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Abstract—The particle swarm optimization, inspired by na-
ture, is widely used for optimizing complex problems and
achieves many good stories in practical applications. However,
the traditional PSO only focuses on the function value during
evolutionary process. It ignores the information of distance
between particles and potential regions. A Dual Factors Particle
Swarm Optimization (DFPSO) incorporating both of distance
and function information is proposed in this paper to help PSO
in finding potential global optimal regions. The strategy of the
DFPSO increases the diversity of population to yield improved
results. The experimental results manifest that the performance,
including accuracy and speed, are improved.

I. INTRODUCTION

Traditional optimization algorithms cannot solve increas-
ingly complex problems in reality because of their inflex-
ible structure resulting from incomplete or noisy data and
several multi-dimensional problems. A suitable solution to
such problems is the nature-inspired optimization algorithm
developed recently. One example of such algorithm is the
particle swarm optimization (PSO) algorithm, which is based
on the foraging of animals, such as birds. This algorithm
has been widely utilized as an optimization tool in various
applications ranging from communication, finance, and energy
to medicine, materials science, and remote sensing [1]–[7].

The traditional PSO establishes two best solutions, which
are viewed as temporary goals, and continually updates these
solutions during the iteration process. The first one is the
personal best solution, and the second one is the global best
solution. All particles fly in the solution space following the
two bests and gradually converges into the optimum area.
However, traditional PSO focuses only on the function value
during its evolution and not on the distance between the current
positions and the potential global optimum area. The minimum
value obtained so far does not guarantee that the area in which
the current global best solution is located is the global optimum
area. If the personal best and global best solutions are currently
in the same local optimum area, traditional PSO may not be
able to jump out of the local optimum area. Although the
particles are located in the global optimum area, the aim is for
the population to converge quickly and not oscillate between
the global best and personal best solutions.

The above mentioned condition gives rise to this question:
can we consider both factors of distance and function value in

searching multimodal regions thoroughly and avoiding falling
into the local optimum area? To address this question, a dual-
factor PSO (DFPSO) that incorporates both distance and func-
tion information in helping PSO determine potential regions
is proposed in this study. The strategy of DFPSO combines
the information of distance and function value into a new best
guiding particle to search the potential areas thoroughly. Thus,
the population can jump out of the local optimum area via this
bilateral behavior.

The rest of the paper is organized as follows. Section 2
provides a review of PSO. The details and analysis of DFPSO
are shown in Section 3. Section 4 provides a discussion of the
experimental results, and Section 5 presents the conclusion.

II. PARTICLE SWARM OPTIMIZATION

PSO, which was proposed by J. Kennedy et al. in 1995
[8], is a global numerical algorithm inspired by the foraging
process of animals. From the perspective of the search space,
the term ”particle” represents a potential solution for a given
problem. The population in PSO consists of a fixed number of
particles. Each of the particles has two properties: velocity and
position. Velocity decides the particle’s flying direction and
moving distance. The position decides where the particle is
currently located in, that is, the solution to the given problem.
In PSO, the particle moves in the search space and ”chases” the
best solution obtained so far. The position of the best particle
will be decoded to the approximate optimum solution when
the evolution ceases.

PSO emulates the forging behavior of a swarm of ani-
mals. Mathematically, the particle represents a point in the
d-dimensional space. Two bests exist in PSO, namely, the
historical best solution discovered by the particle itself (pbest)
and the historical best solution identified by the population
(gbest). These two solutions are tracked and updated by
the particles accordingly. The PSO algorithm begins when
a population of particles is initialized randomly and ceases
when the termination criterion is satisfied. The entire searching
process is preformed iteratively. The particle updates its new
velocity as well as the position of the ith dimension as follows:

{
vi = vi +ϕ1r(pbesti − xi)+ϕ2r(gbesti − xi)
xi = xi + vi (1)
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where x represents a possible solution and v represents
the velocity vector of the particle. r is a random positive
number with a uniform distribution [0,1]. ϕ1 and ϕ2 are two
user-defined acceleration constants. pbest is the best previous
position that yields the best fitness value for the particle, and
gbest is the best position discovered by the entire population.
The complete traditional PSO algorithm is shown as Algorithm
1.

