
 
 

 

  

Abstract—A co-evolutionary teaching-learning-based 
optimization (CTLBO) algorithm is proposed in this paper to 
solve the stochastic resource-constrained project scheduling 
problem (SRCPSP). The activity list is used for encoding, and 
resource-based policies are used for decoding. Also, a new 
competition phase is developed to select the best solution of each 
class as the teacher. To make two classes evolve cooperatively, 
both the teacher phase and student phase of the TLBO are 
modified. Moreover, Taguchi method of design of experiments 
is used to investigate the effect of parameter setting. 
Computational results are provided based on the well-known 
PSPLIB with certain probability distributions. The 
comparisons between the CTLBO and some state-of-the-art 
algorithms are provided. It shows that the CTLBO is more 
effective in solving the problems with medium to large variance. 

I. INTRODUCTION 
HE resource-constrained project scheduling problem 

(RCPSP) considers scheduling a set of project activities 
over time and resource. It needs to determine both the start 
time and the finish time of every activity of the project as well 
as the allocation of limited resources for activities in order to 
optimize certain objectives, such as project makespan. During 
the past few decades, the RCPSP and its extensions have 
drawn increasing attention by the researchers in many fields 
due to their importance in both academic research and 
engineering applications [1]–[6]. 

Usually, it assumes in the literature that the durations and 
starting times of activities are deterministic values. In real 
world, however, those values cannot be estimated precisely 
by experts. Consequently, it is more appropriate to consider 
the uncertain nature of the problem. Several fundamental 
approaches are introduced by Herroelen and Leus [7]. The 
stochastic RCPSP (SRCPSP), in which activity durations are 
regarded as random variables, is much closer to the real 
conditions than the classical one. Although the SRCPSP is 
attracting more and more attention by researchers, relevant 
 

H. Zheng is with Tsinghua National Laboratory for Information Science 
and Technology (TNList), Department of Automation, Tsinghua University, 
Beijing, China (e-mail: zhenghy12@mails.tsinghua.edu.cn). 

L. Wang is with Tsinghua National Laboratory for Information Science 
and Technology (TNList), Department of Automation, Tsinghua University, 
Beijing, China (corresponding author to provide phone: +86-10-62783125; 
fax: +86-10-62786911; e-mail: wangling@mail.tsinghua.edu.cn). 

S. Wang is with Tsinghua National Laboratory for Information Science 
and Technology (TNList), Department of Automation, Tsinghua University, 
Beijing, China (e-mail: wangshengyao10@mails.tsinghua.edu.cn). 

This research work is partially supported by the National Key Basic 
Research and Development Program of China (No. 2013CB329503), the 
National Science Foundation of China (No. 61174189), and the Doctoral 
Program Foundation of Institutions of Higher Education of China (No. 
20130002110057). 

research work is still very limited. During recent years, only a 
few exact, heuristic and meta-heuristic methods have been 
presented. Relevant results in this area include the following. 
Stork [8] adopted a branch-and-bound algorithm employing 
three kinds of policies for solving the problem. Ballestín [9] 
used a stochastic serial schedule generation scheme and 
presented a genetic algorithm (GA) to solve the SRCPSP. The 
numerical results showed that the number of scenarios for 
estimating expected fitness should be reduced so as to 
generate more schedules. Ballestín and Leus [10] developed a 
greedy randomized adaptive search procedure (GRASP) to 
solve the problem. An investigation on the distribution of the 
possible makespan for a given set of scheduling policies was 
also provided. Ashtiani, et al. [11] proposed a new set of 
policies named pre-processor policies for the SRCPSP, which 
performed better than other algorithms for the instances with 
large variances. Zheng, et al. [12] presented an ordinal 
chemical reaction optimization (OCRO) for the SRCPSP 
employing optimal computing budget allocation to evaluate 
solutions in uncertain environment efficiently. 

The difficulties in solving the SRCPSP mainly lie in the 
following aspects. With experimental results, Ballestín [9] 
showed that a huge gap exists between the deterministic 
makespan and the expected makespan. It was pointed out by 
Ballestín and Leus [10] that during the execution of a project, 
a deterministic solution does not include enough information 
to generate a suitable schedule. Thus, dynamic scheduling 
policies should be designed to tackle the stochastic factor. In 
addition, the RCPSP has been proved NP-hard by Blazewicz, 
et al. [13]. As the SRCPSP is a generalization of the RCPSP, 
it is NP-hard. 

