

Abstract—The aircraft landing problem (ALP) is a practical
and challenging optimization problem for the air traffic
industry. ALP involves allocating a set of aircrafts to airport
runways and allocating landing times for which the goal is to
minimize the total cost of landing deviation from the preferred
target times. Differential evolution (DE) is a population based
algorithm that has been shown to be an effective algorithm for
solving continuous optimization problems. However, DE can
suffer from slow convergence when utilized for combinatorial
optimization problems, thus hindering its ability to return good
quality solutions in these domains. To address this we propose a
hybrid algorithm that combines differential evolution with a
simple descent algorithm. DE is responsible for exploring new
regions in the search space, whilst the descent algorithm focuses
the search around the area currently being explored.
Experimenting with widely used ALP benchmark instances, we
demonstrate that the proposed hybrid algorithm performs
better than DE without the simple descent algorithm.
Furthermore, performance comparisons with other algorithms
from the scientific literature demonstrate that our hybrid
algorithm performs better, or at least comparably, in terms of
both solution quality and computational time.

I. INTRODUCTION
Over the past 20 years, the demand for air transportation has
increased significantly [1]. This leads to congestion in
airspace, resulting in airports not being able to cope with all
the demands placed upon it. Consequently, airport managers
face challenges in providing efficient services, and having to
shift or change the landing and/or the departure time of some
aircrafts. These changes lead to inefficient use of airport
resources and potentially poor customer service. The aircraft
landing problem (ALP) plays a pivotal role in determining the
landing time of the arrival aircrafts [1], [2]. The ALP involves
the construction of a landing schedule for a set of aircrafts,
such that each aircraft is assigned to land on a specific
runway, at a specific time, while ensuring that all the problem
and safety constraints are respected. The aim is to minimize
the overall penalty that will be incurred when an aircraft lands
before or after its preferred time [1], [2].

ALP is an NP-hard problem. For this reason heuristic and
meta-heuristic algorithms have been widely used to seek
good quality solutions, within an acceptable time, instead of
using exact methods [1], [2]. Although exact methods can
provide optimal solutions, their computational time tends to

Nasser R. Sabar is with The University of Nottingham Malaysia Campus,
Jalan Broga, 43500 Semenyih, Selangor, Malaysia (e-mail: Nasser.Sabar@
nottingham.edu.my)
Graham Kendall is with The University of Nottingham, UK and also with
The University of Nottingham Malaysia Campus, Jalan Broga, 43500
Semenyih, Selangor, Malaysia (e-mail:
Graham.Kendall@nottingham.edu.my)

grow exponentially as the problem size increases, which
makes them only suitable for small/medium-sized problems
[1]. Examples of heuristic and meta-heuristic algorithms that
have been proposed for ALP are: first-come-first-serve [2],
scatter search [3], bionomic [3], genetic algorithm [4],
cellular automata [5], simulated annealing [6], and hybrid
algorithms [6], [4]. Despite the numerous algorithms for
ALP, no one algorithm has been shown to be an efficient
solution method over all problem instances and their
performance decreases as the instances grow larger.

In this work, we propose a hybrid algorithm to tackle ALP.
The proposed algorithm combines differential evolution (DE)
with a simple descent local search algorithm. DE is a
well-known population based algorithm that has been shown
to be very efficient in handling continuous optimization
problems [7], [8]. Unfortunately, the application of DE to
combinatorial optimization problems is not without any
modification on DE operators and is not as good as
continuous optimization [8]. This is because the DE
evolutionary operators (mutation and crossover), which are
used to generate new solutions, were introduced to deal with
real values and thus some modifications are needed to deal
with combinatorial optimization problems that, typically, use
integers to represent their solutions. In other words, a basic
DE algorithm cannot be applied to combinatorial
optimization problems without modification to the main DE
operators. In addition, despite the success in solving
continuous optimization problems, DE has been criticized for
its slow convergence and this is also apparent when dealing
with combinatorial optimization problems, due to the
exploration bias of DE [8].