Algorithm 1: Algorithm of Particle Swarm Optimization
Input: Population size, acceleration constants ϕ1,ϕ2

and maximum velocity V MAX
Output: The best solution.
Initialize position x, velocity v for all of particles. The1
best position pbest and gbest are also initialized;
k=0;2
while termination condition has not met do3

Evaluate the fitness for each particle according to its4
position vector x;
Update the best position pbest for each particle;5
Update the best position gbest for the whole6
population;
for id=1 to population size do7

for i=1 to d do8

vi = vi +ϕ1r(pbesti − xi)+ϕ2r(gbesti − xi);9

vi = min(V MAXi,max(−V MAXi,vi));10

xi = xi + vi;11
end12

end13
end14
Return the best position.15

A. Related Work

Many researchers have conducted numerous studies
wherein velocity is restricted to help PSO search for the
optimum solution carefully [9]–[18].

Shi and Eberhart [9]proposed the concept of inertia weight,
which is widely utilized at present. The linearly decreased in-
ertia weight, whose maximum and minimum are usually set to
0.9 and 0.4 [9], [10], respectively, decreases with the evolution
of population. This method ensures the diversification of the
population in the initial stage and fast convergence in the final
stage. Researchers have also devoted much attention to the
other components in velocity control, that is, the acceleration
constants. Kennedy and Eberhart [8] suggested that velocity
be set to a fixed value of 2.0. This setting is widely accepted
and adopted in many applications. Ratnaweera et al. [17].
proposed a linearly time-varying acceleration constant-based
PSO. A large ϕ1 and a small ϕ2 are set in the beginning
and are gradually reversed during iteration to exchange the
degrees of individual and social behaviors. Zhihui Zhan et al.
[18] proposed an adaptive PSO by developing a systematic
parameter adaptation scheme and an elitist learning strategy
and by establishing an evolutionary state estimation technique.
Several adaptive parameter control strategies are developed in
their method.

Other researchers have attempted to use different methods
that integrate the mechanisms of other optimization algo-
rithms into PSO [19]–[25]. Lovbjerg et al. [19] integrated the

mechanisms of evolutionary computation into PSO; subpop-
ulations and breeding probability were introduced. Angeline
[20] introduced the concept of selection derived from genetic
algorithms to improve PSO. Their approach guarantees that the
average quality of the particles is improved in every generation.
Higashi and Iba [21] combined PSO with mutation, which
is another concept in genetic algorithms. The updating rules
in traditional PSO are improved through Gaussian mutation.
Yang Shi et al. [22] proposed a cellular PSO in which a
mechanism of cellular automata is integrated in the velocity
update to avoid being trapped in the local optimum. El-Abd
et al. [23] proposed a cooperative PSO algorithm based on
migrating heterogeneous probabilistic models. Fan and Zahara
[24] integrated the Nelder-Mead simplex method into PSO.
Nakano et al. [25] improved the mechanism of PSO by tabu
search.

The neighboring topology of a swarm, which is the flowing
method of information, is also an issue for the improvement
of PSO [26]–[33]. J. Kennedy et al. [26], [27] systematically
investigated the effects of various topologies on PSO and
tested four neighborhood topologies that guide the flight of
particles. Frans van den Bergh et al. [31] proposed a co-
operative particle swarm optimizer that exhibits cooperative
behavior by using multiple swarms to optimize the different
components of the solution vector. Mendes et al. [32] proposed
a fully informed particle swarm (FIPS), which enables all
neighbors to contribute to the update of velocity to make the
individuals fully informed by the swarm. Their results show
that FIPS is a promising method in searching the solution
space. A dynamic multi-swarm PSO was proposed by J.J.
Liang and P.N. Suganthan [33] to improve the topologies of
the static neighborhood. This method divides the population
into numerous, small, frequently regrouped subswarms among
which information is exchanged.

J.J. Liang, A.K. Qin, and P.N. Suganthan et al. [34]
explored a very different way and proposed a comprehensive
learning particle swarm optimizer that optimizes every dimen-
sion of the solution vectors and enables the diversity of the
swarm to be preserved to discourage premature convergence.
A particle’s velocity is updated by learning from all other
particles’ historical best information.