Population-based meta-heuristic algorithms, including GA, 
particle swarm optimization (PSO), differential evolution, ant 
colony optimization, and artificial immune system, etc., are 
widely applied to solve a variety of optimization problems 
[14]. However, sometimes such algorithms still cannot well 
solve the complicated problems. One possible reason is that 
most algorithms are based on a single population, without 
considering the cooperation or competition behavior of 
multiple swarms [15]. Recently, co-evolution methods are 
introduced to some population-based algorithms to achieve 
better performances [16]–[19]. 

Co-evolution is concerned with two or more populations 
evolving simultaneously. In general, co-evolution can be 
divided into two types, namely cooperative co-evolution and 
competitive co-evolution. Van den Bergh and Engelbrecht 
[20] presented a cooperative PSO to enhance search 
capability by developing cooperative behaviors. Multiple 

A Co-evolutionary Teaching-learning-based Optimization Algorithm 
for Stochastic RCPSP 

Huan-yu Zheng, Ling Wang and Sheng-yao Wang 

T

587

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



 
 

 

swarms were used to optimize different components of the 
solution vector cooperatively. With such an idea, a large 
solution space could be decomposed into several small ones. 
Thus, the convergence rate could get much faster. 
Competition co-evolution is different from cooperative 
co-evolution, where several species compete with each other. 
In [15], a competitive co-evolutionary quantum GA was 
presented to solve the stochastic job shop scheduling 
problem. 

As a newly developed meta-heuristic, teaching-learning- 
based optimization (TLBO) algorithm [21] is inspired by the 
teaching-learning process. In the TLBO, the most brilliant 
student of the class is selected as the teacher, who provides 
students with lessons to improve their grades in the teacher 
phase. Thereafter, students improve grades each other 
through learning in the student phase. The best grade amongst 
the population is the output as the final result. The TLBO has 
been shown to be competitive to other algorithms with the 
advantage of introducing fewer parameters [22]-[25]. To the 
best of our knowledge, there is no reported research work to 
adopt the TLBO for solving the SRCPSP. Thus, a 
co-evolutionary TLBO-based algorithm (CTLBO) will be 
designed in this paper to solve the SRCPSP with makespan 
minimization. 

Since the original TLBO [21] is designed for solving the 
continuous optimization problems, it cannot be applied to 
combinational optimization problems directly like the 
SRCPSP. In other words, the TLBO should be modified, by 
considering the characteristics of the SRCPSP. Specifically, 
in this paper, the activity list is used for encoding, and 
resource-based policies are used for decoding. Considering 
that competition and cooperation of students in different 
classes can promote the development of students’ overall 
performance, we make some modifications to the framework 
of the original TLBO. To be specific, a competition phase 
based on the redefinition of individual performance is 
embedded in the TLBO; and two classes co-evolve 
cooperatively in both the teacher phase and the student phase. 
The effect of parameter setting is investigated, and the testing 
results and comparisons are provided to demonstrate the 
effectiveness of the CTLBO in solving the SRCPSP. 

The remaining paper is organized as follows: The SRCPSP 
is described in Section II. Section III introduces the basic 
TLBO. In Section IV, the CTLBO algorithm for the SRCPSP 
is designed in details. Computational results and comparisons 
are provided in Section V. Finally, the paper is ended in 
Section VI with some conclusions. 

II. DEFINITIONS AND PROBLEM STATEMENT 

A. The RCPSP 
The RCPSP considers a set of activities with a 

deterministic duration for each activity. An acyclic graph 
),( ANG  is adopted to show the precedence relationship, in 

which },...,1,0{ n=N  denotes project activities and A  

denotes a set of arcs N∈jiji ,),,(  between activities. For an 
activity N∈j , its duration is denoted as jd . 

Suppose there are K  resources during the execution 
process of a project. Let },...,2,1{ K=K  denote the resource 
set. For resource K∈k , activity j requires jkr  renewable 

resources during its processing process. For each resource k, 
there are kR  available units throughout the execution 
process. No interruption is allowed when activities are being 
processed, and there exist finish-start precedence constraints 
between some pairs of activities. That is, only after some 
activities are finished, can their subsequent activities be 
processed. Let activity j=0 and j=n be dummy activities with 
zero duration and resource usage, which represent the 
beginning and the finish of the project, respectively. A 
solution of the RCPSP is named as a schedule, which adopts a 
vector of starting times ),...,,( 10 nsss=s  to arrange a 
beginning time js  for each activity j. The RCPSP can be 

formulated with the following precedence constraints and 
resource constraints. 

nsmin                                                      (1) 
s.t. 