To deal with ALP, a combinatorial optimization problem,
we need an appropriate solution representation that allows
DE to use its original evolutionary operators to generate new
solutions, and we also need to accelerate convergence. To
deal with the solution representation, we utilize a real value
representation, mapping each solution onto an ALP schedule.
To overcome slow convergence, the proposed DE is coupled
with a simple descent algorithm in such a way that DE is
responsible for exploring new regions of the search space,
whilst the simple descent algorithm focuses the search around
the area currently being explored. The computational
experiments on the widely used ALP benchmark instances [2]
demonstrate that the proposed hybrid algorithm outperforms
DE when used without the simple descent algorithm. The
proposed hybridized approach is also highly competitive,
even better on some instances, when compared to the
algorithms reported in the scientific literature.

Aircraft Landing Problem using Hybrid Differential Evolution and
Simple Descent Algorithm

Nasser R. Sabar and Graham Kendall, Senior Member IEEE

520

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. PROBLEM DESCRIPTION
The aircraft landing problem (ALP) can be defined as follows
[2]. When a set of arrival aircrafts enter the radar coverage of
the destination airport, the air traffic controller assigns, for
each aircraft, a landing runway and a specific landing time on
the determined runway. The assignment is subject to a set of
constraints that should be respected under any circumstances.
These are [2]:

- Each aircraft is assigned to exactly one runway.
- No more than one aircraft should be assigned the same

landing time on the same runway.
- Each aircraft should be assigned a landing time, which has

a predefined landing time window.
- The separation time between the aircrafts that have been

assigned to land on the same runway should be respected.

In APL, each aircraft is associated with a predefined,
preferred landing time and landing time window. The main
goal is that each aircraft should land at its landing time. A
penalty cost will be added if the aircraft is assigned to land
before or after the preferred landing time. The main aim of the
optimization algorithm is to minimize the total penalty cost
by generating, for a given set of aircrafts, the best landing
sequence on given runways and assigning a landing time for
each aircraft. The problem inputs and the formulation are as
follows [2], [5]:

- n: the number of the arrival aircrafts.

- m: the number of runways.

- sij: the separation time (sij > 0) between aircrafts i and j

when they are assigned to same runway.

- Ti: the preferred landing time (target time) of aircraft i.

- Ei: the earliest landing time of aircraft i.

- Li: the latest landing time of aircraft i.

- C1i: the incurred penalty per unit of time for late landing

of aircraft i.

- C2i: the incurred penalty per unit of time for early landing

of aircraft i.

- xi: the assigned landing time of aircraft i (1, 2, ...,)i n=

The penalty cost of the ith aircraft that has been assigned for
landing before or after the target landing time is calculated as
follows:

1 ()
2 ()

i i i i i
i

i i i i i

C T x if x T
p

C x T if T x
− ≤⎧

= ⎨ − >⎩
 (1)

And the total penalty cost for all aircrafts is calculated as
follows:

Minimize
1

n

i
i

f p
=

= ∑ (2)

Subject to:

, 1, 2, ...,i i iE x L i n≤ ≤ = (3)
, (1, ..., , 1, ...,)j i ijx x s i n j n− > = = (4)

Equation (3) ensures that each aircraft is assigned to land
within its time windows, while equation (4) verifies that the
safety constraint between the aircrafts assigned to the same
runway is respected.

III. THE PROPOSED ALGORITHM
In this section, we first discuss the basic differential evolution
algorithm followed by the proposed hybrid algorithm.

A. Differential evolution algorithm
Differential evolution (DE) is a stochastic population based
algorithm introduced by [7] as a variant of an evolutionary
algorithm. DE was originally proposed to deal with
continuous optimization problems or to optimize real
parameter and real valued functions. DE has a greedy nature
that generates, at each generation, a new population of
solutions to replace the old population, provided that the new
solutions are better in terms of fitness function [8]. In DE, a
new population of solutions is created using two main
operators (mutation and crossover). The mutation operator
selects three different solutions from the current population
and then combines them to generate a new solution. Then, the
generated solution is combined with the initial solution via
the crossover operator. The new solution is added to the new
population if its quality is better than the initial solution. The
basic steps of the DE (DE/rand/1/bin) are as follows [7]:

Step 1: Randomly generate a population of solutions, NP.
Step 2: Evaluate the fitness, f, of the population.
Step 3: For each solution G

ix in the current population NP (i
is the solution index and G is the current generation)
generate a mutated solution (G

im) using (5):

, 1, 2 , 3,* (), {1, ..., }G G G G
i j j j jm x F x x j n= + − ∀ ∈

(5)
where j represent the decision variable, n represent the
maximum number of decision variables in a given
problem instance, F is the scaling factor (F ∈ [0, 1])
and 1

Gx , 2
Gx and 3

Gx are three randomly selected
solutions from the current population where

1 2 3
G G Gx x x≠ ≠ .