B. Challenge

Despite the success of traditional PSO in dealing with many
problems, it only focuses on the best, which achieves the best
approximate minimum/maximum and allows the particles to
track the two bests. PSO ignores the distance between particles
and the potential regions that include the real global optimum.
Suppose that a particle is located in an optimum region and its
current position is suboptimum among the population. If the
current gbest and pbest (or lbest in local PSO) are far from the
particle’s position, the particle has to follow the instruction of
these bests and is pulled to their regions. gbest and pbest easily
cause the particle moving in its direction even if the particle
is in a local optimum region far from the global optimum.
Finally, the population converges into the local optimum.

DFPSO is proposed in this study to improve the perfor-
mance of PSO by introducing a new best, which is called
ptbest, and by combining the information of distance and
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Fig. 1. The bests distributed in a two-dimensional searching space showed in
contour plot. There are five particles in the swarm. The red point represents the
position of current gbest. The others represent the pbest for each of particle.
All of gray pbest and the red gbest are located in the local optimum area.
The blue pbest, which is far away from the current gbest, is located in the
global optimum area, but its function fitness is not the best one. According
to the traditional particle swarm optimization, most of particles will be pulled
toward the gbest, i.e. the local optimum area.

function value to obtain better results. Thus, DFPSO can jump
out of the local optimum via a bilateral behavior. The following
section provides details on DFPSO.

III. DUAL FACTORS PARTICLE SWARM OPTIMIZATION

PSO is an optimization method that involves the discretiza-
tion of the flight trajectory of particles. Related problems exist
in the PSO strategy. First, discretization causes the particles to
overlook the potential areas during the search process. Suppose
that a particle is currently located in an area where the global
optimum is also located and the particle is not merely located
in the pinpoint of the global optimum. If the other particles
detect a better point in the local optimum area, the particle
in the global optimum area will be pulled toward the local
optimum area. This condition results in premature convergence
to the local optimum area. Second, if the entire population is
located in the local optimum area far from the global optimum,
traditional PSO may not be able to jump out of the local
optimum area. Fig. 1 shows the disadvantages of traditional
PSO. Therefore, the distance between gbest and the particle’s
personal memory should be considered in optimization to
improve the search performance. If the pbest of a particle far
from gbest ranks second only to gbest in fitness, this pbest
has a high potential for helping the population search for the
global optimum. The region search around pbest should be
performed thoroughly.

DFPSO introduces a new best (ptbest) and adds it to PSO.
ptbest is defined as the best position that has the highest
potential in helping PSO identify the global optimum. ptbest
combines factors from both the function value and distance.
The critical measurement of potential has two targets: pbest
that is located far from gbest and pbest that is better than
most of the others. The different scales in the value of the
two measures should be scaled to the same range first before
being combined. Ranking-scaling method is adopted based on
the diversification of optimized problems. ptbest is obtained

Algorithm 2: Algorithm of dual factors particle swarm
optimization

Input: Population Size PopSize, and acceleration constants ϕ0, ϕ1, ϕ2
Output: The best solution.
Initialization;1
while termination condition has not met do2

Evaluate the fitness for each particle according to its position vector x;3
Update the best position pbest for each particle;4
Update the best position gbest for the whole population;5
for j=1 to PopSize do6

Calculate the euclidian distance between pbest of particle j and7
gbest, then record it into Dis( j);

end8
Sort Dis in the direction of ascend order, and record the ranking of each9
particle into DisRanking;
Sort fitness of pbest for particles in the direction from worst to best, and10
record the ranking of each particle into FitRanking;
for j=1 to PopSize do11

Potential( j) = DisRanking( j)+FitRanking( j);12
end13
Update the best position ptbest for the whole population according to14
Potential;
for id=1 to PopSize do15

for i=1 to d do16
vi = ωvi +ϕ0r(pbesti −xi)+ϕ1r(ptbesti −xi)+ϕ2r(gbesti −xi);17
vi = min(V MAXi,max(−V MAXi,vi));18
xi = xi + vi;19

end20
end21

end22
Return the best position found by all of particles.23

by combining the rank of the distance between pbest and
gbest and the rank of pbest for each particle. However, unlike
gbest and pbest, ptbest only reflects the information of a
potential region in the current generation. No updating of
ptbest according to its historical value is implemented. The
potential of the jth particle is calculated as follows:

Potential( j) = DisRanking( j)+FitRanking( j) (2)

where Potential( j) represents the potential of the jth particle,
DisRanking( j) represents the ranking of distance (from the
nearest to the farthest) between pbest and gbest of the jth
particle, and FitRanking( j) represents the ranking of fitness
(from worst to best) of the jth particle.