A∈≤+ jisds jii ,,                                 (2) 

KktRr
tj

kjk ∈∀∈∀≤ +

∈
∑ ,,

)(

N
P

                (3) 

where )(tP  denotes the set of processing activities. 
For the RCPSP, many heuristic decoding schemes have 

been presented [1-2], where the schedule generation scheme 
(SGS) is widely used to transform a certain encoding 
representation into a schedule. In general, there are two 
procedures named serial SGS and parallel SGS, which 
repeatedly assign activity starting times in different 
procedures [26]. 

B. The Stochastic RCPSP 
For the SRCPSP, the duration jD  of activity N∈j  is a 

random variable with a certain distribution known 
beforehand. A vector ),...,,( 10 nddd=d , called a scenario, 
denotes a possible realization of the random variable vector 

),...,,( 10 nDDD=D . A solution of the SRCPSP is called a 
scheduling policy, which is the counterpart of a schedule to 
the traditional RCPSP. 

During the scheduling process of policies, knowledge 
about the scheduled activities can be used to arrange the 
unscheduled activities. In [27], some main sets of scheduling 
policies were introduced, including earliest-start policies 

ESC , pre-selective policies, linear pre-selective policies, 
job-based priority policies, also called activity-based policies 

ABC , and resource-based policies RBC . Among them, 
activity-based policies and resource-based policies, which do 
not dominate each other [27], are the most widely used as 
they dominate most other policies. Resource-based policies 

588



 
 

 

consider resource constraints at any decision time, allowing 
unscheduled activities to start as many as possible. 

For the problems with large variances, resource-based 
policies often perform better than activity-based policies [11]. 
Thus, RBC  is employed in this paper to determine the starting 
times for activities. 

III. BASIC TEACHING-LEARNING-BASED OPTIMIZATION 
The basic teaching-learning-based optimization [21] is a 

population-based algorithm originally developed for solving 
the continuous optimization problems. Inspired by the 
teaching-learning process, two phases including teacher 
phase and student phase are used to perform evolution of a 
population. In the TLBO, an initial population is formed by a 
group of nP  individuals called students, where each student is 
represented by a vector. 

First, the best student of the population is selected as the 
teacher T, and each of the rest nP -1 students oldS  learns from 
T to generate a new student newS  as Eq. (4). The new student 
with better quality will replace the old one. 

)( oldFoldnew STTrSS ⋅−⋅+=                             (4) 

where r denotes a random real value between 0 and 1, oldS  is 
the average of all students before teaching, and FT  is a 
teaching factor as )]1,0(1[ randroundTF += . 

Then, in the student phase, students learn each other by 
interaction. To be specific, each time two students are 
selected randomly, where the better one is betterS  and the 
worse one is worseS . Using Eq. (5), a new student is generated, 
which will replace worseS  if it is better than worseS . 

)( worsebetterworsenew SSrSS −⋅+=                     (5) 
The procedure of the basic TLBO is summarized as follows. 

It repeats the teaching and learning processes, until a stopping 
criterion is satisfied. 

 
Algorithm 1 The basic TLBO. 
Generate an initial population; 
Evaluate population and identify the best student as teacher; 
While the termination criterion is not met; 
  For i =1 to nP  
    Student i  learn from the teacher; 
  End for 
  For i =1 to nP  
    Randomly select two students; 
    Students learn each other by interaction; 
  End for 
End while 
 

IV. CTLBO FOR SRCPSP 

A. The Framework of the CTLBO 
To solve the SRCPSP effectively, a co-evolutionary TLBO 

is presented with the flowchart straightforwardly shown in 
Fig. 1. It can be seen that the procedure of the CTLBO mainly 
includes four phases: initialization, competition phase, 
teacher phase, and student phase. 

First, two classes of students AP  and BP  are generated and 
evaluated, both with the size of Pn. Then, it sequentially 
repeats the competition phase, the teacher phase and the 
student phase until a stopping criterion is satisfied. 

