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Abstract— This paper deals with the Unrelated Parallel
Machine Scheduling Problem with Setup Times (UPMSPST).
The objective is to minimize the makespan. In order to solve
it, we propose a heuristic algorithm, based on Iterated Local
Search (ILS), Variable Neighborhood Descent (VND) and Path
Relinking (PR). In this algorithm, named AIRP, an initial
solution is constructed using the Adaptive Shortest Processing
Time method. This solution is refined by the ILS, having an
adaptation of the VND as local search method. The PR method
is applied as a strategy of intensification and diversification
during the search. The algorithm was tested in instances of
the literature envolving up to 150 jobs and 20 machines. The
computational experiments show that the proposed algorithm
outperforms an algorithm from the literature, both in terms
of quality and variability of the final solution. In addition, the
algorithm established new best solutions for more than 80,5%
of the test problems in average.

I. INTRODUCTION

THIS paper deals with the Unrelated Parallel Machine
Scheduling Problem with Setup Times (UPMSPST). The

objective is to minimize the maximum completion time of
the schedule, the so-called makespan.

The UPMSPST has great theoretical and practical im-
portance. The practical importance is related to the fact
that it appears in many situations, for example, in textile
manufacturing [1]. The theoretical importance is due to
UPMSPST belongs to the NP-Hard class [2], because
it is a generalization of the Parallel Machine Scheduling
Problem with Identical Machines and without Setup Times
[3], [4]. Finding an optimal solution for large problems using
exact methods can be computationally infeasible. Therefore,
heuristics are generally used to generate solutions that are
close, in quality, to the optimal solution.

In UPMSPST there is a set of unrelated machines M and a
set of jobs N with the following characteristics: i) Each job
must be processed exactly once by one machine; ii) Each
job j ∈ N has a processing time pjk, which depends on
the machine k ∈ M it is allocated; iii) There are setup
times, Sijk, between jobs i, j ∈ N , where k is the machine
where jobs i and j are processed, in this order; iv) In order
to process the first job on each machine, there will be a
setup time S0jk, considering the job j ∈ N allocated on
the machine k ∈ M . The objective is to minimize the
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maximum completion time of the schedule, called makespan
or Cmax. Due to these characteristics, UPMSPST is defined
as RM |Sijk|Cmax [5]. In this definition, RM represents the
independent machines, Sijk the setup times and Cmax the
makespan.

For ease of understanding the problem, in Figure 1 is
presented a possible schedule for an instance composed by 7
jobs and 2 machines. The cross-hatched areas of the Figure
represent the setup times between jobs and the numbered
areas the processing times. It can be observed that in machine
1, called M1, the jobs 2, 1 and 7 are allocated in this order.
In machine 2, named M2, the schedule of the jobs 5, 4, 6
and 3, in this order, is also perceived by this Figure.

TABLE I
PROCESSING TIMES IN MACHINES M1 AND M2.

M1 M2
1 20 4
2 25 21
3 28 14
4 17 32
5 43 38
6 9 23
7 58 52

TABLE II
SETUP TIMES IN MACHINE M1.

M1 1 2 3 4 5 6 7
1 2 1 8 1 3 9 6
2 4 7 6 3 7 8 4
3 7 3 4 2 3 5 3
4 3 8 3 5 5 2 2
5 8 3 7 9 6 5 7
6 8 8 1 2 2 1 9
7 1 4 5 2 3 5 1

TABLE III
SETUP TIMES IN MACHINE M2.

M2 1 2 3 4 5 6 7
1 3 4 6 5 9 3 2
2 1 2 6 2 7 7 5
3 2 6 4 6 8 1 4
4 5 7 8 3 2 5 6
5 7 9 5 7 6 4 8
6 9 3 5 4 9 8 3
7 3 2 6 1 5 6 7

The processing times of these jobs in both machines are
presented in Table I; for example, the cost of processing the
job 7 in machine M1, p71, is equal to 58.
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Fig. 1. An example of schedule with 2 machines and 7 jobs.

In Table II and Table III are showed the setup times of
these jobs in these machines. For example, the cost of setup
time to execute the job 4 after the execution of job 5 in
machine M2, S542, is the value that is encountered in the fifth
line and fourth column, which is 7. Thus, it can be calculated
the completion time CM1 of machine M1 as CM1 = S021 +
p21 + S211 + p11 + S171 + p71 = 120. Equivalently it is
also calculated the completion time CM2 of machine M2
as CM2 = S052 + p52 + S542 + p42 + S462 + p62 + S632 +
p32 = 130. The makespan will be the completion time of the
slowest machine, in this case, the machine M2, with a cost
of 130.

