
 
 

 

  

Abstract—A fruit fly optimization algorithm based on the 
enhanced non-dominated sorting (ESFOA) is proposed to solve 
the environmental economic dispatch (EED) problem. To 
measure the difference between two non-dominated solutions, 
the concept of the enhanced non-dominance is defined, and the 
degrees of dominance and non-dominance are presented. To 
enhance the parallel search ability, multiple fruit flies groups 
are used to perform evolutionary search in the ESFOA. In the 
vision-based search process, the best fruit fly is determined 
according to the enhanced non-dominance value. To guarantee 
the feasibility of the new solutions, an effective heuristic 
mechanism to handle constraints is adopted to repair the 
infeasible solutions. Meanwhile, an external archive is used to 
store the non-dominated solutions. The influence of parameter 
setting is investigated based on the Taguchi method of design of 
experiment, and a suitable parameter setting is suggested. 
Finally, numerical tests are carried out by using the IEEE 
30-bus benchmark. The comparisons to some existing methods 
by using the technique for order preference by similarity to ideal 
solution (TOPSIS) demonstrate the effectiveness of the proposed 
algorithm. 

I. INTRODUCTION 
HE economic dispatch (ED) problem is to schedule the 
generating unit outputs to meet the load demand at a 
minimum total fuel cost while satisfying the system 

constraints. With the increasing concern of environmental 
pollution, the environmental economic dispatch (EED) 
problem considering both the fuel cost and the emission of 
pollutants simultaneously is becoming more and more 
desirable in the operations of power system [1-9]. As a 
constrained multi-objective optimization problem, at the 
same time, the EED problem has been proved to be NP-hard. 
Hence, the EED problem is an important real-world 
engineering optimization problem with both practical and 
academic significance. 

During the past two decades, many approaches to solve the 
EED have been proposed in the literature. The early 
researchers usually formulated the EED problem as a single 
objective optimization problem [1-5]. Using traditional single 
objective methods, only one satisfactory solution can be 
obtained. So, multiple runs with different weights are needed 
to produce more solutions to help making operating 
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decisions. In [1], the emission was treated as a constraint with 
a permissible limit. In [2-3], the fuel cost and emission 
objectives were linearly combined as a weighted sum, and a 
newly proposed charged system search (CSS) algorithm was 
applied to solve the transformed EED problem [3]. In [4], 
conic scalarization method was adopted to turn the two 
objectives into a single one. In [5-6], a set of the 
non-dominated solutions could be obtained by varying the 
weights, and a biogeography-based optimization (BBO) was 
applied to solve the EED problem. Setting the weight as 0, 0.5 
and 1, it obtained the corresponding best cost, compromise 
and emission solutions, respectively [6]. However, these 
methods could offer little information about the tradeoff 
relationship of the different objectives. 

Recently, some Pareto-dominance based multi-objective 
genetic algorithms (GA) have been proposed, including 
non-dominated sorting genetic algorithm (NSGA) [7], 
strength Pareto evolutionary algorithm (SPEA) [8], niched 
Pareto genetic algorithm (NPGA) [9] and NSGA-II [10]. In 
addition, several swarm based algorithms have been proposed 
to solve the EED problem. The relevant results in this filed 
include the following. Wu [11] proposed a multi-objective 
differential evolution (MODE) algorithm and designed a 
crowding entropy strategy to preserve the diversity of the 
Pareto non-dominated solutions. Lu [12] adopted a 
self-adaptive second mutation operator and proposed an 
enhanced MODE. Abido [13] proposed a multi-objective 
particle swarm optimization (MOPSO) approach. Gong et al. 
[14] proposed a hybrid multi-objective algorithm based on 
PSO and DE (PSODE). Zhang et al. [15] proposed a 
bare-bones multi-objective particle swarm optimization 
(BB-MPSO), where a mutation operator was developed with 
the action range varying over time and the particle diversity 
based global leader particle updating approach. Pandit et al. 
[16] proposed an improved bacterial foraging algorithm 
(IBFA) with a parameter automation strategy, which adopted 
a crossover operation to improve the computational 
efficiency. In [17], an improved scatter search (ISS) with new 
combination scheme was presented. In [18], Jadhav and Roy 
proposed a gbest guided artificial bee colony algorithm 
(GABC). For the above mentioned approaches, crowding 
distance and entropy are used to handle multiple objectives. 