In each generation, competition between students of AP  
and BP  is performed to calculate competitive ability of each 
student. The student with the highest competition ability of 
each class is selected as teachers AT  and BT . Then, the 
two-point crossover operator is used to perform cooperation 
between individuals of two classes to generate new students. 
By competition and cooperation, the CTLBO could balance 
exploitation and exploration to achieve better performances 
for solving the SRCPSP. 

Next, we introduce the main elements of the CTLBO in 
details. 

B. Representation and Evaluation 
It was concluded by Hartmann and Kolisch [1] that activity 

list often outperforms other kinds of representations for the 
RCPSP. Since the SRCPSP shares most characteristics of the 
traditional one, the activity list is employed to represent 
student for the SRCPSP. To be specific, a student is 
represented by an activity list ),...,,( 10 naaaπ = , in which ja  

is the activity on the j-th place. 
As mentioned in Section II-B, an activity list π  is 

evaluated by using resource-based policies. We refer to [9] 
for details. Similar to the literature about the SRCPSP 
[9]-[12], a resource-based policy is approximated by the 
average makespan of nscen  scenarios as follows: 

∑
=

=
nscen

j

j
nave ds

nscen
Makespan

1

)( ),(1 π             (6) 

where ),( )( πj
n ds  denotes the makespan of π  in the j-th 

scenario. 
Same as the existing literature, the output of algorithm 

bestS  is evaluated using additional 1000 scenarios to 
guarantee certain accuracy. 

C. Initialization 
Two classes are initiated by adopting the regret based 

random sampling method according to the latest finish time 
(LFT) rule [21]. First, the dummy activity 0 is selected at the 
beginning. Then, activities are randomly selected from the 
feasible sets each time. The feasible set is constituted with the 
unselected activities whose predecessors are selected. Let jη  

denote the probability of choosing activity j with a priority 
value jμ  from the feasible set SF . 

ji
SFi

j LFTLFT −=
∈

maxμ                                    (7) 

589



 
 

 

∑
∈

++=
SFi

ijj
αα εμεμη )(/)(                         (8) 

where jLFT  denotes the latest finish time of activity j. 

Besides, we set 1== αε  in the CTLBO as suggested by 
Kolisch [26]. 

D. Competition Phase 
The competition phase utilizes the mutual effect of 

competitive students to promote the evolution of the 
population. The competitive ability is defined as follows. 

Definition 1. Competitive ability: an evaluation index to 

 
Fig. 1. The flowchart of CTLBO for SRCPSP. 

590



 
 

 

show the ability of students, which is determined by 
comparing with other students. Students with higher 
competitive values have better grades than others. 

Definition 1 indicates that the competitive ability is 
calculated through competition with other students. Contrary 
to the traditional evaluation method, Angeline and Pollack 
[28] defined a relative fitness, which changes as populations 
evolve. Similar to the relative fitness, the competitive ability 
of student j denoted as jcAbility  is calculated as follows: 

j ji
i

cAbility Ability
∈

= ∑
CS

                                (9) 

⎩
⎨
⎧

=
else

idefeatjifN
Ability i

ji 0
/1

                  (10) 

where Ni is the number of students defeating student i, and CS 
denotes the competition set, and jiAbility  is the competitive 

ability obtained by student j when competing with student i. 
The competitive phase is shown in Fig. 2. 

E. Teacher Phase and Student Phase 
In both the teacher phase and the student phase of the 

CTLBO, two-point crossover [29] is adopted to generate a 
new activity list by hybridizing two old ones. With two 
selected activity lists, it first generates two integers q1 and q2 
randomly in the range [1, n], and then a new activity list is 
generated as follows: 

1
1 1,: qjaa j

new
j ≤≤=                                                           (11) 

211
22 1}},,...,{|min{,:

1
qjqaaakkaa new

q
new

kk
new
j ≤≤+∉==  (12) 

njqaaakkaa new
q

new
kk

new
j ≤≤+∉== 1}},,...,{|min{,: 21

11
2

  (13) 

where 21 ,, jj
new
j aaa  denote the new activity list and the two old 

ones, respectively. 
In both the teacher phase and the student phase, two classes 

cooperate with each other to enhance the overall 
performance. 

In the teacher phase, different from the basic TLBO, 

students do not learn from the teacher of their own class, but 
from the teacher in the other class. In other words, a new 
student is generated by performing crossover between teacher 
TA and student PBi or between teacher TB and student PAi. 
Then the student is updated if the new one is better. 