The objective of this article is to present an efficient
algorithm for solving the UPMSPST. The proposed algorithm
is based on the heuristic procedures: Iterated Local Search
– ILS [6], Variable Neighborhood Descent – VND [7] and
Path Relinking [8]. Named AIRP, the algorithm works as
follows: i) Build up a solution in a greedy way, using
the Adaptive Shortest Processing Time rule – ASPT; ii)
Refines this solution by the ILS, using a local search heuristic
called RIV, that is inspired in the ILS and Random Variable
Neighborhood Descent (RVND) heuristics; iii) Applies the
Path Relinking technique to perform a balance between
intensification and diversification of the search space. Unlike
VND, in RVND there is no fixed sequence of neighborhoods.
In [9], the authors demonstrated the efficacy of the RVND
over the conventional VND.

The AIRP was tested using instances from literature [10]
and the computational results showed that it is able to
produce better solutions than another algorithm found in
literature, with less variability. In addition, the algorithm
established new best solutions for more than 80,5% of the
test problems in average.

The rest of this paper is organized as follows: Section II is
described the literature review, with related articles. Section
III contains the description of the methodology used in this
work. Computational results are presented in Section IV to
show the AIRP performance. Finally, Section V concludes
the paper.

II. LITERATURE REVIEW

Works dealing with similar problems to UPMSPST are
found in literature. In [11] seven heuristics are proposed
to minimize the weighted mean completion time. In [12],
a Simulated Annealing heuristic is used for a problem of
minimizing the total completion time. In [13] are proposed
four heuristics to minimize the total weighted tardiness.
In [14] is addressed a problem where the objective is to
minimize the total weighted tardiness considering dynamic

releases of jobs and dynamic availability of machines and the
authors implemented a Tabu Search for solving it. In [1], the
authors proposed a Branch-and-Price algorithm for solving
the same problem.

Among the works that address the UPMSPST, more recent
references are found. In [15] the authors present a Three-
phase Partitioning Heuristic, called PH. In [16] it is im-
plemented a Metaheuristic for Randomized Priority Search
(Meta-RaPS). In [17], the authors implement the Ant Colony
Optimization (ACO) for a special structure of the problem,
wherein the ratio of jobs to machines is large. In [18] it
is proposed a method of Restricted Simulated Annealing
(RSA) which reduces the computational effort by eliminating
movements in jobs that will not be effective. The UPMSPST
is solved by means of Genetic Algorithms in [19]. Using two
sets of parameters, the authors implemented two algorithms,
GA1 and GA2 and they shown that GA2 outperforms GA1.
In this work, test problems for UPMSPST were generated
and provided in [10].

III. METHODOLOGY

A. Representation of a Solution

The representation of a solution s in UPMSPST is done
using a vector of lists. In this representation there is a vector
v whose size is the number m of machines. Each position of
this vector contains a number that represents a machine and
a list of numbers. The schedule of the jobs on each machine
is represented by this list of numbers, where each number
represents one job.

B. Evaluation of a Solution

The evaluation value of a solution s is the completion time
of the machine that will be the last to conclude its jobs, the
so-called makespan.

C. The AIRP Algorithm

The proposed algorithm, named AIRP, combines the
heuristic procedures Iterated Local Search (ILS), Variable
Neighborhood Descent (VND) and Path Relinking (PR). The
local search used in ILS, named RIV, was developed based on
the heuristic procedures ILS and a variation of VND, called
Random Variable Neighborhood Descendent (RVND). The
pseudo-code of this algorithm is presented in Algorithm 1.

The Algorithm 1 has two input parameters: 1)
timesLevel, which represents the number of times in each
level of perturbation; 2) executionT ime, the time in mil-
liseconds that limits the execution of the algorithm.

At line 1 occurs the initialization of the variable that
controls the time limit, currentT ime. Next, it creates three
empty solutions: the current solution s, the modified solution
s′ and the solution that will store the best solution found
bestSol (line 2). At line 3, the set of elite solutions (elite)
is created (see subsection III-K).