Accordingly, the velocity update of a particle is determined
by the accumulated information from pbest, gbest, and ptbest.
The velocity formula of the ith dimension of a particle is shown
in the following equation.{

vi = ωvi +ϕ0r(pbesti − xi)+ϕ1r(ptbesti − xi)+ϕ2r(gbesti − xi)
xi = xi + vi

(3)
where pbest represents the best position determined by the par-
ticle itself, ptbest represents the best position with the highest
potential, and gbest represents the best position identified by
the entire population. A random inertia weight, ω = [0,ωmax],
is adopted in DFPSO to improve its search flexibility by
restricting the change in velocity. Traditionally, setting ωmax
to 1 is recommended for balance. ϕ0, ϕ1, and ϕ2 represent the
acceleration constant for each item. Algorithm 2 describes the
details of DFPSO.

IV. EXPERIMENTS AND RESULTS

To verify the performance of PSO in solving complex prob-
lems, DFPSO is tested based on eight benchmark functions
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TABLE I. BENCHMARK FUNCTIONS

Function Search range Best value Fixed Accuracy Level

Unimodal Functions F1 =
D
∑

i=1
xi

2 [−100,100]D 0 1.00E-06

F2 =
D
∑

i=1

(
i

∑
j=1

x j

)2

[−100,100]D 0 1.00E-06

F3 =
D
∑

i=1
ixi

4 + random[0,1) [−1.28,1.28]D 0 1.00E-06

F4 =
D
∑

i=1
(�xi +0.5�)2 [−100,100]D 0 1.00E-06

Multimodal Functions F5 =
D−1
∑

i=1

(
100
(
xi

2 − xi+1
)2 +(xi −1)2

)
[−2,2]D 0 1.00E-02

F6 = −20e
−0.2

√
1
D

D
∑

i=1
x2
i − e

1
D

D
∑

i=1
cos(2πxi)

+20+ e [−32,32]D 0 1.00E-02

F7 =
D
∑

i=1

(
y2

i −10cos(2πyi)+10
)

[−5,5]D 0 1.00E-02

F8 =
D−1

∑
i=1

(
100

(
z2

i − zi+1
)2

+(zi −1)2
)

+390

z = x−o+1

[−100,100]D 390 1.00E-02

TABLE IV. THE AVERAGE NUMBER OF FITNESS EVALUATIONS BEFORE
REACHING THE FIXED ACCURACY LEVEL. THE BEST RESULTS AMONG THE

SIX METHODS ARE HIGHLIGHTED IN BOLD AND DOT.

Dimension=10

GA GPSO LPSO FIPS
URing

FIPS
Usquare DFPSO

F1 1.26E+04 5.32E+04 6.28E+04 4.90E+04 1.94E+04 •6.78E+03
F2 3.77E+04 7.28E+04 1.00E+05 1.00E+05 4.38E+04 •1.90E+04
F3 1.00E+05 1.00E+05 1.00E+05 1.00E+05 1.00E+05 1.00E+05
F4 •3.31E+02 3.69E+04 4.29E+04 1.99E+04 7.93E+03 2.43E+03
F5 1.00E+05 1.00E+05 1.00E+05 1.00E+05 1.00E+05 •6.55E+04
F6 9.00E+03 4.64E+04 5.49E+04 3.51E+04 1.25E+04 •5.14E+03
F7 1.00E+05 8.40E+04 1.00E+05 1.00E+05 1.00E+05 •6.87E+04
F8 1.00E+05 1.00E+05 9.70E+04 1.00E+05 1.00E+05 •7.69E+04

Dimension=20

GA GPSO LPSO FIPS
URing

FIPS
Usquare DFPSO

F1 4.09E+04 1.19E+05 1.44E+05 1.09E+05 2.85E+04 •1.27E+04
F2 2.23E+05 2.00E+05 2.00E+05 2.00E+05 1.49E+05 •7.83E+04
F3 2.00E+05 2.00E+05 2.00E+05 2.00E+05 2.00E+05 2.00E+05
F4 7.27E+03 9.61E+04 1.13E+05 4.53E+04 1.20E+04 •6.51E+03
F5 1.97E+05 2.00E+05 2.00E+05 2.00E+05 2.00E+05 •1.45E+05
F6 2.72E+04 1.07E+05 1.27E+05 7.69E+04 1.85E+04 •8.94E+03
F7 2.00E+05 •1.97E+05 2.00E+05 2.00E+05 2.00E+05 1.75E+05
F8 2.04E+05 2.00E+05 2.00E+05 2.00E+05 2.00E+05 •1.57E+05

