
Smooth Global and Local Path Planning for Mobile
Robot Using Particle Swarm Optimization, Radial

Basis Functions, Splines and Bézier curves.

Nancy Arana-Daniel, Alberto A. Gallegos,
Carlos López-Franco and Alma Y. Alanis

Centre of Exact Sciences and Engineering (CUCEI)
University of Guadalajara (UDG)

Guadalajara, Jalisco, México
Email: nancyaranad@gmail.com

Abstract—An approach to plan smooth paths for mobile robots
using a Radial Basis Function (RBF) neural network trained
with Particle Swarm Optimization (PSO) was presented in [1].
Taking the previous approach as an starting point, in this paper
it is shown that it is possible to construct a smooth simple
global path and then modify this path locally using PSO-RBF,
Ferguson splines or Bézier curves trained with PSO, in order to
describe more complex paths in partially known environments.
Experimental results show that our approach is fast and effective
to deal with complex environments.

I. INTRODUCTION

Considerable number of research papers exist in the field
of robotic path planning. Classic methods used to solve path
planning include grid based path planning algorithms as the
one of the most commonly used methods [2], [3], [4], [5].
Unfortunately, even though algorithms like A* and D* are
complete (they will always find a solutions if there is one),
the paths obtained by this algorithms lack of smoothness;
nonholonomic mobile kind of robots will often have to stop
and readjust their trajectory to continue following the path
with every drastic change of direction. For the modeling of
the environment, the map is discretized, by doing this, lots
of solutions may be excluded, and also it could cause non-
smooth paths in algorithms like A*, D* and potential fields. In
addition, in the case of potential fields, the algorithm could be
trapped in a local minimum formed by concave obstacles [4].
Smooth paths are important in robotics because nonholonomic
mobile robots are commonly used in practice and it’s easier
to design continuous control algorithms to follow this type of
paths. Other approaches that generate smooth paths that are
designed to work in global path planning environments are
found in [6], [7]. Their main goal is finding smooth paths
between a start and goal point. The approach presented in
this paper not only seeks this, but it also gives emphasis on
exploring other points of interest before arriving to the goal
point.
Particle Swarm Optimization (PSO), is a method for opti-
mization of continuous nonlinear functions, created by James
Kenedy and Russell Eberhart in 1995 [8]; inspired by the
social behavior of bird flocks and schools of fish. In PSO,
each individual would be the equivalent of a bird of a flock,
each “bird” is named “particle”, and the “flock” is called a
“swarm”. A particle is analogous to a chromosome in Ge-

netic Algorithms. Compared to other Evolutionary Algorithms,
classic PSO has no crossover and mutation calculation, this
is actually one of the things that makes it really easy to
implement and fewer parameters to adjust. This makes PSO
attractive for the optimizing phase, because optimal smooth
paths can be obtained with lower computational effort and
in a shorter amount of time. PSO only evolves the particles
social behavior and their movement towards the best solutions
[9]. The search can be carried out by the speed of the
particle during the development of several generations, and
only the most optimistic solution can pass their information
over iterations.
We can find in bibliography, that PSO has proven to have
good results in path planning to perform obstacle avoidance
[10], [11], [12].
In the previous version of our work [1] the PSO-RBF approach
for global path planning was presented. Nevertheless, our first
approach was designed to plan global paths and then, as an
improvement made for this approach, re-plan them using local
PSO planning when a change in the environment is detected
(new obstacles appear in the environment) or when the path
can not be described with a smooth function.
The problem to be solved by PSO-RBF was addressed as
an interpolation problem, and therefore the paths planned
by the global PSO-RBF approach are simple paths, namely
paths without backward movements, or paths that could be
described as functions. In order to be capable of describing
more complicated paths, handle unexpected changes in the
environment and at the same time to take advantage of the
desirable features achieved with our previous approach (such
as programming simplicity, fast convergence and smooth paths
planned), the use of a new algorithm with two phases for path
planning is proposed. The first phase consists of the planning
of a global path using the approach presented in [1]. If the
path reaches all the control points of the path and it’s collision-
free, then the process ends with this stage. Otherwise, a second
phase is performed, which consists of the execution of local
path planning processes between the control points that could
not be reached by the global path found in the first stage. The
second stage can be executed using the PSO-RBF approach
(using it in a local way), PSO-Ferguson spline or PSO-Bézier
curves trained with PSO.