Step 4: Recombine (crossover step) the solution generated by
a mutation operator (G

im) with the target solution (G
ix

) based on the crossover rate CR (CR ∈ [0, 1]) to
generate a new offspring (1G

im +) as follows (6):

() (),1
,

() (),

{1, ..., }, {1, ..., | |}

Gm if Rand j CR or j Rnd ii jGmi j Gx if Rand j CR and j Rnd ii j

j n i NP

≤ =+ =
> ≠

∀ ∈ ∀ ∈

⎧⎪
⎨
⎪⎩

 (6)

where Rand(j) is a random number (Rand(j) ∈ [0, 1])
selected for the jth decision variable, Rnd(i) is a

521

random decision variable index (Rnd(i) ∈ {1,…, n}).
Rnd ensure that 1G

im + gets at least one decision

variable from G
im .

Step 5: Calculate the fitness of 1G
im + and compare it with

G
ix . Replace G

ix with 1G
im + if 1G

im + fitness is

better than G
ix as follows (7):

1 1
1

1

() ()

() ()
{1, ..., | |}

G G G
i i iG

i G G G
i i i

m if f m f x
x

x if f m f x
i NP

+ +
+

+

⎧ ≤⎪= ⎨
>⎪⎩

∀ ∈

 (7)

Step 6: If the termination criterion is satisfied (the number of
generations), stop and return the best solution.
Otherwise, go to Step 3.

B. The proposed hybrid algorithm for the ALP
In this section, we first discuss the application of DE for the
ALP and then the proposed hybrid DE algorithm.

1) DE for ALP
To apply a DE to ALP, we need to define a suitable solution
representation. This is because DE mutation and crossover
operators were originally proposed to deal with continuous
optimization problems or real valued functions. In these kinds
of problems, the decision variables are assigned real values
and these values are directly used in the calculation of the
fitness function f(x). Unfortunately, the mutation and
crossover operators of the basic DE cannot be used to solve
combinatorial optimization problems such as ALP [8]. This is
because ALP deals with integer values and it has some
problem related constraints that have to be respected.
Therefore, to have a direct relation between ALP and DE
operators, in this work, we represent the ALP solutions using
real value numbers, in the same way as is used for continuous
optimization problems, but each part of the real number
represents a different role in ALP. More precisely, in ALP we
need to assign for each aircraft a runway and landing time on
the selected runway. Here our solution representation has n
decision variables and each one represents one aircraft. Each
decision variable takes a real value between 1 and m, where m
is the number of runways in a given problem instance. Then,
for each decision variable, the integer part of generated
number represents the allocated runway, whilst the fraction
part denotes the order of the aircraft on this runway. For
example, assume an instance of ALP that has 6 aircraft (n=6)
that need to be scheduled to land on 3 runways (m=3). If we
assign numbers for the aircrafts from 1 to 6, the decision
variables will be (1, 2, 3, 4, 5, 6), as shown in the first row of
Table 1. Next, generate for each decision variable a random
number r (r ∈ [1, 3])), as shown in second row of Table 1.

TABLE 1 THE DECISION VARIABLES AND THEIR
CORRESPONDING REAL VALUES

Decision variables 1 2 3 4 5 6
Values 2.2 1.45 1.4 3.8 3.65 2.2

To decode Table 1 into an ALP solution, the procedure will
be as follows:

- Aircraft 1 is assigned to land on the second runway,
aircraft 2 is assigned to land on the first runway,
aircraft 3 is assigned to land on the first runway,
aircraft 4 is assigned to land on the third runway, and
so on.

- On each runway we sort the assigned aircraft in an
ascending order in such a way that the order represents
the landing time on this runway.

In this work, we use this kind of representation in order to
avoid modifying the DE mutation and crossover operators
and also to perverse DE original features. We also restricted
the decision variable boundaries in order to ensure that their
values are within the feasible area. That is, the integer part of
each decision variable is restricted between 1 and m. In this
work, the initial population of solutions of DE is generated by
assigning for each decision variable a random value drawn
from a uniform distribution in the interval of (1, m) and the
generated solutions are assigned a fitness values using
equation (2). Afterwards, the six steps of DE discussed in
section III.A are repeatedly applied until the stopping
condition is satisfied.