Dimension=30

GA GPSO LPSO FIPS
URing

FIPS
Usquare DFPSO

F1 9.10E+04 1.92E+05 2.33E+05 1.83E+05 3.61E+04 •1.93E+04
F2 3.00E+05 3.00E+05 3.00E+05 3.00E+05 3.00E+05 •2.03E+05
F3 3.00E+05 3.00E+05 3.00E+05 3.00E+05 3.00E+05 3.00E+05
F4 1.21E+05 1.62E+05 1.98E+05 8.01E+04 •1.52E+04 2.05E+04
F5 2.89E+05 3.00E+05 3.00E+05 3.00E+05 3.00E+05 •2.53E+05
F6 6.02E+04 1.75E+05 2.09E+05 1.27E+05 2.34E+04 •1.30E+04
F7 3.00E+05 3.00E+05 3.00E+05 3.00E+05 3.00E+05 •2.87E+05
F8 3.00E+05 2.99E+05 3.00E+05 3.00E+05 3.00E+05 •2.83E+05

(four unimodal and four multimodal functions) [35], [36]. All
the functions are tested on 10, 20, and 30 dimensions. Table I
presents the properties and formulas of these functions.

Six algorithms, including the proposed DFPSO, four other
PSO algorithms, and a genetic algorithm, are implemented.
These algorithms are tested based on the eight benchmark
functions with 10, 20, and 30 dimensions. The algorithms
specifically include a genetic algorithm (GA), the global
version of PSO with inertia weight (GPSO), the local version
of PSO with ring neighborhood and inertia weight (LPSO),

weighted fully informed particle swarm with U-ring topology
(FIPS(URing)), weighted fully informed particle swarm with
U-square topology (FIPS(USquare)), and the proposed DF-
PSO. GA [37] is the most widely used among these methods.
GPSO [8] and the LPSO with a ring topology [27] are
traditional PSO algorithms. FIPS [32] is a fully informed PSO
that employs all the neighbors to affect velocity. URing and
USquare are employed with weighted FIPS based on goodness
of fitness.

For a fair comparison, the maximum fitness evaluations
are set to 100,000, 200,000, and 300,000 for 10-D, 20-D,
and 30-D, respectively. The population size for all of the
compared algorithms is set to 50. The parameters in the other
five algorithms are set to their recommended best values. The
value of acceleration constants ϕ0, ϕ1, and ϕ2 in DFPSO is set
to 1.2. To reduce statistical errors, each function is indepen-
dently simulated 30 times; the best, worst, mean, and standard
deviation are subsequently reported. The average number of
fitness evaluations before reaching the fixed accuracy level is
also reported for each problem. All experiments are performed
in MATLAB 7.6 on the same machine equipped with AMD
Phenom II 3.2GHz CPU, 3.1G memory, and Windows XP
operating system.

Tables II and III provide the comparison of the accuracy
of the proposed method and the other methods. The mean
of DFPSO in most of the benchmark functions is better than
those of the other methods. The smallest standard deviation is
also generated by DFPSO. This result indicates that DFPSO
is more stable than the other methods. DFPSO outperforms
all other algorithms in functions F1, F2, F3, F5, and F8 for
the 10-D and 20-D problems and in functions F1, F2, F3, F5,
F7, and F8 for the 30-D problem. DFPSO is tied with the
other methods for the first rank in F4 and F6 for the 10-D
and 20-D problems. Therefore, DFPSO significantly improves
the optimization result in functions F1, F2, F3, F5, and F8.
Although the results achieved by DFPSO are not the best ones
in 10-D and 20-D F7, the best result is achieved by DFPSO
in a higher dimension (30-D). DFPSO can thus be applied
to solve complex problems. The dual-factor search strategy
helps DFPSO improve its search performance. However, the
results for F6 exhibit a different trend. DFPSO is tied with FIPS
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TABLE II. RESULTS ON 10-DIMENSIONAL AND 20-DIMENSIONAL PROBLEMS. THE BEST RESULTS AMONG THE SIX ALGORITHMS ARE HIGHLIGHTED
IN BOLD AND DOT.