175

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. PARTICLE SWARM OPTIMIZATION

PSO exploits a population of potential solutions, each
solution consists of a set of parameters, representing a point
in a search space A ⊂ <D. The population of solutions is
called swarm and each individual from a swarm is called a
particle. A swarm is defined as a set of N particles. Each
particle i is represented as a D-dimensional position vector
xi(k). The particles are assumed to move within the search
space A iteratively. This is done by adjusting their position
using a proper position shift, called velocity vi(t).

On each iteration k, the velocity changes by applying
equation (1) to each particle.

vi(k + 1) = αvi(k) + c1ϕ1(Pibest − xi) + c2ϕ2(Pgbest − xi),
(1)

where ϕ1 and ϕ2 are random variables uniformly distributed
within [0,1]; c1 and c2 are weighting factors, also called the
cognitive and social parameters, respectively; α is called the
inertia weight, which decreases linearly from αstart to αend

during iterations. Pibest and Pgbest represent the best position
visited by a particle and the best position visited by the swarm
till the current iteration t, respectively.
The position update is applied by equation (2) based on the
new velocity and the current position.

xi(k + 1) = xi(k) + vi(k + 1). (2)

The basic algorithm is as follows:

1) Initialize each particle of the swarm, with random
values for position and velocity in the search space.

2) Evaluate each member of the swarm with the fitness
function (which has to be designed according to the
application).

3) Compare the value obtained from the fitness function
of the particle i, with the value of Pibest. If the value
of the fitness function is better than the Pibest value,
this new value takes the place of Pibest.

4) If the value in Pibest is better than Pgbest, then Pgbest

is replaced by Pibest.
5) Modify the velocity and position of the particles using

equations (1) and (2), respectively.
6) If the maximum number of iterations or the ending

condition isn’t achieved, return to step 2.

To solve the uncontrolled increase of magnitude of the
velocities (swarm explosion effect), is often used to restrict
the velocity with a clamping at desirable levels, preventing
particles from taking extremely large steps from their current
position.

vi(k + 1) =

{
vmax if vi(k + 1) > vmax,

−vmax if vi(k + 1) < −vmax
(3)

III. PSO-RBF

Path planning for car-like mobile robots can be realized
through a search space of functions [13], [10]. In this case
we reduce the space to a sub-space of radial basis functions
(RBFs).

As shown in Fig. 1, the structure of a RBF neural network
consists on three layers [14]:

• The input nodes layer.

• The hidden neuron layer.

• The output layer.

The RBF neural network is designed to perform a nonlinear
mapping from the input space to the hidden space through
RBFs, followed by a linear mapping from the hidden space to
the output space [15].
The radial basis equation for interpolation consists in selecting
f as:

f(x) =
N∑
i=1

wiϕ(‖ x− Ci ‖), (4)

ϕ(r) = exp(− r2

2σ2
). (5)

where,

• ϕ() : Is a nonlinear function, known as a radial basis
function. Equation (5) is a Gaussian function (there are
other type of RBFs, like multiquadratics and inverse
multiquadratics).

• wi : Represents the weight of the connection between
the neuron i from the hidden layer with the output
layer.

• ‖‖: Represents the euclidean norm.

• Ci : Are the centers of each of the gaussian functions;
where Ci ∈ <p, i = 1, 2, 3, ..., N.

• σ2 : Represents the variance.

• x : Is the set of input points of the signal to approxi-
mate.

• y : Is the label or target value.

Usually, RBFs are trained by algorithms like K-means with
a totally supervised learning method [16]. In the approach
presented in this paper, PSO is used to replace these phases.

Due the use of a discrete map, the values used for the
control points are also discrete. Each particle in the swarm
represents an RBF network and therefore the structure of the
particle is composed by the parameters Ci, σ2 and wi to be
used by the RBF function (Eqs. 4 and 5), to approximate
a function (smooth path) that passes by a predefined set of
control points (x, y). This set of (user defined) control points

176

Fig. 1: RBF Neural Network Structure

is taken as the RBF input points for the input nodes layer. They
represent trajectory constraints, i.e. coverage control points that
can be seen as places where is desirable for the robot to explore
in the environment during each navigation episode.