As a recently developed swarm evolutionary optimization 
algorithm, fruit fly optimization algorithm (FOA) [19] is 
inspired by the foraging behaviors of real fruit flies. The FOA 
is easy to implement and it has few parameters that need 
adjusting. Due to the merits, the FOA has already been 
successfully applied to several continuous optimization 
problems, including financial distress [19], web auction 
logistics service [20], general regression neural network 
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optimization [21], and proportional integral derivative 
controller tuning [22]. Essentially, the EED is a complex 
continuous optimization problem with multiple objectives, 
which is difficult to be solved by traditional methods. The 
FOA is a swarm based intelligent algorithm with a parallel 
search framework, which could be a powerful solver due to its 
prominent results in solving other problems. In this paper, an 
enhanced non-dominated sorting based FOA (ESFOA) with 
multiple fruit fly groups is proposed to solve the EED. The 
concept of the enhanced non-dominance is defined to 
measure the difference of two non-dominated solutions 
quantitatively. It helps to sort solutions according to the 
non-dominance values. The ESFOA has few parameters, 
whose influence on the performance is investigated by using 
the design of experiment test. The performances of the 
ESFOA are tested with the well-known IEEE 30-bus 
benchmark, and the effectiveness of the ESFOA is 
demonstrated by the comparisons to some existing algorithms 
using the TOPSIS. 

The remaining of the paper is organized as follows: The 
problem is formulated in Section II. Section III provides the 
concept of the enhanced non-dominance and the sorting 
algorithm. The proposed ESFOA is presented in Section IV in 
details. The testing results are provided in Section V. Finally, 
we end the paper with some conclusions and future work in 
Section VI. 

II. PROBLEM FORMULATION 
The typical EED problem is to minimize two objectives 

simultaneously, i.e. fuel cost and emission, while satisfying 
some inequality and equality constraints. The mathematical 
model can be formulated as follows [11]. 

A. Objective Functions 
Minimization of fuel cost: 

F(PG)= N 2
1
( )i i Gi i Gii
a b P c P

=
+ +∑                                    (1) 

Minimization of emission: 
E(PG)= N 2 2

1
{10 ( ) exp( )}i i Gi i Gi i i Gii

P P Pα β γ ξ λ−
=

+ + +∑   (2) 
where N is the number of generators, ai, bi and ci are the cost 
coefficients of the i-th generator, PGi is the real power output 
of the i-th generator, and αi, βi, γi, ξi and λi are coefficients of 
the i-th generator emission characteristics, and PG is the real 
power output vector of the generators defined as PG=[PG1, 
PG2,…, PGN]T. 

B. Problem Constraints 
Generation capacity constraints: 

min max , 1,2,...,Gi Gi GiP P P i N≤ ≤ =                                     (3) 

where PGi
min and PGi

max are the minimum and maximum of the 
real power outputs of the i-th generator, respectively. 

Power balance constraints: 
N

1 Gii
P

=∑ -PD-PL=0                                                       (4) 

where PD is the total system demand and PL is the real power 
loss in transmission calculated as follows: 

PL= 0 00
1 1 1

+
N N N

Gi ij Gj Gi i
i j i

P B P P B B
= = =

+∑∑ ∑                              (5) 

III. ENHANCED NON-DOMINATED SORTING ALGORITHM 

A. Enhanced Non-dominance 
It might not be perfect to solve the multi-objective 

optimization problem using the basic definition of Pareto 
dominance [23]. The reason mainly lies in two folds: first, 
Pareto dominance does not make a difference between two 
solutions if neither is dominated; and second, Pareto 
dominance does not measure the degree quantitatively by 
which one solution dominates the other. Hence, the concept 
of the enhanced non-dominance is presented. With such a 
concept, it can compare different non-dominated solutions 
and prioritize between any two solutions. Different from the 
crowding distance, the enhanced non-dominance emphasizes 
the optimization of the objective value instead of the 
uniformity of the distribution of solutions.  

Without loss of generality, suppose that a minimization 
continuous problem has m objective functions fi (i=1,2,…,m), 
and the solution space is denoted as P ⊆ RN, where N is the 
dimensionality. 