Dimension=10

F1 F2 F3 F4 F5 F6 F7 F8

GA Best 4.42E-12 4.92E-10 4.91E-02 0.00E+00 2.49E-02 3.41E-06 2.00E+00 3.96E+02
Worst 2.89E-10 4.84E-09 3.45E-01 0.00E+00 8.65E-01 2.94E-05 2.94E-05 1.78E+03
Mean 1.10E-10 2.44E-09 1.25E-01 •0.00E+00 2.48E-01 1.11E-05 •1.11E-05 5.11E+02

Std 6.88E-11 6.88E-11 6.24E-02 0.00E+00 1.89E-01 6.05E-06 6.05E-06 2.82E+02

GPSO Best 3.88E-59 2.02E-20 3.00E-04 0.00E+00 1.90E+00 2.66E-15 0.00E+00 3.90E+02
Worst 1.51E-53 5.25E-17 2.14E-03 0.00E+00 3.47E+00 2.66E-15 4.00E+00 4.84E+02
Mean 1.02E-54 5.80E-18 9.42E-04 •0.00E+00 2.78E+00 2.66E-15 7.67E-01 4.07E+02

Std 2.84E-54 1.28E-17 5.51E-04 0.00E+00 3.56E-01 0.00E+00 1.25E+00 2.53E+01

LPSO Best 1.69E-28 9.51E-07 2.12E-04 0.00E+00 3.83E+00 6.22E-15 1.00E+00 3.90E+02
Worst 1.29E-24 1.11E-04 4.18E-03 0.00E+00 4.96E+00 6.67E-13 5.00E+00 3.98E+02
Mean 2.03E-25 1.96E-05 1.80E-03 •0.00E+00 4.47E+00 1.24E-13 3.42E+00 3.92E+02

Std 3.17E-25 2.44E-05 8.51E-04 0.00E+00 3.53E-01 1.41E-13 1.30E+00 2.36E+00

FIPS URing Best 3.56E-18 1.81E-06 4.67E-04 0.00E+00 3.88E+00 5.43E-10 3.07E+00 3.92E+02
Worst 4.35E-16 5.45E-05 2.43E-03 0.00E+00 4.54E+00 3.18E-07 6.92E+00 4.00E+02
Mean 8.59E-17 1.24E-05 1.14E-03 •0.00E+00 4.18E+00 6.68E-08 5.33E+00 3.95E+02

Std 8.44E-17 1.26E-05 5.10E-04 0.00E+00 1.72E-01 9.58E-08 8.48E-01 1.68E+00

FIPS Usquare Best 6.44E-49 2.24E-19 8.50E-05 0.00E+00 1.19E+00 0.00E+00 1.61E-02 3.91E+02
Worst 9.48E-47 2.22E-16 1.36E-03 0.00E+00 2.05E+00 2.66E-15 6.14E+00 3.96E+02
Mean 1.55E-47 3.15E-17 6.54E-04 •0.00E+00 1.63E+00 •1.84E-15 3.73E+00 3.92E+02

Std 1.93E-47 5.31E-17 3.34E-04 0.00E+00 2.19E-01 1.53E-15 1.34E+00 1.24E+00

DFPSO Best 1.93E-132 2.74E-48 7.94E-05 0.00E+00 3.51E-04 0.00E+00 0.00E+00 3.90E+02
Worst 1.36E-124 4.38E-42 9.16E-04 0.00E+00 1.19E-03 2.66E-15 2.00E+00 4.06E+02
Mean •5.33E-126 •5.42E-43 •3.17E-04 •0.00E+00 •5.86E-04 •1.84E-15 4.00E-01 •3.91E+02

Std 2.48E-125 1.06E-42 1.99E-04 0.00E+00 1.64E-04 1.53E-15 5.63E-01 3.09E+00

Dimension=20

GA Best 1.59E-10 3.17E-08 2.77E-01 0.00E+00 9.91E-06 1.64E-05 1.10E+01 3.90E+02
Worst 2.20E-09 5.37E-06 1.18E+00 1.00E+00 1.10E+01 4.44E-05 2.10E+01 3.94E+02
Mean 9.16E-10 7.13E-07 5.55E-01 3.33E-02 4.75E+00 2.56E-05 1.51E+01 3.91E+02

