GA starts with a random initial population, but in complex
problem like PFSPs, a random initial population may not help
to achieve quality schedules within a reasonable time [10,
11]. We have proposed a non-random initialization where
certain sets of solutions in the initial population are generated
by the NEH [3] and Johnson’s algorithms [1]. In the first
approach, we generate some individuals by randomly
swapping two jobs from the NEH generated solution. In the
second approach, the m machine (more than two machine
problem) flow shop is divided into two machine PFSPs, and
these sub-problems are solved by Johnson’s algorithm. In
summary, a certain set of solutions are generated from these
techniques, and the rest of the solutions are generated
randomly.

B. Selection approach and enhancement in population
The parents are selected by a traditional tournament

selection technique. The parents are replaced by their
offspring directly. In combinatorial optimization problems,
the evaluation process usually generates many duplicate
individuals in every generation, which can cause the
algorithm to stagnate in local optima. To avoid this, in every
generation duplicate individuals are directly replaced by the

random ones. It has been observed that different job
sequences may have the same fitness value [10], so the
duplication is checked according to the same job sequence.
After some generations, if there is no improvement in the
solution, then a restart scheme has been applied [5, 10, 11]. If
the solution becomes stuck for a certain number of
generations, all the individual are splited into three sections:
best 5%, middle 85% and 10% bottom. The middle set is then
replaced by shift mutations of the best group, and the 10%
members are replaced by new randomly generated
individuals. An elite member from each generation is also
saved and transferred directly to the next generation.

C. Crossover and Mutation
We have selected Similar Job Order Crossover (SJOX) [10]

and shift mutation as the genetic operators as they have
performed well in earlier experiments. In SJOX, the same
jobs are in the same position for both parents, then they are
inherited directly in the same position of both offspring.
After that, all other jobs up to a random crossover cutting
point from each of the parents are directly inserted into their
offspring. Next, the missing jobs from each offspring are
inserted from the other parent in the relative job sequence of
that parent. In shift mutation, a job is chosen randomly from
the job sequence. Next the selected job is inserted into a
randomly selected position.

D. Local Search
Local search is used to achieve quality solutions within a

reasonable amount of time. In this algorithm, a three stage
local search has been applied. The local search process
contains three steps: first, the selected individuals go through
the Insertion Neighbourhood search, then through Gap Filling
process and finally, through Job Shifting process.

• Insertion Neighbourhood: Insertion Neighbourhood
act well in PFSPs [11, 21]. For it, each job is selected
and placed in every possible position in the current job
sequence, and if a better job sequence is found, then it
replaces the current best.

• Gap Filling technique: In PFSPs, jobs in the first
machine are compact, because no inter-job gap is
allowed in the first machine. However due to
precedence constraints, it is common to leave some
gaps between the consecutive tasks processed on other
machines. Preliminary experiments shows that the
makespan of a job sequence can be improved if the
inter-gap in the last couple of machines can be
removed or reduced by inserting a job from the right of
the gap’s position. The procedure is: the total
processing time of all jobs in the job sequence is
computed, and the job with the minimum total
processing time is directly inserted into the gap. If the
movement minimizes the makespan, then the new job
sequence has been selected. Else, insert the job with
the second best total processing time. If one of the jobs
has the least total processing time, then insert another
job which has the second best total processing time.
For each gap, trials are limited for up to three times.

• Job Shifting: The Makespan of a job sequence can be

45

improved if the job with (a) the longer operating time
is at the last few machines and (b) the shorter operating
times in the first few machines are placed as early as
possible in the sequence. The procedure is: calculate
the ratios (processing time in the last machine divided
by the processing time in the first machine) for all jobs
in the schedule. If the last three jobs (limited up to
three bigger ratios) have the greater ratios in the
schedule, then they will be placed as early as possible
in the job sequence.