At line 4, s receives a new solution created by the Adaptive
Shortest Processing Time (ASPT) rule (see subsection III-D).
Then, this new solution, in s, passes through local searches
at line 5, using the RIV heuristic procedure (see subsection
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Algorithm 1: AIRP
input : timesLevel, executionT ime
output: bestSol

1 currentT ime← 0;
2 Solution s, s’, bestSol;
3 elite← {};
4 s← ASPT();
5 s← RVI(s);
6 bestSol← s;
7 elite← elite ∪ {bestSol};
8 level ← 1;
9 Update currentT ime;

10 while currentT ime ≤ executionT ime do
11 s’ ← s;
12 times ← 0;
13 maxPerturb ← level + 1;
14 while times < timesLevel do
15 perturb ← 0;
16 s’ ← s;
17 while perturb < maxPerturb do
18 perturb ++;
19 s′ ← Perturb ILS(s’);
20 end
21 s′ ← RVI(s’);
22 elite← update(s’);
23 pr ← random(0,1);
24 if pr ≤ 0.05 and |elite| ≥ 5 then
25 el ← random(1,5);
26 if f(elite[el]) 6= f(s′) then
27 s’ ← BkPR(elite [el], s’);
28 end
29 end
30 if f(s′) < f(s) then
31 s ← s’;
32 updateBest(s, bestSol);
33 elite ← update(s);
34 times ← 0;
35 end
36 times ++;
37 Update currentT ime;
38 end
39 level ++;
40 se level ≥ 4 então
41 level ← 1;
42 fim
43 end
44 return bestSol ;

III-F). Further, line 6, bestSol receives the solution s with
possible changes made by RIV. At line 7, bestSol is inserted
in the elite set of solutions. After all these steps, the level
of perturbations is set to 1 (line 8) and the execution time is
recalculated at line 9.

The iterative process of ILS is initiated in lines 10 to 43
and it finishes when the time limit is exceeded. A copy of
the current solution to the modified solution is made at line
11.

At lines 12 and 13 the variable that controls the number
of times in each level of perturbation (times) is initialized,
as well as the variable that limits the maximum number of
perturbations (maxPerturb). The following loop is respon-
sible for controlling the number of times in each level of
perturbation (lines 14-38).

The next loop, lines 17 to 20, executes the perturbations
(line 19) in the modified solution. The number of times this
loop is executed depends on the level of perturbation. With
the perturbations accomplished, the new solution obtained is
evaluated and the RIV procedure is applied, line 21. Then, at
line 22 the elite set is updated taking into account this new
solution.

A random real number between 0 and 1 is generated at
line 23. If this number is less than 0.05 and the elite set
is complete (with 5 solutions), the Path Relinking (see sub-
section III-K) will be executed using the Backward strategy
– BkPR, lines 25 to 28. The base solution used is taken
randomly from the elite set and the guide solution is the
solution s′ returned by the local search RIV. In this way, if
the elite set is complete, the BkPR has a 5% chance of being
executed.

Between lines 30-35 it is verified if the changes made in
the current solution were good enough to continue the search
from it. When the time is up, in bestSol will be stored the
best solution found by AIRP. When the level, which defines
the intensity of the perturbations, is greater than or equal to
4, AIRP restarts its value to 1 (lines 39 to 42).

The following subsections present details of the each
module of AIRP.

D. Adaptive Shortest Processing Time

The Adaptive Shortest Processing Time (ASPT) rule is an
extension of the Shortest Processing Time rule [20].

In ASPT, firstly, it is created a set N = {1, ..., n}
containing all jobs and a set M = {1, ...,m} that contains
all machines.

From the set N , the jobs are classified according to an
evaluation function gk. This function is responsible to obtain
the completion time of the machine k. Given a Candidate List
(CL) of jobs, it is evaluated, based on the gk function, the
insertion of each of these jobs in all positions of all machines.
The aim is to obtain in which position of what machine that
the candidate job will produce the lowest completion time,
that is, the gmin.

If the machine with the lowest completion time has not
allocated any job yet, its new completion time will be the
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sum of the processing time of the job to be inserted with the
initial setup time for such job.

If this machine has some job, its new completion time will
be the previous completion time plus the processing time of
the job to be inserted and the setup times involved, if it has
sequenced jobs before or after.

This allocation process ends when all jobs are assigned
to some machine, thus producing a feasible solution, s. This
solution is returned by the heuristic. The algorithm is said
to be adaptive because the choice of a job to be inserted
depends on the pre-existing allocation.

E. Neighborhood Structures

In order to explore the solution space, three neighborhood
structures are used. These structures are based on swap and
insertion movements of the jobs.