In the student phase, it selects student i from class A and 
student j from class B randomly, and they perform crossover 
to generate a new student P’. The worse student is replaced by 
P’, if the P’ is better. 

F. Computational complexity analysis 
In each generation of the CTLBO, it mainly includes 

competition phase, teacher phase, and student phase. The 
computational complexity of each phase can be briefly 
analyzed as follows: 

In the competition phase, the competitive ability of 
students is calculated with the computational complexity 

)( 2PsizeO , where Psize is the size of each class in the 
CTLBO. In both the teacher phase and the student phase, the 
two-point crossover operator is performed with the 
computational complexity )( PsizenO ⋅ . Once a new student 
is generated, it should be evaluated. For the RCPSP, Ballestín 
[9] pointed out that the computational complexity in using the 
PSGS is )( 2nKO ⋅ . Then, the computational complexity to 

evaluate a population is )( 2nKPsizenscenO ⋅⋅⋅ . 
Thus, the computational complexity of each generation of 

the CTLBO is )( 22 nKPsizenscenPsizenPsizeO ⋅⋅⋅+⋅+ , 

which can be simplified as )]([ 2nKnscenPsizePsizeO ⋅⋅+⋅ . 
Suppose the CTLBO evolves a total number of NG 
generations, the total complexity of the CTLBO is 

)]([ 2nKnscenPsizePsizeNGO ⋅⋅+⋅⋅ , which depends on 
parameters NG, Psize, K, n, and nscen. 

V. COMPUTATIONAL RESULTS AND COMPARISONS 

A. Set up of the Experiment 
All tests are conducted on a PC with 2.83 GHz processor / 

4.00 GB RAM in Microsoft Windows 7 system. C++ 
language is used to code the algorithm under Microsoft 
Visual Studio 2008. The problem set is j120 from PSPLIB 
[30], including 600 problems. Each problem contains 120 
non-dummy activities. 

For the SRCPSP, the adopted probability distributions, 
means and variances are the same as [9]-[12]. To be specific, 
the deterministic duration *

jd  for activity j from the j120 

dataset is taken as the mean value for stochastic duration Dj. 
Five distributions are tested, including two uniform 

distributions with support ),( ****
jjjj dddd −+  and )2,0( *

jd ; 

one exponential distribution with expectation *
jd ; and two 

beta distributions with variances 3/*
jd  and 3/2*

jd , both with 

 
Fig. 2. Competition phase. 

591



 
 

 

support )2,2/( **
jj dd . For convenience, the above 

distributions are denoted as U1, U2, Exp, B1 and B2 
respectively. Clearly, U1 and B1 have small variances, U2 
and B2 have medium variances, and Exp has a large variance. 

The quality of an algorithm is evaluated by the average 
percent of deviation (APD) from the low bound of the 
deterministic problem, which is calculated as follows. 

%100
)],([1

1

×
−

= ∑
=

R

j j

jjn

LB
LBDsE

R
APD

π
            (14) 

where 600=R  is number of problems in j120 dataset, and 
LBj is the low bound of j-th instance of the problem set. 

For a fair comparison, the termination criterion is set as a 
maximum of 5,000 or 25,000 schedules generated by the 
algorithm. Note that, it should be counted as one schedule 
with one scenario of a resource-based policy. 

B. Parameters setting 
The CTLBO itself contains two key parameters: the size of 

each class (Psize) and the number of scenarios to evaluate an 
activity list (nscen). The Taguchi method of design of 
experiment (DOE) [31] is used to investigate the effect of 
parameter setting on the CTLBO. Combinations of different 
values for the two parameters are listed in Table I.  

Since every ten instances in the PSPLIB are generated with 
the same parameters, we choose the first one of each ten 
instances. That is, 60 instances are chosen from the j120 data 
set according to j120i_1 to carry out the DOE test, 

60,...,2,1=i . For each instance, U2 distribution with medium 
level of variance is chosen. A total of 25,000 schedules for 
each instance are used as the stopping criterion. 

According to the number of parameters and the number of 
factor levels, we choose the orthogonal array L16(42). That is, 
the total number of treatments is 16. For the j-th parameter 
combination, 16,...,2,1=j , the CTLBO is run to obtain APD. 
Note that 60 instances are chosen for the DOE test, R is 60 in 
Eq. (14). The orthogonal array and the obtained APD values 
are shown in Table II. 