Definition 1 Enhanced i-dominance by a solution. 
Solutions u, v∈P, solution u enhanced i-dominates solution 

v, denoted as u iΓ v, iff fi(u) ≤ fi(v). Moreover, a monotonically 
non-decreasing mapping μedom→[0,1] is defined to measure 
the degree by which u i-dominates v: 

max min

( ) ( )
( ) ( ( ) ( ))edom edom i i

i i i
i i

f v f u
u v f v f u

f f
μ μ −

Γ ≡ − =
−

      (6) 

where fimin and fimax are the minimum and maximum of 
objective function i (i=1,2,…,m) in the current solution set, 
respectively. If solution u i-dominates solution v, then 
μedom(v iΓ u)=0. 

Definition 2 Enhanced dominance by a solution. 
Solutions u, v∈P, solution u enhanced dominates solution v, 

denoted as u vΓ , iff ∀  i ∈ {1,2,…,m}, u iΓ v and 
∃ i∈{1,2,…,m}, fi(u)<fi(v). Furthermore, the degree by which 
solution u enhanced dominates solution v is defined as 
follows: 

1 max min

( ) ( )
( )

m
j jedom

j j j

f u f v
u v

f f
μ

=

−
Γ =

−∑                                  (7) 

Definition 3 Enhanced non-dominance by a solution. 
Solutions u, v ∈ P, solution u enhanced non-dominates 

solution v, denoted as u vΓ  or v uΓ , iff ∃ i, j∈ {1,2,…,m}, 
u iΓ v and v jΓ u. Furthermore, the degree by which solution u 
enhanced non-dominates solution v is defined as: 

1& max min

( ) ( )
( )

i

m
edom i i

i i i
u v

f v f u
u v

f f
μ

=
Γ

−
Γ =

−∑                                 (8) 

Definition 4 Enhanced dominance in a population. 
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Given a population S, solution u∈P enhanced dominates in 
S, denoted as u Γ S, iff ∀ v∈S, v ≠ u, u vΓ . Furthermore, the 
degree by which solution u enhanced dominates in population 
S is defined as follows: 

& 1 max min

( ) ( )
( ) ( )

m
edom edom i i

v S v S v u i i iv u

f v f u
u S u v

f f
μ μ

∈ ∈ ≠ =≠

−
Γ = ∪ Γ =

−∑ ∑  (9) 

Definition 5 Enhanced non-dominance in a population. 
Given a population S, solution u ∈ P enhanced 

non-dominates in S, denoted as u SΓ , iff ∃ v∈S, v ≠ u, u vΓ . 
Furthermore, the degree by which solution u enhanced 
non-dominates in S is defined as folllows: 

& 1 max min

( ) ( )
( ) ( )

m
edom edom i i

v S v S v u i i iv u

f v f u
u S u v

f f
μ μ

∈ ∈ ≠ =≠

−
Γ = ∪ Γ =

−∑ ∑  (10) 

where S1={v∈S| u vΓ } and S2={v∈S| u vΓ }. 

B. Enhanced Non-dominated Sorting 
Once the enhanced non-dominance values of all solutions 

in the population are calculated, the solutions can be sorted 
according to the values in an ascending order. 

Property 1 If solutions u, v meet u Γ v, then ES(u)>ES(v), 
where ES(u) and ES(v) are the enhanced non-dominance 
values of u, v in the population S, respectively. 

Proof: As u, v meet u Γ v,, then ∀  i ∈ {1,2,…,m}, 
fi(u) ≤ fi(v) and ∃ j∈{1,2,…,m}, fj(u)<fj(v). Thus, μedom(u iΓ x) 
≥ μedom(v iΓ x). ∀ x ∈ P, x ≠ u, v. Since μedom( v uΓ )=0, so 

ES(u)=μedom(u iΓ v)+
, , 1

( )
m

edom
i

x P x u v i

u xμ
∈ ≠ =

Γ∑ ∑ >μedom(v iΓ u)+

, , 1
( )

m
edom

i
x P x u v i

v xμ
∈ ≠ =

Γ∑ ∑ =ES(v). 

According to Property 1, the enhanced non-dominance 
value of a non-dominated solution must be larger than that of a 
dominated one. So, it guarantees that the non-dominated 
solutions are better than the dominated ones. 

IV. THE PROPOSED ESFOA 

A. Fruit fly optimization Algorithm (FOA) 
FOA is a newly developed swarm-based optimization 

algorithm, which simulates the foraging behaviors of fruit fly 
swarms. The evolution process of the FOA consists of two 
major procedures: smell-based search and vision-based 
search. The procedure of the basic FOA is as follows: 

Step 1. Initialization: set the parameters and randomly 
generate the fruit fly group. 

Step 2. Smell-based search process: randomly generate 
several fruit flies around the fruit fly group to construct a 
population. 

