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Abstract—Based on the regularity that: the Pareto set of a 
continuous m-objectives problem is a piecewise continuous (m-1)-
dimensional manifold, a novel hybrid multi-objective 
optimization algorithm is proposed in this paper. In the early 
evolutionary stage, traditional crossover and mutation operations 
are used to produce offspring, in addition, the locally linear 
embedding (LLE) with small neighbor parameter approach is 
introduced to learn the local geometry of the manifold. When 
certain regularity in population’s distribution is detected, new 
offspring are sampled from the probability models created by the 
statistical distribution information. An entropy-based criterion is 
imported to determine the switching time of the two different 
phases of evolutionary search.  The proposed hybrid multi-
objective estimation of distribution algorithm combining locally 
linear embedding (HMOEDA_LLE) adopts several widely used 
test problems to conduct the comparison experiments with two 
state-of-the-art multi-objective evolutionary algorithms NSGA-II 
and RM-MEDA. The simulated results show the effectiveness of 
the entropy-based criterion and the proposed algorithm has 
better optimization performance.  

Keywords—regularity; multi-objective optimization; locally 
linear embedding; entropy-based criterion 

I.  INTRODUCTION 

Multi-Objective Problems (MOPs) arise in many scientific 
research and engineering applications. Generally, these 
objectives conflict with each other, that is to say, we can’t 
optimize these objectives simultaneously. Thus, the optimal 
solution to a MOP is not a single one but a collection of 
solutions called Pareto set. Due to the population based 
attribute of approximating the Pareto set in a single run, 
evolutionary algorithm has been proved to be suited for solving 
MOPs. 

Since 1985, researchers have done a lot of work in this field, 
formulating the first generation and the second generation 
MOEAs which emphasize on simplicity and efficiency 
respectively [1]. In recent years, some new approaches have 
been proposed. They can be grouped into two categories: 
newly proposed dominance mechanisms and the application of 
different heuristic mechanisms. Due to the ineffectiveness of  

Pareto dominance in solving many-objective optimization, 
several new dominance mechanisms were proposed to enhance 
the selection pressure toward the Pareto front. e.g., a relaxed 
Pareto dominance based on the relationship among different 
objectives [2], dominance area control [3],  -dominance [4], 
K-optimality [5], partial dominance [6], Pareto-adaptive-
dominance [7], fuzzy Pareto dominance [8], grid-dominance 
[9]. Meanwhile, different heuristic mechanisms have been 
introduced in multi-objective evolutionary optimization 
including particle swarm optimization, ant colony algorithm, 
artificial immune systems, estimation of distribution algorithm,   
memetic algorithm, etc. MOPSO [10] proposed by Coello et al, 
non-dominated neighbor immune algorithm [11], Zhang’s 
MOEA/D [12] and RM-MEDA [13] are some notable 
algorithms among them. Instead of using traditional crossover 
and mutation operators to generate offspring individuals, RM-
MEDA builds a probability distribution model of promising 
solutions, and new individuals are then sampled from the 
model [14] by applying the regularity that the PF and PS of a 
continuous MOP are piecewise continuous (m-1)-dimensional 
manifold under mild conditions [15].  A basic idea behind RM-
MEDA is to use globally statistical information to guide the 
search of EDA, thus the local information of each individual 
seems to be considered inadequately.  

Locally linear embedding (LLE) [16] is a representative 
manifold learning method. It can exploit the local linear 
patches of the manifold. Due to the simplicity and few 
parameters, LLE gains much attention and has been used to 
solve various problems in machine learning [17].  

In the early stage of evolutionary algorithm, the distribution 
of population may lack certain regularity. Difference exists 
between search direction of sampled individuals and the 
promising direction. By mixing local exploitation with 
traditional crossover and mutation operation, the regularity can 
be found more quickly and effectively, the performance of 
EDA gets enhanced consequently.  