The trend of each factor level is shown in Fig. 3. Also, the 
response value of each parameter is figured out and the 
significance rank of each parameter is analyzed in Table III. 

From Table III, it can be seen that the number of scenarios 
to evaluate an activity list (nscen) is more significant than the 
size of each class (Psize). It is consistent to the conclusion 
drawn by Ballestín [9] that for meta-heuristics nscen is an 
important parameter. With the same number of schedules 
generated, more scenarios are used to accurately estimate the 
expectation of makespan obtained by each policy results in 
fewer policies could be used. From Fig. 3, it can be seen that 
nscen should neither be too large nor too small. A large nscen 
makes the algorithm evaluate too few policies, while a small 
nscen leads to an unreliable evaluation of policies. Although 
Psize has the less impact than nscen, a suitable one can still 
yield a good performance. According to the analysis above, 
we set nscen=20 and Psize=25 for the following tests. 

C. Comparison with Other Heuristics 
To test the performances of the CTLBO for the SRCPSP, 

TABLE I 
COMBINATIONS OF PARAMETER VALUES 

Parameters Factor level 
1 2 3 4 

Psize 25 50 75 100 
nscen 5 10 20 50 

TABLE II 
ORTHOGONAL ARRAY AND APD VALUES 

Combination 
number 

Factors APD(%) 
Psize nscen 

1 1 1 55.43 
2 1 2 54.93 
3 1 3 54.67 
4 1 4 54.75 
5 2 1 55.23 
6 2 2 54.89 
7 2 3 54.70 
8 2 4 54.96 
9 3 1 55.44 
10 3 2 54.90 
11 3 3 54.87 
12 3 4 54.96 
13 4 1 55.42 
14 4 2 54.93 
15 4 3 54.96 
16 4 4 54.78 

TABLE III 
RESPONSE VALUE AND SIGNIFICANCE RANK 

Level Psize nscen 

1 54.95 55.38 
2 54.95 54.91 
3 55.04 54.80 
4 55.02 54.86 
Delta 0.10 0.58 
Rank 2 1 

100755025

55. 4

55. 3

55. 2

55. 1

55. 0

54. 9

54. 8

5020105

Psi ze nscen

 
Fig. 3. Factor level trend of the CTLBO. 

592



 
 

 

comparisons between the CTLBO and the state-of-art 
algorithms are carried out. The comparative algorithms 
include GA with activity-based policies [9] denoted as 
“ABGA”, GRASP with activity-based policies [10] denoted 
as “ABGR”, two-phase GA with pre-processing policies [11] 
denoted as “PPGA” and OCRO with resource-based policies 
[12] denoted as “OCRO”. The APD results using 5,000 and 
25,000 schedules as the terminal condition are listed in Table 
IV-V, respectively, where DEV denotes the deviation 
showing the difference between the APD of the CTLBO and 
that of the best known solution. 

 
From Table IV and V, it can be seen that the CTLBO is 

superior to other algorithms for the problems with medium 
and large variances, i.e., U2, B2 and Exp. Compared to other 
algorithms, the effectiveness of CTLBO mainly owes to the 
following two aspects. First, the students’ overall 
performance can be improved by the competition process of 
students in different classes. Second, collaboration in both 
teacher phase and student phase enhances the search 
capability. For the other algorithms, competition or 
collaboration phase is not adopted. 

As for the distributions with small variances, like U1 and 
B1, the ABGR ranks the top one and the CTLBO ranks in the 
middle place, but the DEV of the CTLBO from that of the 
ABGR is less than 8%. A possible reason might be the 
conclusion experimentally shown in [11]. That is, the 
activity-based policies could perform better for the problems 
with small variances. In our experiments, the CTLBO 
employs the resource-based policies, while the ABGR adopts 
the activity-based policies. So, the ABGR is superior to the 
CTLBO for U1 and B1; but, for U2, B2 and Exp the CTLBO 
performs better. 