The input points are not static, except for the first and the
last point (that are the start and goal points respectively). For
each PSO execution, the rest of the points vary their position
randomly with each iteration, after updating the particles
position, in a range of 1 map state in any direction with
respect to their original state.

The following fitness function was used for this approach

g = β1 ∗RMSE + β2 ∗ l + c, (6)

where:

• RMSE is the root mean square error of the RBF
neural network.

• l is the length of the path.

• c is the collision variable.

• β1 and β2 are scaling factors.

β1 and β2 are (user defined) scaling factors that weigh
RMSE and l and c in order that the error of the RBF
neural network and the length of the path have more or less
influence in the final path obtained (the scaling factors where
not included in the original approach [1]). To obtain RMSE
we use equations (7) and (8)

RMSE(f) =

√∑n
k=1(ek)2

n
, (7)

ek = yk − f(xk), where f(xk) ≈ yk, (8)

where f(xk) is the output of the RBF network computed
for the input xk.

The length value l is obtained as the sum of the euclidean
distance between any two consecutive points that form the path

1: for n = 1→ |o| do
2: (x′, y′)← on
3: for j = −2→ 2 do
4: for i = −2→ 2 do
5: Map(x′ + i, y′ + j) ← MAX(Map(x′ + i, y′ +

j), H(i+ 3, j + 3))
6: end for
7: end for
8: end for

Fig. 2: Pseudocode to compute fm values of each state of the
discretized map of the environment.

l =
n−1∑
i=1

√
(Θi+1 −Θi)2 + (f(Θi+1)− f(Θi))2, (9)

where Θ is the set of discrete values between x1 and xk.
To calculate c, is necessary to consider the set of states that
are in a certain range of the obstacles S to obtain the sub-set
s ⊆ S, which are states in the range of the obstacles that the
path crosses

S = {(x′, y′)|(x′, y′) ∈ obstacles range} , (10)

c =

n∑
k=1

Map(sk) where s ⊆ S, (11)

where n is the number of elements in the sub-set s. The
value of c, obtained in Eq. (11), increases with the number of
states that a path crosses and that are occupied by obstacles
or near them.

The map is discretized, so a value Map(x′, y′) is assigned
to each state that is within a certain range from an object by
using a Gaussian mask (12) and Alg. 2. The maximum value
in the mask is 0.02 and it represents a state occupied by an
obstacle, which are the states that correspond to the sub-set
o ⊆ S. Any other value in the interval of (0, 0.02) represents
a state that is near a state occupied by an obstacle. A value of
zero for a state means that it is out of range of any obstacle.
A state in s can take a value from the interval (0.0001, 0.02].

H =


0.0001 0.0006 0.0012 0.0006 0.0001
0.0006 0.0049 0.0099 0.0049 0.0006
0.0012 0.0099 0.0200 0.0099 0.0012
0.0006 0.0049 0.0099 0.0049 0.0006
0.0001 0.0006 0.0012 0.0006 0.0001

 (12)

IV. ROBOT PATH PLANNING USING PARTICLE SWARM
OPTIMIZATION OF FERGUSON SPLINES

In [12] a method for path planning, based on PSO
and Ferguson splines is proposed. This approach uses cubic
Ferguson splines to form a smooth path between two points,
based on the fact that the problem of finding a smooth
collision-free path can be seen as an optimization problem

177

with restrictions.

The main idea of this approach is to optimize the P
′

0

and P
′

1 values (which are tangent vectors), from the Ferguson
splines equation (Eq. 13), meanwhile P0 and P1 remain
static (they are the start and goal point of the trajectory
respectively). Each Ferguson spline is defined by equation:

k : X(t) = P0F1(t) + P1F2(t) + P
′

0F3(t) + P
′

1F4(t), (13)

F1(t) = 2t3 − 3t2 + 1 (14)

F2(t) = −2t3 − 3t2 (15)

F3(t) = t3 − 2t2 + t (16)

F4(t) = t3 − t2. (17)

where t ∈ [0, 1]. Two or more cubic Ferguson splines can be
concatenated to obtain a path. Since P̃0 = P1 and P̃

′
0 = P

′

1,
this values can be used for a new Ferguson spline (Eq. 18)

k̃ : X̃(t) = P̃0F1(t) + P̃1F2(t) + P̃
′
0F3(t) + P̃

′
1F4(t), (18)

where only the start and goal points of the path formed by
the concatenated Ferguson splines remain static (P0 and P̃1

for the case of two concatenated Ferguson splines), the other
vectors (P

′

0, P1, P
′

1 and P̃ ′
1) will form the model of the particle

for PSO to optimize.