E. The Algorithm:
The proposed memetic algorithm (MA) can be described as
follows. Assume that P is the total number of individuals in
each generation and G is the maximum number of
generations. (Cmax)p

 is the makespan of the pth individual in a
generation.
1. Generation Initialization, set g = 1
2. while g < G (Repeat until the stopping criteria is met)

a. set p =1
b. Repeat until p > P

i. Selection: Select parents from the selection
pool

ii. Crossover: child 1, child 2 (Similar Job
order Crossover)

iii. Mutation: child 1, child 2 (Shift mutation)
iv. Duplication scheme
v. Local Search

o Insertion neighbourhood
o Gap Filling
o Job Shifting

vi. Evaluate the makespan, (Cmax)p
vii. Elitism strategy (select the elite member

from the current generation)
viii. Set p = p +1

 [End of Loop 2 (b)]
c. Restart Mechanism (Restart the generation, if the

required condition is met)
d. Set g=g +1

 [End of Loop 2]
 3. Select the best sequence.

[End of the algorithm].

V. EXPERIMENTAL ANALYSIS AND RESULTS
We implemented MA to solve PFSPs with machine

breakdowns and unavailability as interruptions. Recall that in
Permutation Flow shop problems each job has to follow the
same processing order of machines. So any job which is in
process in the 1st machine or has already been processed by
the 1st machine, cannot be revised or re-optimized. Due to this
restriction, we divide the total processing time of the 1st
machine into two equal segments and generate interruption

events in those segments. Interruption events on the first
machine are randomly generated in the first half of the
segments and interruption events on the last machine are
generated on the last half of the segments.

The algorithm was coded in C++ and ran on a personal
computer under the windows operating system. To test the
performance of the algorithm in a systematic manner, we
have chosen 24 problems from Taillard’s benchmark [22],
where the first two problem instances have been selected
from each problem group.

A. Parameters Selection
Interruption events are generated randomly. For an

interruption event we choose the following parameters.
• Number of breakdowns: either single interruption in a

single machine or two non-overlapping interruptions in
two different machines (one interruption in the 1st
machine and another in the last machine).

• Choose a machine or machines: in this study we consider
that either the first machine, or the last machine, or both
machine breakdown.

• Start time and recovery duration: Start time of an
interruption is calculated by a Poission distribution and
an Exponential distribution is used to identify the
recovery duration, which is more similar to realistic
interruption events [15].

Other parameters are selected on the basis of our earlier

study [11]: population size is 100, the crossover rate is 90%
and the mutation rate is 60%. The first individual in the initial
generation is produced by the NEH algorithm [3], 40% of
individuals are produced from the modified NEH algorithm,
10% of individuals are generated from the modification of
Johnson’s algorithm [1], and rest of the individuals are
produced randomly . Tournament pool size is 5. Except the
initial generation, the first 30 members from each generation
go through the local search process. If there is no
improvement in the fitness for 10 consecutive generations,
the restart scheme attempts to escape from the local optima.
For each problem instance, we ran the experiments for 10
times with different random seeds.

B. Results and Analysis:
To judge the performance of our approach, we compared

our approach with the Right Shifting technique (RST) [14,
15]. We implemented both RST and MA based Revision
scheduling (MA-RSV) independently with the same
interruption scenarios. Moreover, to see how machine
breakdown (MBD) differs from machine unavailability
(MUN), we implemented the same downtime scenarios
(downtime start time, duration and location) to both MBD
and MUN.

 Recall that, we consider three different interruption
scenarios (for both MBD and MUN): i) single disruption in
the first machine, ii) single disruption in the last machine, and
iii) combination of both disruption (one in the first machine
and another in the last machine).