VI.  CONCLUSIONS 
In this paper, a co-evolutionary TLBO was proposed to 

solve the stochastic RCPSP. Compared to the original TLBO, 
the CTLBO adopted competition and cooperation 
mechanisms to balance exploration and exploitation for 
population-based search. In addition to the analysis of 
computational complexity, the effect of parameter setting is 
investigated by design of experiments. Computational testing 
results using 600 instances with five different random 
distributions were presented. The comparisons to the existing 
algorithms demonstrated the effectiveness of the CTLBO for 
solving the SRCPSP with medium and large variances. 
Further work could focus on studying some adaptive CTLBO 
algorithms by considering the problem-specific 
characteristics, and the idea of ordinal optimization to handle 
stochastic optimization could be employed. It might also be 
interesting to study the CTLBO algorithm for the SRCPSP 
with multiple objectives or multiple projects. 

REFERENCES 
[1] S. Hartmann and R. Kolisch, “Experimental evaluation of 

state-of-the-art heuristics for the resource-constrained project 
scheduling problem,” Eur. J. Oper. Res., vol. 127, pp. 394–407, Dec. 
2000. 

[2] R. Kolisch and S. Hartmann, “Experimental investigation of heuristics 
for resource-constrained project scheduling: An update,” Eur. J. Oper. 
Res., vol. 174, pp. 23–37, Oct. 2006. 

[3] L. Wang and C. Fang, “A hybrid estimation of distribution algorithm 
for solving the resource-constrained project scheduling problem,” 
Expert. Syst. Appl., vol. 39, pp. 2451–2460, Feb. 2012. 

[4] C. Fang and L. Wang, “An effective shuffled frog-leaping algorithm for 
resource-constrained project scheduling problem,” Comput. Oper. Res., 
vol. 39, pp. 890–901, May. 2012. 

[5] L. Wang and C. Fang, “An effective shuffled frog-leaping algorithm for 
multi-mode resource-constrained project scheduling problem,” Inform. 
Sciences, vol. 181, pp. 4804–4822, Oct. 2011. 

[6] L. Wang and C. Fang, “An effective estimation of distribution 
algorithm for the multi-mode resource-constrained project scheduling 
problem,” Comput. Oper. Res., vol. 39, pp. 449–460, Feb. 2012. 

[7] W. Herroelen and R. Leus, “Project scheduling under uncertainty: 
Survey and research potentials,” Eur. J. Oper. Res., vol. 165, pp. 
289–306, Sep. 2005. 

[8] F. Stork, “Branch-and-bound algorithms for stochastic 
resource-constrained project scheduling,” Technische Universität 
Berlin, Fachbereich Mathematik, Tech. Rep. Nov. 2000. 

[9] F. Ballestín, “When it is worthwhile to work with the stochastic 
RCPSP,” J. Scheduling, vol. 10, pp. 153–166, Jun. 2007. 

[10] F. Ballestín and R. Leus, “Resource-constrained project scheduling for 
timely project completion with stochastic activity durations,” Prod. 
Oper. Manag., vol. 18, pp. 459–474, Jul. 2009. 

[11] B. Ashtiani, R. Leus, and M. B. Aryanezhad, “New competitive results 
for the stochastic resource-constrained project scheduling problem: 
exploring the benefits of pre-processing,” J. Scheduling, vol. 14, pp. 
157–171, Apr. 2011. 

[12] H. Zheng, L. Wang, S. Wang, and C. Fang, “Ordinal chemical reaction 
optimization for stochastic resource constrained project scheduling 
problem,” in Proc. 32nd Chin. Control Conf., Xi'an, China, 2013, pp. 
2437–2442. 

[13] J. Blazewicz, J. K. Lenstra, and A. H. G. Kan, “Scheduling subject to 
resource constraints: classification and complexity,” Discrete. Appl. 
Math., vol. 5, pp. 11–24, Jan. 1983. 

[14] A. Gogna and A. Tayal, “Metaheuristics: review and application,” J. 
Exp. Theor. Artif. In., pp. 1–24, May. 2013. 

[15] J. Gu, M. Gu, C. Cao, and X. Gu, “A novel competitive co-evolutionary 
quantum genetic algorithm for stochastic job shop scheduling 
problem,” Comput. Oper. Res., vol. 37, pp. 927–937, May. 2010. 