This approach uses the following fitness function

g =
l

lMIN
+ (

α

d
)2 (19)

where lMIN is the Euclidean distance between the actual
and the desired robot position, the constant α represents the
influence of the obstacles, l is the length of the trajectory and
d is the minimal distance between the path and the closest
obstacle.

V. MODIFIED VERSION OF FERGUSON SPLINES
APPROACH

To make the Ferguson splines approach useful when used
in the approach proposed in this paper, some modifications
were made. These changes would make the Ferguson splines
approach to be evaluated more like the PSO-RBF approach.
To begin with, the map is discretized like mentioned before in
Sec. III and only one Ferguson spline is optimized per path
between two points. The original fitness function changes to
a fitness function that resembles the fitness function shown in
Eq. 6, but without the RMSE computation, see Eq. 20:

g =
l

β
+ c (20)

where l is the length of the path, β is a (user defined)
scaling factor and c is the collision variable. Just like in the
PSO-RBF approach, to obtain c we must consider the set of
points inside the range of an obstacle that are crossed by the
path s.

VI. PSO-BÉZIER CURVES FOR LOCAL PATH PLANNING

A Bézier curve is a parametric curve defined by a set
of control points P0, ..., Pn, where n is the order of the
polynomial which defines the Bézier curve. The intermediate
control points generally do not lie on the curve. The formula
for a n−order Bézier curve is shown in Eq. 21.

B(t) =
n∑

i=0

(
n

i

)
(1− t)n−itiPi (21)

where
(
n
i

)
are binomial coefficients and t ∈ [0, 1].

In this work it was used a cubic Bézier curve, like the one
shown in Eq.22

B(t) = (1− t)3P0 +3(1− t)2tP1 +3(1− t)t2P2 + t3P3 (22)

The model of the particle for PSO contains the parameters
P1 and P2 which are the middle control points of the Bézier
curve. Points P0 and P3 are the initial and target points of the
local path respectively and they remain static.

The fitness function used for PSO to adjust the parameters
of the Bézier curve is the same that the one used with our
modified approach of PSO-Ferguson Splines (see Eq. 20).

VII. FROM LOCAL TO GLOBAL PATH PLANNING

The motivation behind local to global planning approach
comes from the idea of simplifying a difficult task in to
more simpler task to obtain an optimum result. The task of
optimizing a smooth function to describe an optimum global
path is a challenge; as the map grows in complexity several
things could happen: the map won’t be explored efficiently,
there could be places where a drastic change on the path
would be needed to avoid collisions and the function that
describes the path won’t be able to perform that change
smoothly, or places where the path can’t be represented as a
function, etc. But, by dividing the problem, a higher flexibility
is obtained to deal with this problems in a simple and more
effective way.

In order to deal with more complex environments than
those presented in the previous work by the authors [1], an
algorithm to construct a smooth and safe global path through
the union of several local paths is proposed. It must be
remarked that this approach doesn’t seek to obtain the shortest
path, but instead, a smooth and collision-free path that explores
through most of the areas that are desirable for the robot to
pass (the control points).

178

Require: CtrlPoints, Map, Pini, Pend

Ensure: Map and M are global arrays
1: Execute PSO-RBF path planning to obtain a global path
GP that approximates CtrlPoints, for the map Map,
from Pini to Pend.

2: if GP has collisions or describes a trajectory that covers
very few control points then

3: Identify all the sub-paths without collisions that pass
between (or near enough) any pair of control points in
GP and store them in M .

4: Set the starting control point as Pini and the goal control
point as Pend.

5: All the control points in CtrlPoints, except Pini, are
stored in the NCPoints array to indicate that they will
be treated as “non-covered” control points.

6: Call to algorithm GLP = Loc2global (Alg. 4) with
parameters (NCPoints, Pini, Pend).