Step 3. Evaluation: evaluate the population to obtain the 
smell concentration values (fitness value) of each fruit fly. 

Step 4. Vision-based search process: find the best fruit fly 
with the maximum smell concentration value, and then let the 
fruit fly group fly towards the best one. 

Step 5. Stopping criterion: end the algorithm if it reaches 
the maximum number of evaluations; otherwise, go back to 
Step 2. 

B. Encoding scheme 
In this paper, the real power output of each generator is 

regarded as the encoded element. So, a solution is represented 
by a vector composed of N elements. For example, to 
optimize the IEEE 30-bus 6-generator test system, each fruit 
fly is represented by a 6-bit real coded string, i.e. 

iP =(Pi,1 Pi,2 Pi,3 Pi,4 Pi,5 Pi,6), i=1,2,…,NP 
where NP is the size of the population.  

C. Initialization 
Random strategy is adopted in the initialization. In the 

ESFOA, NP fruit fly groups are used to emphasize the 
parallel search. All the groups are generated randomly. To be 
specific, each element of a fruit fly group is randomly 
generated within the feasible real power output range: 

Pi,j=PGminj+rand×(PGmaxj-PGminj)                          (11) 
where i is the i-th group, j is the j-th generator, rand ∈U(0,1), 
and U denotes uniform distribution. 

Note that, actually the fruit fly group is a central location of 
the fruit fly swarm, which can be regarded as a special solution 
when implementing the FOA. 

D. Smell-based search and vision-based search 
In the smell-based search, S fruit flies are generated around 

each fruit fly group to construct a sub-population. To be 
specific, each element of the new fruit fly is generated as 
follows: 

Pi,j=Pi,j+θ ×rand                                               (12) 
where θ  is the scope of the smell-based search. 

In the vision-based search, S generated fruit flies in each 
sub-population are sorted by using the enhanced 
non-dominated sorting algorithm. Then, each fruit fly group 
is replaced with the corresponding best fruit fly. 

E. Constraints Handling 
The ESFOA adopts a heuristic constraint handling 

mechanism [8] to repair the infeasible solutions during the 
evolution process. The element of a solution is modified as 
follows to satisfy the generation capacity constraints: 

min min

max max

,  

,  
G j j G j

j
G j j G j

P if X P
X

P if X P

<⎧⎪= ⎨ >⎪⎩
                               (13) 

Then, the following procedure is used to repair the 
infeasible solutions to satisfy the power balance constraints: 

Step 1: Calculate the violation of the real power balance 
constraint PDiff : 

1

N
Diff D L Gjj

P P P P
=

= + −∑                                      (14) 

Step 2: If PDiff=0, then end the procedure. Otherwise, if 
PDiff>PDiffVioLimt, then go to Step 3; else, go to Step 5. 

Step 3: Calculate the average violation of real power 
balance constraint PAvgDiff: 

1
( ) /N

AvgDiff D L Gjj
P P P P N

=
= + −∑                           (15) 

Step 4: Adjust the real power output of all the generators as 
Eq. (16). If the generation capacity constraint is violated, the 
solution will be modified according to Eq. (13). Then, go back 
to Step 1. 
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PGj=PGj+PAvgDiff , j=1,2,…,N                                  (16) 
Step 5: Set the iteration number of fine adjusting as lfin=0. 
Step 6: Calculate PDiff. Randomly choose a generator r, and 

adjust the power output PGr=PGr+PDiff. If the generation 
capacity constraint is violated, the solution will also be 
modified according to Eq. (13) 

Step 7: Let lfin=lfin+1. If lfin< lfinmax, then go to Step 6; 
otherwise, end the procedure. 

F. External archive 
To obtain a good Pareto-optimal solution set, it is 

important to retain the non-dominated solutions during the 
search process. Generally, a non-dominated solution in the 
current population may not be necessarily non-dominated by 
all the historical solutions. To guarantee that the final 
solutions are non-dominated with respect to all the generated 
solutions, an external archive is used to store the 
non-dominated solutions explored during the search. 

Here, an external archive without capacity limitation is 
adopted. At each generation, if the non-dominated solution in 
the current population is dominated by a member of the 
archive, then it will be rejected. Besides, if the trial solution 
dominates some members of the archive, the dominated 
members of the archive will be removed and the trial solution 
will enter the archive. 

G. The proposed ESFOA 
The procedure of the ESFOA is illustrated as follows: 

 
Fig. 1.  The flowchart of ESFOA. 