TABLE IV 
ALGORITHM COMPARISON (5,000 SCHEDULES) 

Algorithm Distribution 
U1 U2 Exp B1 B2 

ABGA[9] 52.14 78.65 120.22 - - 
ABGR[10] 46.84 72.58 114.42 47.17 75.97 
PPGA[11] 48.86 58.91 76.03 49.01 58.82 
OCRO[12] 47.98 58.28 74.16 48.36 60.02 
CTLBO 49.89 58.14 73.70 49.90 58.15 
DEV 6.51% 0.00% 0.00% 5.79% 0.00% 

TABLE V 
ALGORITHM COMPARISON (25,000 SCHEDULES) 

Algorithm Distribution 
U1 U2 Exp B1 B2 

ABGA[9] 49.63 75.38 116.83 - - 
ABGR[10] 45.21 70.95 112.37 45.60 74.17 
PPGA[11] 47.21 58.07 74.56 47.25 57.95  
OCRO[12] 47.39 57.83 73.74 47.79 59.60 
CTLBO 48.65 57.22 72.98 48.71 57.17 
DEV 7.61% 0.00% 0.00% 6.82% 0.00% 

593



 
 

 

[16] N. García-Pedrajas, J. A. R. Del Castillo, and D. Ortiz-Boyer, “A 
cooperative coevolutionary algorithm for instance selection for 
instance-based learning,” Mach. Learn., vol. 78, pp. 381–420, Mar. 
2010. 

[17] H. F. Teng, Y. Chen, W. Zeng, Y. J. Shi, and Q. H. Hu, “A dual-system 
variable-grain cooperative coevolutionary algorithm: satellite-module 
layout design,” IEEE Trans. Evolut. Comput., vol. 14, pp. 438–455, Jun. 
2010. 

[18] M. Li and Z. Wang, “A hybrid coevolutionary algorithm for designing 
fuzzy classifiers,” Inform. Sciences, vol. 179, pp. 1970–1983, May. 
2009. 

[19] H. F. Wang and Y. Y. Chen, “A coevolutionary algorithm for the 
flexible delivery and pickup problem with time windows,” Int. J. Prod. 
Econ., vol. 141, pp. 4–13, Jan. 2013. 

[20] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to 
particle swarm optimization,” IEEE Trans. Evolut. Comput., vol. 8, pp. 
225–239, Jun. 2004. 

[21] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-learning-based 
optimization: A novel method for constrained mechanical design 
optimization problems,” Comput. Aided. Design, vol. 43, pp. 303–315, 
Mar. 2011. 

[22] K. R. Krishnanand, B. K. Panigrahi, P. K. Rout, and A. Mohapatra, 
“Application of multi-objective teaching-learning-based algorithm to 
an economic load dispatch problem with incommensurable objectives,” 
in Swarm, Evolutionary, and Memetic Computing, Ed, Springer, 2011, 
pp. 697–705. 

[23] V. Toğan, “Design of planar steel frames using teaching-learning based 
optimization,” Eng. Struct., vol. 34, pp. 225–232, Jan. 2012. 

[24] R. V. Rao and V. Patel, “Multi-objective optimization of heat 
exchangers using a modified teaching-learning-based optimization 
algorithm,” Appl. Math. Model., vol. 37, pp. 1147–1162, Feb. 2013. 

[25] R. V. Rao, V. J. Savsani, and J. Balic, “Teaching-learning-based 
optimization algorithm for unconstrained and constrained 
real-parameter optimization problems,” Eng. Optimiz., vol. 44, pp. 
1447–1462, Mar. 2012. 

[26] R. Kolisch, “Serial and parallel resource-constrained project scheduling 
methods revisited: Theory and computation,” Eur. J. Oper. Res., vol. 
90, pp. 320–333, Apr. 1996. 

[27] F. Stork, “Stochastic resource-constrained project scheduling,” Ph.D. 
dissertation, Technische Universität Berlin, 2001. 

[28] P. J. Angeline and J. B. Pollack, “Competitive environments evolve 
better solutions for complex tasks,” in Proc. 5th Int. Conf. Genet. 
Algorithms, San Mateo, CA, 1993, pp. 264–270. 

[29] S. Hartmann, “A competitive genetic algorithm for resource ‐

constrained project scheduling,” Nav. Res. Log., vol. 45, pp. 733–750, 
Oct. 1998. 

[30] R. Kolisch and A. Sprecher, “PSPLIB-a project scheduling problem 
library: OR software-ORSEP operations research software exchange 
program,” Eur. J. Oper. Res., vol. 96, pp. 205–216, Jan. 1997. 

[31] D.C. Montgomery, Design and analysis of experiments. Arizona: John 
Wiley and Sons, 2005. 

 

594