7: return GLP
8: else
9: return GP

10: end if

Fig. 3: Pseudocode to initialize arrays and build global paths
calling to Alg.4

By treating the problem as a set of local path planning
problems, a little sacrifice of the path’s smoothness is made in
every local division of the global path (the joints of the sub-
paths that are located in the control points), but the smoothness
remains on each sub-path obtained.

The initialization of the arrays to be used by the main
function of the algorithm (Alg. 4 or the Loc2global function)
is made in Alg. 3. Which executes the PSO-RBF algorithm
(described in Sec. III) in order to find a first approximation to
an optimum global path between the starting control point Pini

and the goal control point Pend. It takes into consideration the
initial trajectory control points from PSO-RBF CtrlPoints ,
that are the places where is desirable for the robot to explore,
and the complete map of the environment Map. Where Pini,
Pend, CtrlPoints and Map are defined by the user. If the
PSO-RBF algorithm returns a good enough trajectory then,
the algorithm will return GP as the final global path and Alg.
4 won’t be executed.

On the other hand, if GP is trajectory with collisions or
describes a trajectory that covers very few control points (high
values of RMSE) then Alg. 4 is used, which takes trajectory
GP as base to obtain a safe path with higher complexity that
passes through most of the control points.

The parameters required by Alg. 4 are: the list of control
points that haven’t been reached NCPoints, the stack of
points that had been rejected because of collisions RejPoints,
the map with the obstacles Map, the global matrix where all
the points from the collision-free sub-paths that had been found
by the by PSO-RBF algorithm are stored M , the goal point
Pend and the current point Pk (that takes the value value of
the starting point of the trajectory Pini at the first iteration).

Prior to the execution of Alg. 4, it is needed to identify
all the sub-paths without collisions that pass between, or near
enough, any two control points in GP and store them in the

Require: NCPoints, RejPoints, Map, M , Pk, Pend

Ensure: Map and M are global arrays
1: Set GLP to empty;
2: Set RejPoints to empty
3: while NCPoints 6= empty and Pk 6= Pend and GLP =

empty do
4: Find the closest control point Pc to Pk from NCPoints

using Manhattan distance computation
5: Remove Pc from NCPoints
6: Look for a local sub-path LSp stored in M that connects

Pk with Pc

7: if there is not a local sub-path LSp in M that connects
Pk with Pc and LSP is not Unreachable then

8: Train an RBF or a Ferguson Spline or a Bézier curve
with PSO to obtain a local path LSp between Pk and
Pc with retSubPath function (shown in Algs. 5, 6,
7)

9: if the LSp is collision free then
10: Add LSp to M on position (Pk, Pc)
11: else
12: Set Unreachable value to M on position (Pk, Pc)
13: end if
14: end if
15: if the LSp is collision free then
16: Add RejPoints and NCPoints to tmpNCP
17: Recursive call to tmp =Loc2Glob(tmpNCP , Pc,

Pend)
18: if tmp 6= Unreachable then
19: Add LSp and tmp to GLP
20: else
21: Add Pc to RejPoints
22: end if
23: else
24: Add Pc to RejPoints
25: end if
26: end while
27: if Pk 6= Pend and GLP is empty then
28: GLP=Unreachable;
29: end if
30: return GLP

Fig. 4: Function Loc2global. Pseudocode to build a global path
based on local path planning

global array M ; by doing this it is possible to omit the future
calculation of a few sub-paths. All the control points of the
trajectory are treated as non-covered control points and stored
in the NCPoints array, with the exception of the initial point
Pini. This is because when the trajectory is refined with Alg.
4, it is desirable that all the possibilities of making a path
between Pini and any other control point are available for
consideration, because of that, the array for the rejected points
RejPoints is initialized as empty.

Alg. 4 iterates while three conditions are mantained: i)
there is at least one control point in NCPoints, ii) the current
point Pk is different from Pend and iii) a global path GLP
has not been found.

On each iteration of Alg. 4 the array M is consulted for
a local sub-path LSp between the current point Pk and the
closest point to it that is contained in NCPoints, Pc. If a

179

path exists between Pk and Pc in M , we recover the set of
points that were stored previously in Alg. 3. Otherwise we get
an empty value if no attempt of forming a path between this
points was detected or an Unreachable value if an attempt
was made, but collisions were detected.