V. EXPERIMENTS AND RESULTS 
The performance of the ESFOA is tested with the standard 

IEEE 30-bus 6-generator power system, which has been 
widely used in literature. The total system demand amounts 
2.834 p.u, and the transmission loss is considered. The system 
parameters including fuel cost and emission coefficients are 
listed in Table I, and the coefficients used in Eq. (5) are 
shown as Eqs. (17)-(19). 

TABLE I 
GENERATOR COST AND EMISSION COEFFICIENTS 

 PG1 PG2 PG3 PG4 PG5 PG6

a 10 10 20 10 20 10 
b 200 150 180 100 180 150 
c 100 120 40 60 40 100 
α 4.091 2.543 4.258 5.326 4.258 6.131 
β -5.543 -6.047 -5.094 -3.550 -5.094 -5.555 
γ 6.490 5.638 4.586 3.380 4.586 5.151 
ξ 2.0e-4 5.0e-4 1.0e-6 2.0e-3 1.0e-6 1.0e-5 
λ 2.857 3.333 8.000 2.000 8.000 6.667 
PGmax 1.5 1.5 1.5 1.5 1.5 1.5 
PGmin 0.05 0.05 0.05 0.05 0.05 0.05 

 

0.1382 0.0299 0.0044 0.0022 0.0010 0.0008
0.0299 0.0487 0.0025 0.004 0.0016 0.0041

0.0044 0.0025 0.0182 0.0070 0.0066 0.0066
0.0022 0.0004 0.0070 0.0137 0.0050 0.0033
0.0010 0.0016 0.0066 0.0050 0.0109 0.0005
0.00

B

− − − −
− −

− − − −
=

− −
− −
− 08 0.0041 0.0066 0.0033 0.0005 0.0244

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎣ ⎦
 (17) 

Β0=[−0.0107 0.006 −0.0017 0.0009 0.0002 0.003]  (18) 
Β00=9.8573×10−4                                                       (19) 

A. Parameter Setting of ESFOA 
The ESFOA contains three key parameters: population size 

(NP), the number of generated neighbors (SN) and the scope 
of the smell-based search (θ ). To investigate the influence of 
these parameters, the Taguchi method of design of 
experiment (DOE) [24] is applied. Different combinations of 
the values are listed in Table II. In addition, the maximum 
number of iteration is set as lfinmax=30 for constraints handling 
procedure, which is enough to guarantee the feasibility of the 
solution. Experiment is done with Windows XP, Inter Core2 
Duo T5750 CPU, and the program is coded using C++. 

TABLE II 
COMBINATIONS OF PARAMETER VALUES. 

Parameters 
Factor level 
1 2 3 4 

NP 20 50 80 100 
SN 1 3 5 10 
θ  0.01 0.05 0.1 0.15 

TABLE III 
ORTHOGONAL ARRAY AND ARV VALUE 

Experiment Factors ARV(%) 
number NP SN θ  
1 1 1 1 22.13 
2 1 2 2 35.67 
3 1 3 3 32.34 
4 1 4 4 21.42 
5 2 1 2 36.33 
6 2 2 1 34.87 
7 2 3 4 22.03 
8 2 4 3 22.56 
9 3 1 3 33.56 
10 3 2 4 32.15 
11 3 3 1 42.69 
12 3 4 2 43.88 
13 4 1 4 21.09 
14 4 2 3 25.64 
15 4 3 2 44.35 
16 4 4 1 35.91 
 

Set the parameters, g=0 

Initialize the fruit fly groups 

Stop criterion met? 

Smell-based search 

Enhanced non-dominated sorting 

g=g+1 

Output 

Update the archive 

Vision-based search 

Repair 

N 

Y 
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For each parameter combination, the ESFOA is run 20 
times independently (set the maximum evaluation times as 
100,000). The non-dominated solutions among all the 
solutions obtained by each run are collected as the reference 
set RS. The more solutions in RS obtained, the better the 
combination is. Thus, the average response variable (ARV) 
value is the average percentage of the non-dominated 
solutions for each combination in RS. According to the 
number of parameters and the number of factor levels, we 
choose the orthogonal array L16(43). The orthogonal array and 
the obtained ARV values are listed in Table III. 

Using the statistical analysis tool Minitab, the significance 
rank of each parameter can be analyzed. Thus, he trend of 
each factor level is shown in Table IV and Fig 2, respectively. 