In this paper, a hybrid multi-objective estimation of 
distribution algorithm combining locally linear embedding 
(HMOEDA_LLE) is proposed. At the early evolutionary stage, 
LLE-based method is introduced to generate partial offspring 
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and the rest population is produced by traditional genetic 
operators in non-dominated sorting genetic algorithm [18]. 
After some generations, estimation of distribution modelling 
and sampling method is used to learn and sample new solutions. 
An entropy based criterion helps to determine the switching 
time of the two phases of different evolutionary search. 
Experiments have been conducted on several state-of-the-art 
multi-objective problems to compare HMOEDA_LLE with 
two representative algorithms NSGA-II and RM-MEDA.  

The rest of the paper is organized as follows. Section II 
briefly describes multi-objective problem and LLE algorithm. 
In Section III, the proposed algorithm is presented in detail. 
The experimental studies and results analysis are given in 
section IV. Finally, section V is devoted to conclusion and 
future work.  

II. PRELIMINARY 

A. Multi-objective Optimization Problems (MOPs) 

Without losing generality, we consider the following 
continuous multi-objective optimization problem in this paper: 

 1 2( ) ( ( ), ( ), , ( ))T
mminimize F x f x f x f x

subject to x





    (1) 
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decision vector. ( )F x  consists of  m objective functions, 
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A vector *x    is Pareto optimal if there is no other   
x such that *x x , the set of all Pareto optimal points is 
called Pareto set (PS). The corresponding images of Pareto set 
in objective space form the Pareto front (PF).  

The goal for all the MOEAs is to minimize the distance of 
solutions to the Pareto front and make them distribute along the 
Pareto front as diverse as possible. 

B. Locally linear embedding 

Manifold learning is a kind of nonlinear dimensionality 
reduction algorithm. The basic idea of the algorithm is to find 
the low dimensional manifold embedded in a high dimensional 
space. Since the publication of three classical manifold learning 
papers [16, 19-20], it has attracted much attention and gained 
rapidly development. Although many new methods such as 
Laplacian eigenmap (LE) [21], Hessian eigenmap (HE) [22], 
Locality tangent space alignment (LTSA) [23] etc. arise, 
Locally linear embedding (LLE) is still a very attractive 
method due to its easy implementation and few parameters 
(only two parameters: the number of nearest neighbors K and 
the dimension d in lower space).  

The main idea of locally linear embedding can be 
concluded into three steps: 1) Find K nearest neighbors for 
each point iX ; 2) Reconstruct iX with K neighbors by linear 

weights; 3) Compute the low-dimensional embedding vectors   
through the obtained weights. Details of this algorithm are 
described in Algorithm1. 

Algorithm1 Locally linear embedding 

Inputs:   N vectors:  1 2, , , , D
N iX X X X X R  ; 

dimension of embedding manifold: d 
                number of nearest neighbors: K; 
Output:  low-dimensional embedding vectors:  

 1 2, , , , ( 1, , }d
N iY Y Y Y Y R i N     

Step1: Find K nearest neighbors 1 2, , ,i i iKX X X  for each 

iX  by Euclidean distance; 

Step2: Reconstruct iX  with its neighbors , compute the  

linear coefficients by minimizing  reconstruction  
error: 

                   ( )

1
( )

K i
i j ijj

i

W X W X
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Step3: Compute the low-dimensional embedding vector 

iY  through the linear coefficients ijW : 

                      
1
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K
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            It can be converted to: 
( ) ( )TY tr YMY                      (5)

Where ( ) ( )TM I W I W   , then: 

1 2( , , , ) *T
dY N e e e                    (6)

* 1 2, , , de e e   is the corresponding eigenvectors of d eigenvalues of M sorted by ascending order. 

LLE is a nonlinear unsupervised learning algorithm of 
dimension reduction. By using locally linear reconstruction, the 
neighborhood relationship of the points in high dimensional 
space can be mapped into low dimensional manifold space, 
thus the global nonlinear manifold structure is featured based 
on local geometry. 

III. HMOEDA_LLE 

A. Entropy-based Criterion 

The concept of entropy was proposed by Clausius, 
Boltzmann developed the theory and introduced the statistical 
definition of entropy. In 1948, Shannon adopted the theoretic 
entropy to measure the stochastic process of information, 
establishing the field of information theory. The application of 
entropy permeated various fields including multi-objective 
optimization [24-30]. In the process of evolution, the 
distribution of population undergoes the change from chaotic to 
the presentation of certain regularity. Entropy is introduced to 
describe the population’s distribution, on the basis of this, an 
entropy-based criterion is proposed in this paper.  