In the case where there is no path between Pk and Pc,
a call is made to the retSubPath function, that will return
a path (that can be obtained with PSO-RBF, modified PSO-
Ferguson splines or PSO-Bézier curves) or an Unreachable
value if no safe path was found between this two points.

The pseudocode presented in Alg.4 constructs or refines a
global path through the union of several local paths between
control points. It uses backtracking combined with an heuristic
method. Since the calculation of all the possible combinations
of points to obtain an optimum path would be impractical
(it happens when backtracking is not restricted or has no
guidance), the search for an optimum path is directed always
towards the nearest non covered control point in NCPoints
(Pc) to the actual position Pk.

If a sub-path between the current position and its nearest
non covered neighbor collides with an obstacle, the nearest
neighbor Pc is rejected and stored in RejPoints since the
sub-path generated between this two points has no possibility
to be part of an optimum global path; then the next closest
non covered neighbor that hasn’t been rejected is taken into
consideration, and so on, until a safe sub-path is found. When
a safe sub-path is found, the actual position Pk takes the
value of the next closest non covered neighbor Pc that hasn’t
been rejected. And from the new actual position, the search to
reach a new position is repeated, taking into consideration for
the search the control points that were rejected RejPoints
from the previous position (the sets of rejected points are
independent for each position) and the ones that haven’t been
visited NCPoints, but excluding the already visited control
points. If from the actual position no other position could be
reached safely, the algorithm returns to the previous position
Pk−1, taking it as the actual position Pk, and adds the position
that leads to nowhere to the previously rejected RejPoints
control points from that position and continuous the search.
The algorithm ends when the goal control point is reached or
no possible smooth and collision-free global paths between a
pair points could be generated by the algorithm.

When Alg. 4 reaches the goal point, it returns the entire
set of points that form the global path GLP ; or if the goal
point could not be reached, then GLP takes empty as its
value. Both modified PSO-Ferguson splines and PSO-Bezier
curves can be used by this approach without changes, but
certain changes must be done to PSO-RBF in order to work
properly in local path planning.

To use the PSO-RBF approach for local path planning (Alg.
5), instead of training the algorithm as described in [1], the
only control points that would remain completely static are
Pc and Pk. The rest of the control points to approximate, are
generated one for each discrete state of the map on the x axis
that lays between Pc and Pk. This points remain with static
discrete values on the x axis, while they are only allowed to
move freely on the y axis.

The original fitness function (Eq. 6) is maintained

Require: Pk = (x1, y1), Pc = (x2, y2), Map
1: if abs((y2 − y1)/(x2 − x1)) ≤ 1 then
2: GBest← pso(x1, x2, y1, y2,Map);
3: interval← obtain the set of discrete points from x1 to

x2;
4: F (x)← rbf(GBest, interval);
5: path← (interval, F (x));
6: else
7: GBest← pso(y1, y2, x1, x2,MapT);
8: interval← obtain the set of discrete points from y1 to

y2;
9: F (x)← rbf(GBest, interval);

10: path← (F (x), interval);
11: end if
12: return path

Fig. 5: Pseudocode for the retSubPath function using PSO-
RBF

Require: Pk = (x1, y1), Pc = (x2, y2), Map
1: GBest← pso(x1, x2, y1, y2,Map);
2: path← fSplines(GBest);
3: return path

Fig. 6: Pseudocode for the retSubPath function using modified
PSO-Ferguson splines.

with out changes, but instead of taking into consideration
the RMSE for all the control points, it is only needed to
evaluate the RMSE for Pk and Pc.

A disadvantage of using an RBF neural network compared
to a Ferguson spline or a Bézier curve is that the path
obtained will only have values between Pk and Pc; then the
difficulty to obtain a safe path between Pk and Pc increases
as the number of discrete states in the x axis between them
decreases (the space to generate a safe path becomes more
restricted). But this can be solved by transposing some of
the input data. If we have higher number of discrete states
between Pk and Pc on the y axis than the number of discrete
state on the x axis, it’s preferable to work with control
points that remain static on their y axis values and leave the
values on the x axis move freely. This is presented in Alg.5
when abs((y2 − y1)/(x2 − x1)) > 1, (where Pk = (x1, y1)
and Pc = (x2, y2)), then we use the transpose of the
map MapT . This way, the algorithm can reach points where
the slope between two points is higher than 1 or lower than −1.