1) Multiple Insertion: This movement, which origins the
neighborhood NMI(.), consists in reallocating a job from
one position of a machine to any possible position in any
machines. Considering the example in Figure 1, Figure 2
illustrates the application of this movement, where the job 1
from machine M1 is inserted in machine M2 before job 3.

Fig. 2. Example of an insertion movement

2) Swap In The Same Machine: This movement, which
origins the neighborhood NSSM (.), consists in swaps two
jobs that belong to the same machine. To exemplify, Figure
3 shows the swap of job 2 and 7 from machine M1.

Fig. 3. Example of a swap in the same machine

3) Swap Between Different Machines: This movement,
which origins the neighborhood NSDM (.), consists in swaps
two jobs that belong to different machines. Figure 4 illus-
trates the swap between job 7 and 5, from machines M1
and M2.

Fig. 4. Example of a swap between different machines

F. RIV Procedure

The RIV procedure is inspired in Random Variable Neigh-
borhood Descent – RVND [9] and Iterated Local Search [6].
The pseudo-code of RIV is presented in Algorithm 2.

Algorithm 2: RIV
input : s, f(.)
output: s

1 v ← {1, 2, 3};
2 shuffle (v);
3 k ← 1;
4 while (k ≤ 3) do
5 if k = v[1] then
6 s′ ← FI1MI(s);
7 end
8 if k = v[2] then
9 s′ ← BISSM(s);

10 end
11 if k = v[3] then
12 s′ ← Perturb SDM(s);
13 end
14 if f(s′) < f(s) then
15 s← s′;
16 updateBest(s);
17 k ← 1;
18 end
19 else
20 k + +;
21 end
22 end
23 Return s;

As can be seen, RIV explores the solution space using two
local searches and a perturbation method (FIMI1, BITMM
and PerturbTMD) in a random order. The following sec-
tions describe these procedures.

G. FI1MI Local Search

This local search uses the neighborhood NMI(.) through
the first improvement strategy. It works as follows: initially,
machines are sorted in descending order according to the
completion time of each machine. The removals of the jobs
are done on machines with higher completion times to the
machines with lower completion times. By contrast, the
insertions are made from the machines with lower completion
times to machines with higher completion times. A neighbor
s′ ∈ NMI(s) is accepted if: i) there is a reduction in the
cost of the two machines involved (or reduce the cost in
the machine involved, if the movement involves a single
machine); ii) there is reduction in the cost of one machine
and there is an increasing in the cost of the other machine,
but overall, it is only accepted if the value reduced is greater
than the value increased and the makespan does not increase.
This criterion is applied only to movements involving two
machines. In case of acceptance, s′ becomes the new current
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solution s if this procedure is reapplied from the current
solution. Otherwise, another neighbor s′ is generated. If there
is an improvement, reorder up the machines with respect to
the cost function and restarts the search. The local search
stops when there is no more improvement over the current
solution, that is, it is a local optimum with relation to this
neighborhood.

H. BISSM Local Search

This local search uses the neighborhood NSSM (.) through
the best improvement strategy. It works as follows: initially,
machines are sorted in descending order according to the
completion time of each machine. The order of selection of
machines is from the machine that has the highest completion
time to the machine the has the lowest completion time. Next,
it is analyzed for each machine all possible swaps between
their jobs. A neighbor s′ ∈ NSSM (s) is accepted if there is a
reduction of the completion time of the machine involved. As
long as there is improvement, the procedure is repeated from
the machine with the highest completion time. Due to the
high cost of this local search, this procedure is only applied
in 30% of the machines that have the highest completion
times.

I. Perturb SDM Procedure

This procedure uses the neighborhood NSDM (.). It works
as follows: initially, machines are sorted in descending order
according to the completion time of each machine. Again, the
order of selection of machines is from the machine that has
the highest completion time to the machine the has the lowest
completion time. Swaps are made from machines that have
higher completion times to machines with lower completion
times. Next, it is analyzed for each pair of machines all
possible swaps between their jobs. A perturbation s′ ∈
NSDM (s) is accepted if occurs reduction in completion time
of both machines involved. It is noted that this procedure
can generate a solution that has a higher makespan. If the
perturbation is accepted, the procedure is stopped; otherwise,
the search continues.