TABLE IV 
RESPONSE VALUE 

Level NP SN θ  
1 27.89 28.28 33.90 
2 28.95 32.08 40.06 
3 38.07 35.35 28.53 
4 31.75 30.94 24.17 
Delta 10.18 7.0 15.88 
Rank 2 3 1 
 

 
(a) Influence of NP 

 
(b) Influence of SN 

 
(c) Influence of θ  

Fig. 2.  Factor trend level of ESFOA 
 
From Table IV and Fig 2, it can be seen that θ  is the most 

significant parameter. A small value of θ  is helpful for local 
exploitation. But a too small value may limit the search step, 
and waste the evaluation times. As for NP, with a fixed total 
evaluation times, a small size may lead to poor exploration so 
as to cause premature convergence, while a large size means a 
small number of evolution generations leading to insufficient 
deep search. As for SN, it can be seen from Fig 2 that it has a 
bit influence on the algorithm, where medium values are 
preferable. Thus, according to the results of the DOE test, we 
recommend to set parameters as NP=80, SN=5, and θ =0.05, 
which will be used for the following tests. 

B. Results and Comparisons 
The proposed ESFOA obtains not a single optimal solution, 

but a set of Pareto optimal solutions. If a decision maker only 
cares about one certain objective, like fuel cost or emission, 
the extreme point among the obtained Pareto front will be 
meaningful to provide information about the best cost or the 
best emission. In practical application, however, it is needed to 
select a solution from a set of the obtained Pareto front to 
tradeoff multiple objectives. Such a selected solution is called 
best compromise solution. For the EED problem, the best cost 
solution, the best emission solution and the best compromise 
solution are all used for comparisons [7-9, 11, 13]. 

Since the judgment of a decision-maker may not be precise, 
fuzzy set theory can be adopted to identify the candidate 
Pareto optimal solutions [11]. To compare the results, the 
same fuzzy mechanism as that in [7-9, 11, 13] is adopted to 
identify the best compromise solution. The satisfactory degree 
of the i-th solution iP  for the j-th objective function fj is 
defined as the following membership function μi,j: 

( )

( )

( )

min

max
, min max

max min

max

1                        

( )
    

0                       

j i j

j j i
i j j j i j

j

j i j

f P f

f f P
f f P f

f f

f P f

μ

⎧ ≤
⎪
⎪ −⎪= < <⎨ −⎪
⎪ ≥⎪⎩

         (20) 

For the i-th solution, the normalized membership function 
μi is calculated as follows: 

, ,
1 1 1

NQm m

i i j k j
j k j

μ μ μ
= = =

=∑ ∑∑                                           (21) 

where NQ is the number of the Pareto optimal solutions and m 
is the number of the objective functions. The best compromise 
solution is the one with the maximum μ. 

During recent years, multi-objective optimization methods 
are commonly compared using the performance metric such 
as hyper-volume, two-set coverage, spacing etc. However, 
researchers in the field of power systems usually provide the 
best cost solution, the best emission solution and the best 
compromise solution for comparisons. Since the existing 
results of the EED problem are mainly from the field of power 
systems, we also use the best cost solution, the best emission 
solution and the best compromise solution for fair 
comparisons as done in [7-9, 11, 13]. It obtains the results by 
running the algorithm 20 times independently. The ESFOA is 
compared with some existing typical approaches, including 
NSGA [7], SPEA [8], NPGA [9], MODE [11], and MOPSO 
[13]. The comparative results of different approaches are 
listed in Table V-VII. Note that the results of the existing 
method are taken from the literature directly. 

TABLE V 
BEST COST SOLUTION 

 MODE NPGA SPEA MOPSO NSGA ESFOA 
PG1 0.1332 0.1425 0.1279 0.1207 0.1447 0.1163 
PG2 0.2727 0.2693 0.3163 0.3131 0.3066 0.2890 
PG3 0.6018 0.5908 0.5803 0.5907 0.5493 0.5778 
PG4 0.9747 0.9944 0.9580 0.9769 0.9894 1.0080 
PG5 0.5146 0.5315 0.5258 0.5155 0.5244 0.5111 
PG6 0.3617 0.3392 0.3589 0.3504 0.3542 0.3575 
Emiss 0.2195 0.2207 0.2176 0.2193 0.2191 0.2217 
Cost 606.13 608.06 607.86 607.79 607.98 606.03 
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TABLE VI 