46

TABLE I. COMPARISION OF RHT AND RSV WITH A MACHINE
BREAKDOWN SCENARIO (SINGLE DISRUPTION IN THE FIRST MACHINE)

Pr
ob

le
m

Pr
ob

le
m

 In
st

an
ce

In
iti

al
 M

ak
es

pa
n

Single
Breakdown

(1st machine)

Right
Shifting Rescheduling

St
ar

t T
im

e

B
re

ak
do

w
n

 D
ur

at
io

n

M
ak

es
pa

n

C
om

pu
ta

tio
na

l
T

im
e

(s
ec

)

M
ak

es
pa

n

C
om

pu
ta

tio
na

l
T

im
e

(s
ec

)

20×5 Ta001 1278 45 358 1642 1 1642 3
20×10 Ta011 1582 51 408 1996 1 1987 8
20×20 Ta021 2297 40 309 2599 2 2542 12
50×5 Ta031 2724 66 565 3289 1 3256 13
50×10 Ta041 3025 53 434 3482 1 3428 30
50×20 Ta051 3893 56 460 4349 1 4283 40
100×5 Ta061 5493 43 333 5843 3 5843 45

100×10 Ta071 5770 58 486 6273 3 6250 89
100×20 Ta081 6268 229 2519 8836 3 8798 107
200×10 Ta091 10885 89 820 11816 5 11735 152
200×20 Ta101 11348 88 808 12185 8 12131 185
500×20 Ta111 26265 63 457 26786 10 26712 390

Table I demonstrates the experimental results for both

Right Shifting and Rescheduling approaches under single
breakdown scenario in the first machine. The first two
columns represent the problem size and problem instances
respectively. In this table the comparative results for the first
problem instance from each group has been presented. Next
column presents the makespan value for the initial schedule.
These makespan values are generated assuming that
schedules are uninterrupted over the span of production. The
column headed with Single Breakdown presents the relative
first machine breakdown information. The two columns
under the heading of Right Shifting show the makespan value
obtained by repairing the disrupted schedule after a
breakdown in the first machine and the computational times
to evaluate the makespan of the schedule. The final two
columns present the makespan values and the computational
times required for by proposed algorithm after repairing the
schedule under the same disruption scenario. From
comparative analysis, it is clear that, for most of the cases
(except the first instance Ta 001 and Ta 061), after
breakdown, proposed rescheduling strategy shows superior
performance (reduce the makespan) with respect to
traditional Right Shifting techniques. Another observation is
that, with respect to Right Shifting strategy, Rescheduling
approach is bit more computationally expensive. The reason
is, in Right Shifting approach, the initial schedule is repaired
directly by shifting the affected jobs to the right of the
schedule. On the other hand, in Rescheduling approach the
affected jobs are re-optimized by the proposed MA.
However, in contrast to quality of the final schedule after an
interruption, the increase computational time may be
acceptable.

TABLE II. COMPARISION OF RHT AND RSV WITH A MACHINE
UNAVAILABILITY SCENARIO (SINGLE DISRUPTION IN THE FIRST MACHINE)

Pr
ob

le
m

Pr
ob

le
m

 In
st

an
ce

In
iti

al
 M

ak
es

pa
n

Single
Unavailability
(1st machine)

Right
Shifting Rescheduling

St
ar

t T
im

e

U
na

va
ila

bi
lit

y
D

ur
at

io
n

M
ak

es
pa

n

C
om

pu
ta

tio
na

l
T

im
e

M
ak

es
pa

n

C
om

pu
ta

tio
na

l
T

im
e

20×5 Ta001 1278 45 358 1642 1 1278 3
20×10 Ta011 1582 51 408 1996 1 1622 9
20×20 Ta021 2297 40 309 2599 1 2311 14
50×5 Ta031 2724 66 565 3323 1 2768 16
50×10 Ta041 3025 53 434 3483 1 3077 34
50×20 Ta051 3893 56 460 4347 1 3960 51
100×5 Ta061 5493 43 333 5861 3 5493 80

100×10 Ta071 5770 58 486 6274 3 5832 104
100×20 Ta081 6268 229 2519 8828 3 8565 120
200×10 Ta091 10885 89 820 11831 5 11615 140
200×20 Ta101 11348 88 808 12167 8 12025 200
500×20 Ta111 26253 63 457 26795 9 26681 380

The structure of Table II is same as the structure of Table I.