J. Perturb ILS Procedure

This procedure is characterized by perturbing the local
optimum solution by removing a job from a machine and
inserting it into another machine. Hence, it is a way of
escaping from local optimum and exploring other regions
of the search space. Initially it randomly chooses a machine,
then it removes a job, taken in a random choice, from this
machine. Then, another machine is selected randomly and
this job is inserted on its best position in relation to this
machine. The best position for the job is the position where
the machine will have the lowest completion time with the
insertion of this job. In this way, after each perturbation, sub
parts of the problem are optimized.

The number of perturbations applied to a solution is con-
trolled by the level of perturbation. A level l of perturbation
consists in the application of l + 1 insertion movements.
In AIRP, the maximum level allowed for the perturbations is

set to 3, that is, a maximum of 4 insertion movements will
occur.

The perturbation level only is increased after the gener-
ation of timeslevel perturbed solutions without improving
the current solution. On the other hand, whenever a better
solution is found, the level of perturbation is set to its lowest
level (l = 1).

K. Path Relinking

The Path Relinking (PR) strategy makes a balance between
intensification and diversification of the search. Its goal is to
explore paths that connect high quality solutions. For this to
be done, these high-quality solutions are stored in a set of
elite solutions. For a solution s to join it, one of two rules
has to be satisfied: i) if s has a smaller makespan than the
best solution in the elite set; ii) if s has smaller makespan
than the worst solution in the elite set and if s differentiates
in 10% of all solutions in the elite set. The adopted criteria of
diversity is defined as the percentage of different jobs in the
same positions. The purpose of this second rule is to avoid
inserting, into the elite set, solutions that are very similar.
In AIRP the maximum size of elite set is 5. If the elite set
is complete, when a new solution is inserted in it, the worst
solution is removed from it.

In possession of the elite set, the paths between the
high-quality solutions can be build, from a base solution
and toward a guide solution. With this finality, the AIRP
algorithm uses the backward strategy (BkPR). The path starts
from the base solution, as the best solution, and goes to
the guide solution, considered the worst solution. In this
work, this strategy is applied on the following solutions: 1)
a solution randomly chosen in the elite set; and 2) the local
optimum returned by the local search RIV.

To characterize the path is necessary to define an attribute.
In this case, it is adopted as attribute the schedule of the
jobs in a machine. Initially, the guide solution schedules are
inserted into a List of Candidates (LC). At each iteration is
analyzed the insertion, in the base solution, of an attribute
(schedule) of the solution guide. Next, repetitive jobs in the
base solution are eliminated. Furthermore, if the machine
of the base solution that receives this schedule has any job
different from the schedule of the guide solution, then this
job is reallocated to its best position on another machine that
had not yet set its attribute of the guide solution. The best
position is the one that produces the lowest completion time
for the machine. With all the analyzes of the attributes in
the guide solution done, is added to the base solution the
attribute that has the lowest cost in it. This cost is given by
the sum of the costs of each machine in base solution. This
modified base solution is then submitted to the local search
FI2MI defined in section III-L.

It is noted that, once inserted an attribute in base solution,
this attribute can not be changed. Then, this attribute (sched-
ule) of guide solution is removed from LC. This procedure
is repeated until LC is empty.
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L. Local Search FI2MI

This local search uses the neighborhood NMI(.) through
the first improvement strategy. It works in a similar way
to the local search FI1MI (see section III-G). The two
characteristics that differentiate them are: i) the sole criterion
for acceptance is the improvement of the makespan; ii) when
a movement is accepted, the procedure is stopped.

M. Efficient Evaluation of the Objective Function

Evaluate an entire solution on every insertion or swap
movement requires a lot of computational efforts. In order to
make the local search more efficient, it is used a procedure
that avoids this situation, by evaluating only the jobs that
have been modified. Thus, some additions and subtractions
are enough to obtain the completion time of each machine.

Fig. 5. Evaluating an insertion movement

Figure 5, related to Figure 1, illustrates this procedure
for calculating the evaluation function using an insertion
movement. The job 6, which was allocated in machine M2,
is inserted after job 7 on machine M1.

The new completion time of machine M2 is done subtract-
ing, from its previous value, the processing time of job 6,
p62, and also subtracting the setup times involved, S462 and
S632. It is added, to the completion time of machine M2, the
setup time S432. The new completion time CM2 of machine
M2 is calculated as CM2 = 130− 23− 10− 5 + 1 = 93.