Definition (The entropy of population): It’s a measure of 
the distribution of all individuals in a population. Suppose the 
population size is N, the dimension of the decision/objective 
variables is n, dividing each dimensionality into G parts, the 
whole grid number of the decision/objective space is nG , thus 
the entropy of the population can be defined  as: 
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Where [ ] /ip counter i N , [ ]counter i  is the size of individuals in 
the i-th grid. 

Fig. 1 shows the performance curves of three test problems, 
Fig. 1(a)(b)(c) are the IGD curves of ZDT1.1, ZDT 2.2 and 
ZDT6.2, Fig. 1(d)(e)(f) are the entropy curves of the above 
problems. As shown in Fig. 1(a)(b), along with the 
evolutionary process the population converges. The entropy 
curves in Fig. 1(d)(e) become stable as the convergence of the 
population. Whereas, Fig. 1(c) indicates that the IGD 
performance of ZDT6.2 is not very good, the entropy curve in 
Fig. 1(f) oscillates accordingly. As it can be seen in Fig. 1, the 
entropy varies severely in the initial stage, with the evolution 
progress it gradually decreases. After some generations, 
entropy changes within a certain range. So entropy can be 
regarded as a criterion to the distribution performance of the 
evolutionary population. 

Definition (Entropy-based criterion): The entropy value 
difference of  j generations is: 

   2

1 1

1 1
(t) ( ) , ( )

1

t t

g t j g t j

E g E E E g
j j


     

 
   

  
     (8) 

If ( )t   (   is a predefined constant), certain regularity for 
the distribution of the evolutionary population can be 
considered formed. 

B. LLE-based approach 

According to Karush-Kuhn-Tucker condition: the PF and 
PS of a continuous MOP are piecewise continuous (m-1)-
dimensional manifold for the first class MOPs [31]. That’s to 
say, the PS is a curve/surface for bi-objective/three objective 
optimization problems with n-dimensional variables. Therefore, 
LLE can be introduced to excavate the low dimensional 
manifold of the population’s distribution in decision space. 
Yang et al. [32] propose a hybrid multi-objective optimization 
algorithm which combines the immune inspired algorithm with 
the estimation of distribution algorithm based on LLE. 

Different from Yang’s approach, the LLE-based modeling 
method in this paper is only adopted at the early evolutionary 
stage, and a smaller neighbor parameter K makes LLE focus 
more on the local patches of the manifold, exploitation ability 
gets enhanced correspondingly. Details of this approach are 
shown in Algorithm 2. 

Algorithm2  LLE-based approach 

Inputs:     population: P ; 
                number of nearest neighbors: K; 
                dimension of embedding manifold: d 
Outputs:  offspring population: Z  

Step1: Compute the low-dimensional embedding: Let 
X P , Algorithm1 is adopted to get the low 

dimension embedding vectors Y in decision space; 
Step2: Find the extreme vector in Y : 

min( ) , max( )i i
i j i ja Y b Y               (9)

Where ( 1, , ; 1, , )i d j N   ; 

Step3: Orthogonal sampling: Get N low dimensional 
vectors ' ' '

1 2, , , NY Y Y by orthogonal sampling* from 

the subspace ( , )a b  obtained in Step2; 

Step4: Reconstruct '
iY with its neighbors in Y : Compute 

the linear coefficients by solving the LS problem: 
' ( )

1
( )

K i
i j ijj

i

W Y W Y


             (10)

Step5: Generate offspring: Produce N offspring through 
linear reconstruction by ijW in Step4: 

1

(0, )
K

n
i i ij ij i

j

Z Z R Z W X N 


      
  

   (11)

*More details of the orthogonal sampling method can be found in [33] 

C. Framework of the proposed algorithm 

The evolutionary process of the proposed algorithm can be 
divided into two stages. At the first stage, offspring population 
is produced partially by LLE-based sampling approach and the 
rest is generated by traditional crossover and mutation 
operations. At the second stage, reproduction is replaced with 

 
Fig. 1.  The IGD((a)(b)(c)) and entropy((d)(e)(f)) curves of ZDT1.1, ZDT2.2, ZDT6.2 
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probability model of population [13]. Conversion timing of 
them is decided by the entropy-based criterion. Framework of 
the proposed hybrid algorithm is presented in Algorithm3.  