Std 5.11E-10 1.36E-06 2.33E-01 1.83E-01 4.25E+00 7.07E-06 1.94E+00 1.83E+00

GPSO Best 1.01E-52 4.31E-07 9.50E-04 0.00E+00 9.25E+00 2.66E-15 0.00E+00 3.90E+02
Worst 1.40E-46 1.18E-04 5.53E-03 0.00E+00 1.63E+01 6.22E-15 9.00E+00 5.35E+02
Mean 8.62E-48 3.47E-05 3.03E-03 •0.00E+00 1.22E+01 5.74E-15 •2.63E+00 4.17E+02

Std 2.70E-47 3.09E-05 1.20E-03 0.00E+00 1.01E+00 1.23E-15 2.46E+00 3.55E+01

LPSO Best 1.56E-21 5.45E-01 3.10E-03 0.00E+00 1.23E+01 1.45E-11 5.42E+00 3.90E+02
Worst 2.82E-19 5.73E+00 1.02E-02 0.00E+00 1.47E+01 2.50E-10 1.90E+01 4.32E+02
Mean 3.68E-20 2.42E+00 7.22E-03 •0.00E+00 1.42E+01 7.26E-11 1.33E+01 3.97E+02

Std 6.72E-20 1.23E+00 2.02E-03 0.00E+00 5.08E-01 6.17E-11 3.54E+00 8.29E+00

FIPS(URing) Best 6.85E-16 1.09E+00 1.10E-03 0.00E+00 1.33E+01 5.49E-09 1.71E+01 4.02E+02
Worst 4.61E-15 7.11E+00 4.40E-03 0.00E+00 1.46E+01 3.25E-05 3.56E+01 5.15E+02
Mean 2.40E-15 3.38E+00 2.83E-03 •0.00E+00 1.42E+01 2.12E-06 2.58E+01 4.11E+02

Std 1.17E-15 1.66E+00 8.18E-04 0.00E+00 2.83E-01 7.24E-06 4.74E+00 2.11E+01

FIPS(USquare) Best 1.85E-70 8.35E-11 7.18E-04 0.00E+00 9.57E+00 2.66E-15 9.98E+00 3.99E+02
Worst 2.22E-68 8.03E-09 4.29E-03 0.00E+00 1.09E+01 2.66E-15 1.71E+01 4.06E+02
Mean 3.43E-69 1.91E-09 1.97E-03 •0.00E+00 1.03E+01 •2.66E-15 1.37E+01 4.01E+02

Std 5.43E-69 2.03E-09 8.95E-04 0.00E+00 2.99E-01 0.00E+00 1.62E+00 1.63E+00

DFPSO Best 5.29E-147 1.67E-23 1.50E-04 0.00E+00 3.15E-05 2.66E-15 0.00E+00 3.90E+02
Worst 9.84E-139 5.30E-19 3.66E-03 0.00E+00 6.10E+00 2.66E-15 1.30E+01 3.94E+02
Mean •8.56E-140 •3.37E-20 •9.81E-04 •0.00E+00 •4.99E-01 •2.66E-15 3.43E+00 •3.91E+02

Std 1.99E-139 9.96E-20 7.27E-04 0.00E+00 1.46E+00 0.00E+00 3.47E+00 1.25E+00

(USquare) for the first rank in the 10-D and 20-D problems
but ranks second in the 30-D problem. The result is slightly
lower than that of FIPS (USquare).

The average number of fitness evaluations before reaching
the fixed accuracy level in all the benchmark functions is
counted and shown in Table. IV. Based on the results shown
in the figure, DFPSO exhibits faster convergence speed com-
pared with the other algorithms. The introduction of bilateral
search behavior increases the possibility of determining a
better position, that is, a better solution, with a small number
of generations. Therefore, DFPSO improves the traditional
PSO efficiently. Fig. 2 shows the comparison of evolutionary

curve of errors on 30-dimensional problems. This plot further
demonstrates that the advantages of DFPSO in accelerating
evolution process as well as avoiding dropping into local
optimum.

V. CONCLUSION

DFPSO was developed in this study to improve the per-
formance of PSO. Both distance and function information
were considered to help PSO identify the potential global
optimum areas. The proposed strategy increases the possibility
of jumping out of the local optimum area and yielding better
results via the bilateral search behavior.
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TABLE III. RESULTS ON 30-DIMENSIONAL PROBLEMS. THE BEST RESULTS AMONG THE SIX ALGORITHMS ARE HIGHLIGHTED IN BOLD AND DOT.