The only difference is in Table II, we demonstrate the
experimental results for machine unavailability or preventive
maintenance scenario in first machine. The comparative
analysis between Right Shifiting and MA based Rescheduling
shows that Rescheduling or scheduling approach considering
the machine unavailability constraints or dummy job, at the
beginning of the schedule is more effective than repairing the
schedule once the first machine is overhauled.

Effectiveness of RSV (for MBD or MUN) for each problem
instance can be represented by the following equation-

Average Percentage of Improvement, API= (r
CRSV

CRSVCRSTr

i
/)(

1
∑

=

−) ×100 (3)

*CRST- the makespan value by RST; CRST - the makespan by MA-RSV,r-
number of independent runs.

TABLE III. API COMPARISION OF RHT AND RSV WITH MACHINE
BREAKDOWN SCENARIOS

Pr
ob

le
m

Pr
ob

le
m

In

st
an

ce

gr
ou

p Single Breakdown Multiple Breakdown

1st machine Last machine Combined

20×5 Ta001-002 0 0 0
20×10 Ta011-012 0.317649 0 0.317685
20×20 Ta021-022 0.560930 0 0.560938
50×5 Ta031-032 0.384430 0 0.55526
50×10 Ta041-042 1.208755 0 1.215738
50×20 Ta051-052 0.875744 0 0.902247
100×5 Ta061-062 0.164407 0 0.333729

100×10 Ta071-072 0.867567 0 0.226151
100×20 Ta081-082 0.381126 0 0.336008
200×10 Ta091-092 0.311720 0.073584 0.108946
200×20 Ta101-102 0.107240 0 0.250141
500×20 Ta111-112 0.634800 0 0.786134

47

Table III presents the simulation data to demonstrate the
superiority of our approach under different machine
breakdown scenarios. The table starts with a column of
problem size (number of jobs × number of machines). The
next column represents the problem instance group and each
group contains the first two problem instances from Taillard’s
benchmark [22]. The column headed with 1st machine under
the heading of Single Breakdown shows the average of API
(average of 10 independent runs) of the single breakdown
scenario in the first machine. The following column, headed
last machine, represents the average API of the single
breakdowns on the last machine. The final column shows the
average of API for the two machine breakdown case. In case
of early stage breakdown and two machine breakdown, our
proposed algorithm clearly dominates the traditional RST.

From the experimental results we have observed that the
location of breakdown within the early stage influences the
makespan of the revised schedule.

TABLE IV. API COMPARISION OF RHT AND RSV WITH MACHINE
UNAVAILABILITY SCENARIOS

Pr
ob

le
m

Pr
ob

le
m

In

st
an

ce

gr
ou

p Single Unavailability Multiple
Unavailability

1st machine Last machine Combined

20×5 Ta001-002 11.51140 7.499140 16.22089
20×10 Ta011-012 23.34450 4.709435 23.07040
20×20 Ta021-022 24.16805 0 24.16805
50×5 Ta031-032 16.01200 2.669505 18.08260
50×10 Ta041-042 20.66265 2.633590 20.34855
50×20 Ta051-052 8.746920 0.016144 8.893040
100×5 Ta061-062 11.61425 2.124630 13.36810

100×10 Ta071-072 10.23710 2.320190 11.23655
100×20 Ta081-082 9.820530 0.595439 9.87410
200×10 Ta091-092 4.627278 0.241446 4.693970
200×20 Ta101-102 8.14650 0.146860 6.587410

500×20 Ta111-112 3.48120 0.214610 3.95740

Table IV presents the average API of MA-RSV (MUN)
over RST with both single and multiple machine
unavailability events. For a better understanding of the
advantage of knowing disruption information in advance, we
ran the experiments using the same interruption scenarios for
both MA-RSV (MBD) and MA-RSV (MUN). The results
show that when machine interruption information is known in
advance, the effect is very high compared with machine
breakdown. A sample comparison has been given in the
Appendix.