Algorithm3 HMOEDA_LLE 

Step1: Initialization: t=0, generate the initial population 
( )P t , set the value of K and  ; 

Step2: Reproduction: 
    Step2.1 Entropy calculation: Calculate the entropy 

( )E t of the current population ( )P t  according to 

Eq.(7) (8)，if t j and ( )t   are satisfied, go to 
Step 2.5, else go to Step 2.2; 

    Step2.2  LLE-based approach: Let ( )P P t , d=(m-1), 
adopting  Algorithm2 to generate 1N  offspring; 

    Step2.3 Genetic operation: Using non-dominated 
sorting approach in [18] to produce 2N offspring; 

    Step2.4 Combination: Merge the solutions produced  
by Step 2.2 and Step 2.3 to get the offspring 
population ( )Q t , go to step 3; 

    Step2.5 Sampling population: Create H probability  
models according to the method in [13], sampling 
offspring  population ( )Q t  randomly; 

Step3:Selection: Select N individuals from ( ) ( )P t Q t and 
replace all the individuals in ( )P t ; 

Step4: Stopping criterion: If stopping criterion is met, stop 
and return ( )P t , otherwise go to Step2. 

The estimation of distribution algorithm is proved to be 
very efficient in solving complex multi-objective optimization 
problems with variable linkages. However, at the early 
evolutionary stage, the population may not sufficiently 
converged, the probability model established by EDA lack of 
accuracy as a consequence. By introducing non-dominated 
sorting genetic method, the traditional genetic operators guide 
the search to promising areas. In addition, locally linear 
embedding based approach extracts the local characteristics of 
the underlying manifold with small neighbor parameter K. The 
linear reconstruction individuals help searching the nearby 
region, thus exploitation ability gets enhanced. The hybrid of 
the two means leads the identifying of the regularity of the 
distribution of PS in decision space more quickly and 
efficiently. The principal component directions of the 
probability model built on regularity meet more with the 
promising solutions. 

IV. EXPERIMENT AND RESULT 

In order to verify the performance of HMOEDA_LLE, the 
proposed algorithm is tested on eight test problems which can 
be classified into two categories: problem with linear variable 
linkages and problem with nonlinear variable linkages. The 
results are compared with two state-of-the-art algorithms 
NSGA-II [18] and RM-MEDA [13].  

The eight test instances are from [13], six of them are 
variants of ZDT test suit [34] and the other two problems are 
variants of DTLZ test problem [35]. Among them ZDT1.1, 
ZDT2.1, ZDT6.1, DTLZ2.1 have linear variable linkages and 

the rest ones have nonlinear variable linkages. The inverted 
generational distance (IGD) is used to measure both the 
convergence and diversity of an approximate solution set to the 
true PF. 

A. General Experimental Setting 

The proposed HMOEDA_LLE is implemented with C++, 
the test environment is: CPU: Intel Pentium G630, 2.7GHz; 
Memory: 4GB; OS: Windows7; Programming environment: 
Microsoft Visual Studio 2008.  

1) Population size: For all the bi-objective problems, the 
population size is set to 100, and 200 for three objective 
problems.  

2) Parameter setting in HMOEDA_LLE: The value of 1N   
in Algorithm3 is: 

                            
t

Tr Pop e


                          (12) 

The value of 2N  is 1Pop N  accordingly, here r is set to 0.7. 

The neighbor parameter K is 2 for all the bi-objective problems 
and 3 for all the three objective problems.   is set to 0.1 for all 
the test problems, where t is the current generation and T is the 
maximum generation.  