Dimension=30

F1 F2 F3 F4 F5 F6 F7 F8

GA Best 1.35E-09 1.80E-04 3.77E-01 0.00E+00 7.33E-04 2.73E-05 1.50E+01 4.78E+02
Worst 9.70E-09 5.45E-03 3.18E+00 3.00E+00 6.78E+01 5.93E-05 3.30E+01 5.09E+02
Mean 3.55E-09 1.27E-03 1.66E+00 5.00E-01 7.90E+00 4.02E-05 2.33E+01 4.94E+02

Std 2.08E-09 1.18E-03 7.26E-01 7.31E-01 1.35E+01 7.39E-06 3.52E+00 6.96E+00

GPSO Best 7.97E-45 4.20E-02 3.42E-03 0.00E+00 2.08E+01 6.22E-15 1.00E+00 3.90E+02
Worst 3.45E-40 3.86E+00 1.11E-02 0.00E+00 2.77E+01 1.33E-14 2.80E+01 7.03E+02
Mean 2.81E-41 5.56E-01 6.61E-03 •0.00E+00 2.25E+01 9.41E-15 1.20E+01 4.55E+02

Std 7.02E-41 7.57E-01 2.28E-03 0.00E+00 1.71E+00 3.53E-15 6.94E+00 7.79E+01

LPSO Best 1.35E-18 4.28E+01 9.14E-03 0.00E+00 2.21E+01 6.44E-10 1.30E+01 3.93E+02
Worst 2.11E-15 1.75E+02 2.23E-02 0.00E+00 2.48E+01 1.64E-08 5.83E+01 5.71E+02
Mean 1.71E-16 8.80E+01 1.56E-02 •0.00E+00 2.41E+01 3.45E-09 3.17E+01 4.39E+02

Std 4.13E-16 3.78E+01 4.01E-03 0.00E+00 4.93E-01 3.24E-09 1.01E+01 4.15E+01

FIPS URing Best 6.23E-14 2.06E+02 2.72E-03 0.00E+00 2.38E+01 3.52E-08 5.26E+01 4.15E+02
Worst 4.02E-13 1.14E+03 7.58E-03 0.00E+00 2.46E+01 6.07E-07 9.85E+01 7.71E+02
Mean 1.70E-13 6.41E+02 4.96E-03 •0.00E+00 2.43E+01 1.06E-07 7.77E+01 4.46E+02

Std 6.97E-14 2.18E+02 1.38E-03 0.00E+00 2.04E-01 1.12E-07 1.16E+01 7.11E+01

FIPS Usquare Best 4.44E-86 1.04E-06 1.36E-03 0.00E+00 1.90E+01 2.66E-15 2.07E+01 4.09E+02
Worst 8.17E-84 3.86E-05 6.37E-03 0.00E+00 2.01E+01 6.22E-15 4.51E+01 5.65E+02
Mean 1.93E-84 7.60E-06 3.74E-03 •0.00E+00 1.96E+01 •3.85E-15 2.78E+01 4.30E+02

Std 2.45E-84 7.78E-06 1.22E-03 0.00E+00 3.08E-01 1.70E-15 4.43E+00 3.78E+01

DFPSO Best 4.46E-145 4.41E-13 4.32E-04 0.00E+00 4.42E-05 2.66E-15 2.50E-12 3.90E+02
Worst 7.35E-139 5.71E-10 1.05E-02 1.00E+00 7.66E+00 6.22E-15 2.40E+01 5.13E+02
Mean •3.76E-140 •5.99E-11 •2.11E-03 3.33E-02 •8.27E-01 4.09E-15 •6.50E+00 •4.12E+02

Std 1.46E-139 1.16E-10 2.09E-03 1.83E-01 2.09E+00 1.77E-15 5.93E+00 4.09E+01
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Fig. 2. The comparison of evolutionary curve of error on 30-dimensional problems.
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Eight well-known benchmark functions were selected to
compare DFPSO with five other algorithms, namely, four PSOs
and a genetic algorithm. The experimental results show that the
proposed approach improves performance, including accuracy
and convergence speed.
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