In machine M1, are added to its completion time, the
processing time of job 6 on this machine, p61, and the setup
time S761. Because job 7 is the last to be processed, no setup
time is required, so there is no need to subtract anything. The
new completion time CM1 of machine M1 is calculated as
CM1 = 120 + 9 + 5 = 134.

It was given an example of the application of this proce-
dure to evaluate the insertion movement. When dealing with
swap movements, the application of this procedure becomes
trivial.

IV. COMPUTATIONAL RESULTS

Computational tests were performed using a set of 360 test
problems from literature, found in [10], involving combina-
tions of 50, 100 and 150 jobs with 10, 15 and 20 machines.
For each combination of jobs and machines there are 40

instances. In this site are also provided the best known
solutions for each of these test problems.

AIRP was developed in JAVA language and all experi-
ments were executed in a computer with Intel Core i5 3.0
GHz processor, 8 GB of RAM memory and in Ubuntu 12.04
operational system.

The input parameters used in AIRP were: the number of
iterations on each level of perturbation, timeslevel = 15,
and the stop criterion was the maximum time of execution
Timemax, in milliseconds, obtained by Eq. (1). In this equa-
tion, m represents the number of machines, n the number of
jobs and t is a parameter that was tested with three values
for each instance: 10, 30 and 50. It is observed that the stop
criterion, with these values of t, was the same adopted in
[19].

Timemax = n× (m/2)× t ms (1)

With the objective to verify the variability of final solu-
tions produced by AIRP it was used the metric given by
Eq. (2). This metric is used to compare algorithms. For each
algorithm Alg applied to a test problem i is calculated the
Relative Percentage Deviation RPDi of the solution found
f̄Alg
i in relation to the best known solution f∗i .

RPDi =
f̄Alg
i − f∗i
f∗i

(2)

AIRP was compared with the GA2 algorithm from [19]
and with the algorithm AIR, which is the AIRP algorithm
without the PR method. That is, AIR is the Algorithm 1
without the lines 23-29. The objective of comparing AIRP
with AIR is verify the influence of the PR method.

In [19] the GA2 algorithm were executed 5 times for each
instance and for each value of t. In this article, the AIRP and
AIR algorithms were executed 30 times for each instance
and for each value of t, calculating the Average Relative
Percentage Deviation RPDavg

i of the RPDi values found.
Table IV shows, for each set of instances, the RPDavg

i

obtained for each value of t = 10, 30, 50 by the AIRP and
AIR algorithms and also by the RPDavg

i values from GA2
algorithm proposed in [19].

For each set of instances three values of RPDavg
i sep-

arated by a ’/’ are found. This separation represents tests
results where t values were changed, and the order t =
10/30/50 is respected. Negative values indicate that the
results reached by AIRP and AIR outperformed the best
values found in [19] on their experiments.

In Table IV are highlighted in bold the best values of
RPDavg . As noted, AIRP is the one that reached the best
results. Not only it wins in all sets of instances, but also it
has improved the majority of the best known solutions so
far.

It is important to observe that the AIRP algorithm gen-
erates final solutions with less variability than the AIR
algorithm. This result shows the importance of the Path
Relinking method.
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TABLE IV
AVERAGE RELATIVE PERCENTAGE DEVIATION OF THE ALGORITHMS

AIRP, AIR AND GA2 WITH t = 10/30/50.

Set of
Instances AIRP1 AIR1 GA22

50 × 10 0.69/-0.51/-0.99 1.01/-0.3/-0.76 7.79/6.92/6.49
50 × 15 -2.9/-4.09/-4.63 -2.69/-3.84/-4.32 12.25/8.92/9.20
50 × 20 -4.14/-5.26/-5.8 -3.92/-5.11/-5.56 11.08/8.04/9.57
100 × 10 1.58/-0.02/-0.59 1.83/0.26/-0.44 15.72/6.76/5.54
100 × 15 -1.66/-3.22/-3.94 -1.48/-3.18/-3.9 22.15/8.36/7.32
100 × 20 -3.68/-5.51/-6.05 -3.51/-5.29/-6 22.02/9.79/8.59
150 × 10 1.29/-0.46/-1.14 1.3/-0.36/-1.06 18.40/5.75/5.28
150 × 15 -0.9/-2.61/-3.25 -0.77/-2.5/-3.19 24.89/8.09/6.80
150 × 20 -3.95/-5.63/-6.34 -3.72/-5.52/-6.28 22.63/9.53/7.40
RPDavg -1.52/-3.03/-3.64 -1.33/-2.87/-3.5 17.44/8.02/7.35

1Executed on Intel Core i5 3.0 GHz, 8 GB of RAM, 30 runs for each instance
2Executed on Intel Core 2 Duo 2.4 GHz, 2 GB of RAM, 5 runs for each instance

The robustness of AIRP can be best seen through the
box plot (Fig. 6), which contains all the RPDavg values
for each algorithm. It is observed that 100% of the RPD
values encountered by AIRP outperforms the ones obtained
by GA2 algorithm.