3) Parameter setting in NSGA-II: SBX crossover and 
Polynomial mutation are adopted with both distribution 
indexes 20 (i.e. 20, 20c m   ). The mutation rate 

1 /mp n (where n is the number of decision variables) and 
crossover rate 0.9cp  .  

4) Parameter setting in RM-MEDA: For all the test 
problems, the number of clusters H is set to 5.  

5) Number of runs and stopping condition: Each algorithm 
runs 30 times independently on each test problem. The 
stopping criterion is maximal number of function evaluations, 
which is set to be 10 000 for bi-objective problems and 20 000 
for three objective problems. 

B. Performance comparison 

Under the same conditions, a smaller IGD value indicates a 
better approximation to the true PF and a broader distribution 
along the front. Table 1-2 shows the mean and standard 
deviation over 30 independent runs of NSGA-II, RM-MEDA 
and the proposed algorithm in this paper, where the best mean 
of each test instance is displayed with gray background. 

As it can be seen in Table I-II, the proposed 
HMOEDA_LLE obtains the best IGD values on all the eight 
test problems with linear and nonlinear variable linkages, RM-
MEDA obtains better IGD values on ZDT1.1, ZDT2.1, 
DTLZ2.1,  ZDT1.2,  ZDT2.2,  DTLZ2.2, whereas NSGA-II 
outperforms RM-MEDA on ZDT6.1 and ZDT6.2. As we all 
know, RM-MEDA is efficient to solve problems with variable 
linkages for the use of covariance matrix in RM-MEDA can 
identify the dependences between variables. The reason why 
RM-MEDA can’t converge to the true PF on ZDT6.1 and 
ZDT6.2 is that they are bias problems, which means solutions  
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TABLE I. IGD metric. Mean (first line) and standard deviation (second line) 

Algorithm ZDT1. 1 ZDT2. 1 ZDT6. 1 DTLZ2. 1 
NSGA-II 0. 00783383± 

2. 2229e-006 
0. 0227759± 
2. 90709e-006 

0. 00949334± 
2. 91219e-008 

0. 00119925± 
1. 68302e-008 

RM-MEDA 0.000159403± 
8. 37546e-011 

0.000177517± 
7. 80016e-010 

0. 0936774± 
5. 21269e-005 

0.000516313± 
3. 19663e-010 

HMOEDA_LLE 0.000148039± 
5. 85535e-012 

0.000150462± 
3. 04897e-012 

0. 00439391± 
9. 93824e-008 

0.000501305± 
1. 20358e-010 

   TABLE II. IGD metric. Mean (first line) and standard deviation (second line) 

Algorithm ZDT1. 2 ZDT2. 2 ZDT6. 2 DTLZ2. 2 
NSGA-II 0. 0174777± 

5. 06057e-006 
0. 0175527± 
4. 96669e-008 

0. 00953686± 
2. 98307e-008

0. 00211867± 
2. 82809e-007 

RM-MEDA 0.000492489± 
1. 91828e-007 

0. 00240114± 
4. 10512e-006 

0. 057498± 
8. 35169e-005

0.000574903± 
4. 68283e-010 

HMOEDA_LLE 0.000206575± 
1. 18616e-009 

0.000258601± 
2. 01932e-008 

0. 00745946± 
1. 11356e-007

0.000558326± 
3. 8473e-010 

 
Fig. 2. Comparisons of the IGD boxplots of the three algorithms on all the test problems,1, 2, 3 represent NSGA-II, RM-MEDA and HMOEDA_LLE 

of the two problems are not evenly distributed in objective 
space. The objective vectors are sparser toward the Pareto 
optimal front for ZDT6.1, ZDT6.2, so the randomly sampling 
method used in RM-MEDA may not escape from local 
optimum. NSGA-II is a classical multi-objective evolutionary 
algorithm. Its optimization ability has been proved in solving 
various MOPs. Nevertheless traditional crossover and mutation 
can’t capture the dependencies between different variables, so 
the performance of NSGA-II is not that good when facing 
problems with variable linkages in decision space. The 
exploration and exploitation abilities of the proposed hybrid 
multi-objective estimation of distribution algorithm are 
adequately utilized by combining locally linear embedding in 
the early evolutionary stage with traditional crossover and 
mutation. In addition, it attaches equal importance to the 
population’s distribution regularity by the use of modelling and 
sampling method in the later evolutionary process. The IGD 
values in Table I-II clearly show the effectiveness of the 
proposed HMOEDA_LLE. 