VI. CONCLUSION
In almost all research on PFSPs, schedules were generated

with the assumption that during the production, there will be
no interruption. This paper has considered a PFSP with
known and unknown process interruption. We have solved 24
benchmark problems and we use different distributions to
generate interruption scenarios. From the experimental
results, we have seen that the machine breakdown has more
impact on a production schedule, than an unavailability event,
as the information is known only after the breakdown.

Another observation is that if a breakdown occurs at the early
stage in the schedule, the schedule can be improved by
rescheduling the effected tasks. As an initial attempt, we
study the effect of machine related disruptions in first
machine and in last machine. From this study it can be
observed that the location of interruptions within the
scheduling horizon, influence the quality of the revised
schedule. In future, the proposed algorithms can be extended
to study the effect of machine disruptions at any machine.
Besides, some other aspects of disruptions, such as change in
processing time, delay in machine set up, change in job
priority and so on can also be introduced in conjunction with
our proposed approach.

APPENDIX

-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

A
PI

Number of Interruptions

Ta 011

MBD

MUN

1-interruption (1st machine) 1-interruption (Last machine) 2-interruptions (both)

Fig. 5 (a). Comparing machine breakdown with respect to machine
unavailability for problem Ta 011

-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

A
PI

Number of Interruptions

Ta 041

MBD

MUN

1-interruption (1st machine) 1-interruption (Last machine) 2-interruptions (both)

Fig. 5 (b). Comparing machine breakdown with respect to machine
unavailability for problem Ta 041

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

A
PI

Number of Interruptions

Ta 071

MBD

MUN

1-interruption (1st machine) 1-interruption (Last machine) 2-interruptions (both)

Fig. 5 (c). Comparing machine breakdown with respect to machine
unavailability for problem Ta 071

The results of the comparative study between MA-RSV

48

(MBD) and MA-RSV (MUN) for three problem instances (Ta
011, Ta 041, and Ta 101) have been plotted in Figure 5. For
each test problem, the comparison has been carried out
considering single (either 1-interruption in the first machine
or in the last machine) and double interruptions in both
machines (first and last machine) with the same interruption
information (star time and duration of interruptions). The
only difference is, either interruption is known after it
happens or known in advance. In both cases, MA-RSV
(MBD) and MA-RSV (MUN) have been compared with
Right Shifting heuristics and the corresponding API has been
calculated. From the graph, it is clear that, at similar
interruption scenario (like single interruption in the first
machine with same start time and disruption durations) API
under Machine Unavailability is much higher than API with
Machine Breakdown scenario. So, it is clear that scheduling
with known interruption information has greater scope of
minimizing the effects of interruptions.

The graph also demonstrates that, with respect to scope of
minimizing the effect of single breakdowns in the last
machine, the rescheduling approach is more effective in
minimizing the delay in single breakdown at the first machine
or combination of two breakdowns. For Machine
Unavailability, the similar pattern can be found.

REFERENCES
[1] S. M. Johnson, "Optimal two- and three-stage production schedules

with setup times included," Naval Research Logistics Quarterly, vol. 1,
pp. 61-68, 1954.

[2] M. R. Garey, D. S. Johnson, and R. Sethi, ""The complexity of
flowshop and jobshop scheduling"," Mathematics of Operations
Research, vol. 1, pp. 117-129, 1976.

[3] M. Nawaz, E. E. Enscore, and I. Ham, "A Heuristic Algorithm for the
M-Machine, N-Job Flowshop Sequencing Problem,"
Omega-International Journal of Management Science, vol. 11, pp.
91-95, 1983.

[4] R. Ruiz and C. Maroto, "A comprehensive review and evaluation of
permutation flowshop heuristics," European Journal of Operational
Research, vol. 165, pp. 479-494, 2005.

[5] G. I. Zobolas, C. D. Tarantilis, and G. Ioannou, "Minimizing makespan
in permutation flow shop scheduling problems using a hybrid
metaheuristic algorithm," Computers & Operations Research, vol. 36,
pp. 1249-1267, Apr 2009.