The variable interval in Alg.5 is a set of discrete points,
the pso function returns the parameters of the best global path
found with PSO using a RBF neural network GBest and the
rbf function, using the values from GBest, evaluates Eq. 4
using the results from interval, which returns the path that
goes from Pk to Pc.

The pso function in Alg. 6 returns the parameters of
the best global path found with PSO using Ferguson splines
GBest and the fSplines function, using the values from
GBest, returns a path by evaluating Eq. 13 with a set of
points from the interval [0, 1]. Alg. 7 works in a similar way,

180

Require: Pk = (x1, y1), Pc = (x2, y2), Map
1: GBest← pso(x1, x2, y1, y2,Map);
2: path← Bezier(GBest);
3: return path

Fig. 7: Pseudocode for the retSubPath function using Bézier
curve.

but with Bézier curves instead of Ferguson splines.

VIII. SIMULATION RESULTS

The simulations of the environments and smooth paths
where tested in the WebotsTM robot simulator on a iRobot R©
Create R© differential wheeled robot. For the local to global
path planning approach, we used a swarm composed of 15
particles and the next set of heuristically selected parameters:
c1 = 2, c2 = 3, vmax = 0.15, ωstart = 1, ωend = 0.0005
and sf = 15 for the fitness function. This parameters can be
used with PSO-RBF, modified PSO-Ferguson splines or PSO-
Bézier curves, either way it gives good results. In Figures 8
and 9 four types of points can be seen. The start point in
green, the goal point in red, the set of control points with in
their initial positions in blue and in yellow their final position
after the update in the first phase. The path in blue is the path
obtained on the first phase, and as can be appreciated, most
of the control points are not covered by this path and certain
cases it is impossible to reach some points without colliding
with an obstacle. The second phase solves this by constructing
a path with a higher complexity (the path in red) by dividing
the problem in several local path planning problems. Even if
part of the smoothness is lost in the unions between sub-paths,
it is preserved in each sub-path.
In Figure 8 a set of concave obstacles is divided by a hallway.
Regardless of the shape, the path can handle this without
getting trapped by the obstacles.
In Figure 9 the number of obstacles is increased. The path
avoids colliding with the obstacles and passes safely between
them if there is enough space to generate a smooth path
between any pair of control points.
As can be seen in table I, the performance for this approach
is measured in terms of time and the number of control points
reached by the path. Since the approach gives importance
to explore other points of interest before getting to the goal
point, the number of control points reached is proportional
to the zones of interest in the map that can be explored by
the mobile robot without the risk of colliding. If each point
represents a possible location where a person could be trapped
in a hazardous zone, a higher number of points covered by the
path increases the chances of finding the person on the first
attempt.

The modified PSO-Ferguson Spline and the Bézier curve
approaches are slower in most of the cases than PSO-RBF
approach by a considerable margin, which makes PSO-RBF
more suitable to be implemented in real time. On the other
hand, with modified PSO-Ferguson splines and PSO-Bézier
curves is more likely to reach more control points. From the
three local path planers, PSO-Bézier curves tends to be the
most balanced in execution time and the number of average
control points reached by the planner, and generates paths that

(a) PSO-RBF

(b) Modified PSO-Ferguson splines

(c) PSO-Bézier curves

Fig. 8: Map 3 dividing the global path planning problem into
local path planning problems.

oscillate less than the ones described by PSO-Ferguson splines
and PSO-RBF.

IX. CONCLUSIONS

This paper presents an approach to solve the global path
planning problem as an unification and optimization problem
of several local path planning problems by using different types
of local path planners. A set of trajectory constraints based on
coverage control points as input pattern, which can be seen as
places where is desirable for the robot to explore were used to
construct global paths, in order to obtain complex, smooth and
collision-free paths. Results in simulation environments show
that our approach obtains this paths regardless of the concavity
of the obstacles or the number of these taking advantage of
the using of coverage control points as trajectory constraints.
Furthermore, the option obtaining paths in a short amount of
time or the possibility to cover more control points is available.

REFERENCES

[1] N. Arana-Daniel, A. A. Gallegos, C. Lopez-Franco, and A. Y. Alanis,
“Smooth Path Planning for Mobile Robot Using Particle Swarm Opti-
mization and Radial Basis Functions,” in International Conference on
Genetic and Evolutionary Methods (GEM12), 2012, pp. 84–90.