To further indicates the optimization ability of the three 
different algorithms, Fig. 2 gives the boxplot of IGD 

performance indicator on 30 independent runs. Boxplot is an 
important tool in economics, comparing to mean and variance, 
it is more intuitive to analyze the statistical distribution of the 
data. The bottom and top of the box are the first and third 
quartiles. The band inside the box is the median. The ends of 
the whiskers are the minimum and maximum values. ”+” 
represents outliers. 1, 2, 3 stand for NSGA-II, RM-MEDA and 
HMOEDA_LLE respectively in Fig. 2. It can be seen from Fig. 
2(a)-(h) that the optimization ability and robustness of 
HMOEDA_LLE perform the best, RM-MEDA follows, and 
the performance of NSGA-II is relatively poor. ZDT6.1 and 
ZDT6.2 are exceptions as it shows in Fig. 2(c), (g) for NSGA-
II is not easy to fall into the local optimal and converges 
prematurely. The proposed algorithm takes the advantage of 
both NSGA-II and RM-MEDA. It’s not only suitable for 
solving MOPs with variable linkages but also not easy to fall 
into local optimum. 

In order to demonstrate the evolutionary process of the 
three different algorithms, Fig. 3 plots the mean IGD 
trajectories of 30 independent runs on each test problems. 
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Fig. 3  Comparisons of the IGD mean curves of 30 independent runs of the three algorithms 

 
Fig. 4  The distribution of the first three dimensional of PS obtained by NSGA-II, RM-MEDA and HMOEDA_LLE for ZDT1.1 test problem 

HMOEDA_LLE converges more quickly than the other 
two algorithms on ZDT1.1, ZDT2.1, ZDT1.2, ZDT2.2 
obviously as it can be seen in Fig. 3 (a)(b)(e)(f). For problems 
ZDT6.1, ZDT6.2 which are a little hard for RM-MEDA to 
converge (show in Fig. 3(c)(g)) and DTLZ2.1, DTLZ2.2 which 
are difficult for NSGA-II to converge (show in Fig. 3(d)(h)), 
the proposed algorithm still performs very well. 

To better analyze the impact of the introduction of LLE-
based approach, Fig. 4-5 give the distribution of PS obtained 
by NSGA-II, RM-MEDA and HMOEDA_LLE for problem 
with linear variable linkages ZDT1.1 and problem with 
nonlinear variable linkages ZDT1.2. For the limitation of 
visualization, we only draw the population’s distribution on the 
first three dimensions. Fig. 4(a)-(d), Fig. 5(a)-(d) give the 
distribution of populations found by NSGA-II at generation 
5,10,15,20. They show that with the evolutionary process 
NSGA-II can only find a small part of the optimal solutions, 
thus the mapped solutions in the objective space will distribute 

along only a small part of the Pareto front, which means the 
lack of population’s diversity. Fig. 4(e)-(h), Fig. 5(e)-(h) show 
the distribution of populations of ZDT1.1 and ZDT1.2 found 
by RM-MEDA at generation 5,10,15,20 respectively. Although 
RM-MEDA has proved to be very efficient to solve problems 
with variable linkages, but it can be seen from Fig. 4(e)-(h), Fig. 
5(e)-(h) that in the initial evolutionary stage,  it’s hard for RM-
MEDA to find the correct direction of the principal component 
because the statistical information is not very sufficient, 
whereas the populations obtained by HMOEDA_LLE for 
ZDT1.1 and ZDT1.2 find the right direction of the principal 
component and distribute on the PS diversely with the 
evolutionary process as showed in Fig. 4(i)-(l), Fig. 5(i)-(l). As 
the description in Section III (B), locally linear embedding 
based approach extracts the local characteristics of the 
underlying manifold with small neighbor parameter K by linear 
reconstruction and maps the neighborhood relationship of 
individuals in high decision space to underlying lower 

712



 
Fig. 5  The distribution of the first three dimensional of PS obtained by NSGA-II, RM-MEDA and HMOEDA_LLE for ZDT1. 2 test problem. 