BEST EMISSION SOLUTION 
 MODE NPGA SPEA MOPSO NSGA ESFOA 
PG1 0.3927 0.4064 0.4145 0.4101 0.3929 0.3984 
PG2 0.4625 0.4876 0.4450 0.4594 0.3937 0.4433 
PG3 0.5631 0.5251 0.5799 0.5511 0.5815 0.5464 
PG4 0.4031 0.4085 0.3847 0.3919 0.4316 0.4277 
PG5 0.5676 0.5386 0.5348 0.5413 0.5445 0.5309 
PG6 0.4783 0.4992 0.5051 0.5111 0.5192 0.5215 
Emiss 0.1942 0.1943 0.1943 0.1942 0.1947 0.1942 
Cost 642.85 644.23 644.77 644.74 638.98 641.95 

 
TABLE VII 

BEST COMPROMISE SOLUTION 
 MODE NPGA SPEA MOPSO NSGA ESFOA 
PG1 0.2355 0.2976 0.2752 0.2367 0.2935 0.2980 
PG2 0.3489 0.3956 0.3752 0.3616 0.3645 0.3563 
PG3 0.5700 0.5673 0.5796 0.5887 0.5833 0.5339 
PG4 0.7252 0.6928 0.6770 0.7041 0.6763 0.6869 
PG5 0.5536 0.5201 0.5283 0.5635 0.5383 0.5584 
PG6 0.4261 0.3904 0.4282 0.4087 0.4076 0.4281 
Emiss 0.2026 0.2004 0.2001 0.2021 0.2002 0.2002 
Cost 613.27 617.79 617.57 615.00 617.80 617.21 

 
As shown in Tables II and III, the ESFOA can obtain the 

best cost solution with minimum cost 606.03 $/hr and 
emission 0.2217 ton/hr as well as the best emission solution 
with minimum emission 0.1942 ton/hr and cost 641.95 $/hr. 
Although the MODE also can obtain a solution with minimum 
emission 0.1942 ton/hr, the cost is 642.85 $/hr which is larger 
than that of the ESFOA. That is, the solution obtained by the 
MODE is dominated by the one obtained by the ESFOA. As 
shown in Table IV, the best compromise solution obtained by 
the ESFOA is non-dominated by all the solutions obtained by 
other approaches; and among all the solutions, the cost of the 
solution by the ESFOA is the smallest. Since the enhanced 
non-dominated sorting emphasizes the optimization of the 
objective values rather than the crowding distance, the 
extreme points obtained by the ESFOA are better than those of 
the existing methods. Due to the preference of the enhanced 
non-dominance, the Pareto front obtained by the ESFOA is 
not so uniformly distributed as those by other crowding 
distance based algorithms. The Pareto fronts obtained by the 
MODE, NSGA, NPGA, SPEA, MOPSO and ESDFOA are 
illustrated in Fig. 3-8, respectively. 

 
Fig. 3.  Pareto front by NSGA [7] 

 
Fig. 4.  Pareto front by NPGA [8] 

 
Fig. 5.  Pareto front by SPEA [9] 

 

 
Fig. 6.  Pareto front by MODE [11] 

 

 
Fig. 7.  Pareto front by MOPSO [13] 
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Fig. 8.  Pareto front by ESFOA 

 
As shown in Fig. 8, multiple non-dominated solutions with 

a well distribution can be obtained by the ESFOA. Although it 
cannot be concluded that the resulted front by the ESFOA is 
significantly better than others, the ESFOA can be a new 
approach to solve the EED problem which is easy to handle 
multiple objectives without using the crowding distance. 

C. Ranking of results with TOPSIS 
TOPSIS is one of the widely used multiple criteria decision 

methods [25], which provides a cardinal ranking of the 
candidate solutions making full use of the criteria information. 
To further demonstrate the effectiveness of the proposed 
ESFOA, the methods are ranked with the TOPSIS. 

The core idea of TOPSIS is that the final alternative should 
be close to the ideal solution and away from the negative-ideal 
solution as much as possible. The procedure can be described 
as Fig. 8 [26]. The weight matrix indicates the preference to 
the objectives in TOPSIS. The weight matrix W1=(0.01, 0.99) 
shows the least weight to emission, while W2=(0.99, 0.01) 
shows the most weight to emission compared with the cost 
criteria. To use TOPSIS to rank the methods, the weight 
matrix W1 for the best cost solution case, W2 for the best 
emission case, and W3=(0.5, 0.5) for the best compromise case 
are adopted, respectively. The results of TOPSIS for the three 
cases are listed in Table VIII, IX, X. 