[6] C. Rajendran and H. Ziegler, "Ant-colony algorithms for permutation
flowshop scheduling to minimize makespan/total flowtime of jobs,"
European Journal of Operational Research, vol. 155, pp. 426-438, Jun
1 2004.

[7] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, and G. Gencyilmaz, "A
particle swarm optimization algorithm for makespan and total flowtime
minimization in the permutation flowshop sequencing problem,"
European Journal of Operational Research, vol. 177, pp. 1930-1947,
Mar 16 2007.

[8] I. H. Osman and C. N. Potts, "Simulated Annealing for Permutation
Flowshop Scheduling," Omega-International Journal of Management
Science, vol. 17, pp. 551-557, 1989.

[9] J. Grabowski and M. Wodecki, "A very fast tabu search algorithm for
the permutation flow shop problem with makespan criterion,"
Computers & Operations Research, vol. 31, pp. 1891-1909, Sep 2004.

[10] R. Ruiz, C. Maroto, and J. Alcaraz, "Two new robust genetic
algorithms for the flowshop scheduling problem,"
Omega-International Journal of Management Science, vol. 34, pp.
461-476, Oct 2006.

[11] H. F. Rahman, R. A. Sarker, and D. L. Essam, "A Memetic Algorithm
for Permutation Flow Shop Problems," in IEEE Congress on
Evolutionary Computation, Cancun, Maxico, 2013.

[12] S. A. Fahmy, S. Balakrishnan, and T. Y. ElMekkawy, "A generic
deadlock-free reactive scheduling approach," International Journal of
Production Research, vol. 47, pp. 5657-5676, 2009.

[13] V. Subramaniam, A. S. Raheja, and K. R. B. Reddy, "Reactive repair
tool for job shop schedules," International Journal of Production
Research, vol. 43, pp. 1-23, Jan 1 2005.

[14] R. Sarker, M. Omar, S. M. K. Hasan, and D. Essam, "Hybrid
Evolutionary Algorithm for job scheduling under machine
maintenance," Applied Soft Computing, vol. 13, pp. 1440-1447, Mar
2013.

[15] S. M. K. Hasan, R. Sarker, and D. Essam, "Genetic algorithm for
job-shop scheduling with machine unavailability and breakdowns,"
International Journal of Production Research, vol. 49, pp. 4999-5015,
2011.

[16] J. H. Blackstone, D. T. Phillips, and G. L. Hogg, "A State-of-the-Art
Survey of Dispatching Rules for Manufacturing Job Shop Operations,"
International Journal of Production Research, vol. 20, pp. 27-45, 1982.

[17] R. J. Abumaizar and J. A. Svestka, "Rescheduling job shops under
random disruptions," International Journal of Production Research,
vol. 35, pp. 2065-2082, Jul 1997.

[18] S. Q. Liu, H. L. Ong, and K. M. Ng, "Metaheuristics for minimizing the
makespan of the dynamic shop scheduling problem," Advances in
Engineering Software, vol. 36, pp. 199-205, Mar 2005.

[19] S. D. Wu, R. H. Storer, and P. C. Chang, "One-Machine Rescheduling
Heuristics with Efficiency and Stability as Criteria," Computers &
Operations Research, vol. 20, pp. 1-14, Jan 1993.

[20] K. N. McKay, J. A. Buzacott, and F. R. Safayeni, "The scheduler’s
knowledge of uncertainty: The missing link," Knowledge based
production management systems, pp. 171-189, 1989.

[21] E. Taillard, "Some Efficient Heuristic Methods for the Flow-Shop
Sequencing Problem," European Journal of Operational Research, vol.
47, pp. 65-74, Jul 5 1990.

[22] E. Taillard, "Benchmarks for Basic Scheduling Problems," European
Journal of Operational Research, vol. 64, pp. 278-285, Jan 22 1993.

49