TABLE III.  IGD metric. Mean(first line) and standard deviation(second line) 

Algorithm ZDT1.1 ZDT2.1 ZDT6.1 DTLZ2.1 
HMOEDA 0.00014978± 

7.35941e-012 
0.0223277± 
1.69563e-005 

0.0050595± 
1.3681e-007 

0.000499892± 
1.67279e-010 

HMOEDA_LLE 0.000148092± 
9.33956e-012 

0.000150084± 
3.82886e-012 

0.00435625± 
1.12063e-007 

0.000499022± 
1.97575e-010 

TABLE IV.  IGD metric. Mean(first line) and standard deviation(second line) 

Algorithm ZDT1.2 ZDT2.2 ZDT6.2 DTLZ2.2 
HMOEDA 0.00386678± 

1.36429e-005 
0.0143667± 
2.1145e-006 

0.0076994± 
2.48522e-007

0.000551672± 
5.23962e-010 

HMOEDA_LLE 0.000198611± 
1.02547e-009 

0.000259849± 
8.34037e-009 

0.00734217± 
1.10173e-007

0.000559813± 
3.70403e-010 

dimensional manifold space. The exploitation ability of 
proposed algorithm in this paper gets enhanced. More 
importantly, the distribution regularity of PS can be found 
more quickly and efficiently which helps the modelling and 
sampling in the later evolutionary stage. 

To further illustrate the validity of LLE-based approach, 
we omit the LLE-based approach in HMOEDA_LLE, and 
then in the first evolutionary stage, all new individuals are 
generated by crossover and mutation operation. The second 
stage is just the same as in HMOEDA_LLE. Entropy-based 
criterion still performs as the switching judgment of the two 
stages. We might call this method as HMOEDA. Table III-IV 
show the mean and standard deviation over 30 independent 
runs of HMOEDA and HMOEDA_LLE, where the best mean 
of each test instance is displayed with gray background.  

It can be seen from Table III-IV that HMOEDA_LLE 
performs better than HMOEDA on seven test problems 
(ZDT1.1, ZDT1.2, ZDT6.1, DTLZ2.1, ZDT1.2, ZDT2.2, and 
ZDT6.2) and it gets the comparative result on DTLZ2.2. This 
demonstrates the effectiveness of the introduction of LLE 
method adequately. 

Overall, the introduction of locally linear embedding 
method into MOEA is beneficial to the optimization process. It 
can enhance the exploitation ability and feature the local 

geometry of the population’s distribution. The hybrid algorithm 
HMOEDA_LLE takes advantages of the genetic operations 
and probabilistic modelling and sampling method, besides the 
entropy-based criteria is helpful for the mixture of the two 
ways of evolutionary search. 

V. CONCLUSION 

In this study, a novel hybrid multi-objective estimation of 
distribution algorithm combing locally linear embedding 
(HMOEDA_LLE) is proposed. The evolutionary process of 
HMOEDA_LLE can be divided into two stages. In the first 
stage, LLE-based approach and traditional genetic operation: 
crossover and mutation are mixed together to produce offspring. 
After certain regularity in population distribution being 
detected, the estimation of distribution modelling and sampling 
method is adopted to generate new population. An entropy 
based criterion is introduced to guide the switch of the two 
different stages. To verify the performance of HMOEDA_LLE, 
eight representative multi-objective test problems with linear 
and nonlinear variable linkages are employed. Experiment 
results show that HMOEDA_LLE is superior to two state-of-
the-art algorithms NSGA-II and RM-MEDA. 

In this study, a fixed value of neighbor parameter K is 
adopted. In fact, for different problems the optimal value of K 
is not the same, how to choose a proper value adaptively is our 
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future work, and the best reproduction ratio of LLE-based 
approach and traditional genetic operations also deserves 
further study. 
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