From Table VIII-X, it can be seen that the ESFOA ranks the 
first in all the three cases, which indicates that the ESFOA is 
effective in solving the EED problem. 

TABLE VIII 
RANK FOR THE BEST COST CASE 

 F D+ D- R Rank 
MODE 0.2195 606.13 7.5E-5 0.0013 0.0554 2 
NPGA 0.2207 608.06 1.6E-3 1.9E-5 0.9864 6 
SPEA 0.2176 607.86 0.0012 1.5E-4 0.8882 4 
MOPSO 0.2193 607.79 0.0012 1.9E-4 0.8636 3 
NSGA 0.2191 607.98 0.0013 7.2E-5 0.9475 5 
ESFOA 0.2217 606.03 7.6E-5 0.0014 0.0534 1 

TABLE IX 
RANK FOR THE BEST EMISSION CASE 

 F D+ D- R Rank 
MODE 0.1942 642.85 2.5E-5 0.0010 0.0231 2 
NPGA 0.1943 644.23 0.0002 0.0008 0.2020 4 
SPEA 0.1943 644.77 0.0002 0.0008 0.2025 5 
MOPSO 0.1942 644.74 3.7E-5 0.0010 0.0340 3 
NSGA 0.1947 638.98 0.0010 3.7E-5 0.9659 6 
ESFOA 0.1942 641.95 1.9E-5 0.0010 0.0178 1 

 

 
Fig. 8.  Procedure of TOPSIS 

 
TABLE X 

RANK FOR THE BEST COMPROMISE CASE 
 F D+ D- R Rank 
MODE 0.2026 613.27 0.0025 0.0015 0.6287 5 
NPGA 0.2004 617.79 0.0015 0.0022 0.4060 4 
SPEA 0.2001 617.57 0.0014 0.0025 0.3591 2 
MOPSO 0.2021 615.00 0.0021 0.0011 0.6663 6 
NSGA 0.2002 617.80 0.0015 0.0024 0.3814 3 
ESFOA 0.2002 617.21 0.0013 0.0024 0.3485 1 

VI. CONCLUSIONS 
This paper deals with the EED problem in power system 

with an enhanced non-dominated sorting based fruit fly 
optimization algorithm. The main contributions of this work 
are as follows: define the concept of the enhanced 
non-dominance; present an enhanced non-dominated sorting 
algorithm; and develop the ESFOA to solve the EED problem. 
The numerical results with the IEEE 30-bus test system and 
the comparisons to the existing methods demonstrate the 
effectiveness of the ESFOA. This work not only enriches the 
application fields of the FOA, but also provides a new solver 
for the EED problem. Since the enhanced non-dominance 
sorting is easy but effective to handle multiple objectives, the 
future wok could focus on applying it to other multi-objective 
engineering optimization problems and generalizing the study 

Step 1: Normalize the decision matrix Fn × m. The 
normalized value fij is calculated as: 

∑
=

=
m

j
ijijij yyf

1

2/ , i=1,2,…,n   (22) 

where n is the number of alternatives, m is the number of 
objectives or criteria. 
Step 2: Calculate the weighted normalized decision matrix 
Z n×m. 

ijjij fwz ×= , i=1,2,…,n, j=1,2,…,m   (23) 

where wj is the weight of the j-th objective, and ∑ jw =1. 
Step 3: Determine the ideal and negative-ideal solutions 
according to Z n×m. 

S+={s1
+, s2

+,…, sm
+}={(min zij|i=1,2,…,n), j=1,2,…,m} 

S-={s1
-, s2

-,…, sm
-}={(max zij|i=1,2,…,n), j=1,2,…,m} 

Step 4: Calculate the separation distances from the ideal 
solution (Di

+, i=1,2,…,n) and negative-ideal solution (Di
-, 

i=1,2,…,n) respectively. 

Di
+= ∑ −+

j
ijj zs 2)(        (24) 

Di
-= ∑ −

j
ijj zs 2)( -        (25) 

Step 5: Calculate the relative distance close to the ideal 
solution and away from the negative-ideal solution. 

Ri= −+

+

+ iD
D

i

i

D
        (26) 

Step 6: Rank the candidate solutions with an ascending 
order of Ri (i=1,2…,n). 
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to the combinatorial optimization problems like the 
production scheduling problems. 
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