AIR AIRP GA2
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Fig. 6. Box plot showing the RPDavg of the algorithms.

A table with all the results found by AIR and AIRP,
and also the previous best know values for the UPMSPST
can be found at http://www.decom.ufop.br/
prof/marcone/projects/upmsp/Experiments_
UPMSPST_AIR_AIRP.ods.

According to these complete results, 80,5% of solutions
found by AIRP are better than the best known solutions so
far.

In order to verify if there is statistical differences between
the RPD values, an analysis of variance (ANOVA) [21] was
applied. This analysis returned, with 95% of confidence level
and threshold = 0.05, that F (2.81) = 115 and p = 2 ×
10−16. As p < threshold, there are statistical differences
between the RPD values.

To check where are these differences, it was used
the Tukey HSD test, with 95% of confidence level and
threshold = 0.05. Table V contains the differences in the
average values of RPD (diff), the lower end point (lwr), the
upper end point (upr) and the p-value (p) for each pair of
algorithms.

It can be seen by the p-value that when comparing AIRP
and AIR to GA2 there are statistical differences between
them because the p-value was less than the threshold.
However, when AIRP is compared to AIR, they are not
statistically different from each other, since the p-value was
greater than the threshold.

TABLE V
RESULTS FROM TUKEY HSD TEST.

Algorithms diff lwr upr p
AIRP-AIR -0.1633333 -2.592907 2.26624 0.9858998
GA2-AIR 13.5029630 11.010273 15.99565 0.0000000

GA2-AIRP 13.6662963 11.236723 16.09587 0.0000000

By plotting the results from Tukey HSD test (Fig. 7), it can
be better seen that AIRP is statistically different from GA2,
as the graph do not pass through zero. Also when making a
comparison between AIR and GA2, the results show a better
performance of AIR.

Comparing algorithms AIRP and AIR it can be perceived
that they are not statistically different from each other, be-
cause the graph passes through zero. Thus, with a statistical
basis it can be concluded, within the considered instances,
that both AIRP and AIR are the best algorithms on obtaining
solutions for UPMSPST.
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Fig. 7. Graphical results from Tukey HSD test.

V. CONCLUSIONS

This paper addressed the Unrelated Parallel Machine
Scheduling Problem with Setup Times (UPMSPST). The
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desired objective was the minimization of the maximum
completion time of the schedule, the so-called makespan.

An algorithm based on Iterated Local Search (ILS), Vari-
able Neighborhood Descent (VND) and Path Relinking (PR)
was proposed with the intention to solve it. The algorithm
was named AIRP. This algorithm implements the Adaptive
Shortest Processing Time (ASPT) rule in order to create an
initial solution. A procedure inspired on Random Variable
Neighborhood Descent was used to explore the solution
space. This procedure, named RIV, uses two local search
methods and a perturbation method in a random order.
The first local search method consists of applying multiple
insertions of jobs and the second, swap movements of jobs
in a same machine. On the other hand, the perturbation
method of RIV uses swap movements of jobs in different
machines. With the objective of diversifying the search and
avoid getting trapped in local optimum, AIRP uses perturba-
tions which consist in reinserting jobs from one machine to
another. The PR method is applied periodically as a strategy
of intensification and diversification during the search.

By using test problems from literature, AIRP was com-
pared to the genetic algorithm GA2, developed in [19] and
with its version without the Path Relinking method, named
AIR. Statistical analysis of the computational results showed
that both developed algorithms are able to produce better
solutions than GA2, setting new best solutions for these test
problems. By the experiments, it can be observed that the
Path Relinking method contributes to reduce the variability
of final solutions of the AIRP algorithm. Thus, it can be
concluded that AIRP is a great choice when dealing with
the UPMSPST.

As future works, AIRP will be tested on the entire set of
test problems available in [10]. An improvement that will be
studied is an incorporation of a Mixed Integer Programming
(MIP) model to AIRP for solving related sub problems.
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