181

(a) PSO-RBF

(b) Modified PSO-Ferguson splines

(c) PSO-Bézier curves

Fig. 9: Map 4 dividing the global path planning problem into
local path planning problems.

[2] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” Systems Science and Cybernet-
ics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, 1968.

[3] A. Stentz, “Optimal and efficient path planning for unknown and
dynamic environments,” DTIC Document, Tech. Rep., 1993.

[4] J. Barraquand, B. Langlois, and J. Latombe, “Numerical potential field
techniques for robot path planning,” Systems, Man and Cybernetics,
IEEE Transactions on, vol. 22, no. 2, pp. 224–241, 1992.

[5] Y. Wang and G. S. Chirikjian, “A new potential field method for robot
path planning,” in Proc. IEEE Int. Conf. Robotics and Automation ICRA
’00, vol. 2, 2000, pp. 977–982.

[6] H.-C. Huang and C.-C. Tsai, “Global path planning for autonomous
robot navigation using hybrid metaheuristic GA-PSO algorithm,” in
SICE Annual Conference (SICE), 2011 Proceedings of, Sept 2011, pp.

TABLE I: Comparison of local planners using PSO as training
algorithm to obtain global paths

Map Number Average time
in sec.

Average of
number of
control points
reached

PSO-RBF

1 5.47 16.79 of 20

2 14.05 14.88 of 19

3 12.00 21.06 of 27

4 17.21 16.36 of 20

Modified PSO-Ferguson splines

1 13.18 17.53 of 20

2 18.83 15.78 of 19

3 30.88 20.30 of 27

4 27.42 16.87 of 20

PSO-Bézier curves

1 11.15 17 of 20

2 13.83 18.38 of 19

3 19.11 21.36 of 27

4 21.22 17.55 of 20

1338–1343.
[7] Y.-J. Ho and J.-S. Liu, “Collision-free Curvature-bounded Smooth

Path Planning Using Composite Bezier Curve Based on Voronoi
Diagram,” in Proceedings of the 8th IEEE International Conference on
Computational Intelligence in Robotics and Automation, ser. CIRA’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 463–468. [Online].
Available: http://dl.acm.org/citation.cfm?id=1811259.1811353

[8] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” in
Proceedings of IEEE International Conference on Neural Networks,
vol. 4. Washington, DC, USA: IEEE Computer Society, November
1995, pp. 1942–1948.

[9] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among five
evolutionary-based optimization algorithms,” Advanced Engineering
Informatics, vol. 19, no. 1, pp. 43–53, 2005.

[10] M. Hua-Qing, Z. Jin-Hui, and Z. Xi-Jing, “Obstacle avoidance with
multiobjective optimization by PSO in dynamic environment,” in Pro-
ceedings of International Conference Machine Learning and Cybernet-
ics, vol. 5, Luoyang, China, 2005, pp. 2950–2956.

[11] L. W., Y. L., H. D., and Y. X., “Obstacle-avoidance Path Planning for
Soccer Robots Using Particle Swarm Optimization,” in Proceedings of
IEEE International Conference on Robotics and Biomimetics, ROBIO
2006, 2006, pp. 1233–1238.

[12] M. Saska, M. MacaÌs, L. Preucil, and L. Lhotska, “Robot path planning
using particle swarm optimization of Ferguson splines,” in Emerging
Technologies and Factory Automation, 2006. ETFA’06. IEEE Confer-
ence on. IEEE, 2006, pp. 833–839.

[13] Y. Hu and S. X. Yang, “A Knowledge Based Genetic Algorithm for
Path Planning of a Mobile Robot,” in Proceedings of IEEE International
Conference on Robotics and Automation, New Orleans, 2004, pp. 4350–
4355.

[14] E. N. Sánchez and A. Alanis, “Redes neuronales: conceptos fun-
damentales y aplicaciones a control automático,” Cinvestav Unidad
Guadalara. Editorial Prentice Hall, 2006.

[15] S. Haykin, Neural networks and learning machines. Prentice Hall,
2009, vol. 3.

[16] J. A. Hartigan and M. A. Wong, “A K-Means Clustering Algorithm,”
Applied Statistics, vol. 28, pp. 100–108, 1979.

182