2) A hybrid DE for ALP
In DE, the mutation operator (equation (5), section III.A)
generates a new solution by adding the weighted difference of
the two selected solutions into the third one. In ALP, any
small modification on a current solution might lead to a big
change in the solution fitness value because this modification
might shift or swap several aircrafts from their current
runway and landing time to new ones. This may cause slow
convergence and generate a low quality solution. Therefore,
to accelerate the convergence rate of DE, we coupled it with a
simple descent algorithm. That is, at each generation of DE,
solutions that are generated by the mutation and crossover
operators are further improved by the simple descent
algorithm. Hence, the simple descent algorithm takes place
after the mutation and crossover operators and before DE
population update step. Thus DE is responsible for exploring
new regions of the search space, whilst the simple descent
algorithm focuses the search around the area currently being
explored. The simple descent algorithm is an improvement
method that starts with an initial solution and iteratively
explores its neighborhood solutions using a move operator. A
generated neighborhood solution is accepted if its quality is
better than the current one (our solution quality is calculated
using equation (2)). In this work, a neighborhood solution is
generated by applying one of the following move operators
which is selected at random:

- MO1: randomly select a runway and examine all
possible swaps between each pair of aircrafts.

- MO2: randomly select two different runways and
examine all possible swaps of aircraft between the
selected runways.

522

- MO3: randomly select one aircraft and move it to
another runway.

The simple descent algorithm stops the search if there is no
improvement in the fitness function after a predefined
number of consecutive iterations (20 non-improvement
iterations, fixed based on a preliminary test). Generally,
invoking the simple descent algorithm at every generation
would be computationally expensive and also might cause
DE to prematurely converge in the early stages of the search.
To avoid this tendency, and to control the number of calls to
the simple descent algorithm, the application of the simple
descent algorithm will be based on the probability of Ps
which is calculated as follows:

iter_cPs
iter_max

= (8)

where iter_c represents the current iteration and iter_max
represents the maximum number of iterations. In equation
(8), the simple descent algorithm is applied more frequently
in the latter stages of the search process than in the early
stages. Hence, the search will be more explorative in the early
stages and will gradually change to be more exploitive in the
latter stages. The pseudocode of the proposed hybrid
algorithm is presented in Algorithm 1((DE/rand/1/bin) [8]).

Algorithm 1: The basic DE algorithm (DE/rand/1/bin)

1
2
3
4
5
6

7
8
9

10
12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27
28

Set NP, F, CR, Maxg, LSiter, D=n, G=0;
Randomly generate a population of solutions
Calculate the fitness value (f) for each solution
while (G< Maxg) do

 for i=1 to |NP| do
 Randomly select r1, r2, and r3 from NP

where r1≠ r2 ≠ r3≠i
 for j=1 to D do // eq. (5)

 , 1, 2, 3,*()G G G G
i j r j r j r jm x F x x= + −

 endfor
 Rnd(j)=rand [1, d]
 for j=1 to D do //eq. (6)
 if(rand(0,1)≤ CR or j== Rnd (j) then
 , ,

G G
i j i ju m=

 else
 , ,

G G
i j i ju x=

 endfor
 Ps= G/Maxg; r=rand [0,1]
 if (r ≤ Ps) then //eq. (8)
 Call the simple descent algorithm to
 improve G

iu

 If(f(G
iu) < f(G

ix)) then 1G G
i ix u+ =

 else 1G G
i ix x+ =

 endfor
 G=G+1;
end while
Return the best solution

The proposed hybrid algorithm works as follows: first set DE
parameters (line 1), generate a population of solutions (line 2)
and calculate the fitness value for each solution (line 3). Then,
the while-loop is executed (lines 4 to 27). In each generation,
a new population of solutions is created (lines 5 to 25) using
the mutation (lines 7 to 9) and crossover operators (lines 12 to
19). Next, calculate the probability of calling the simple
descent algorithm (line 21) and apply the simple descent
algorithm to improve the current solution (line 22). Replace
the new solution with the incumbent one if new one is better
in term of the fitness value (line 23). Otherwise, keep the old
solution (line 24). Update the generation counter (line 26) and
check the stopping condition. If the stopping condition is
satisfied stop and return the best solution (line 28). Otherwise,
start a new generation.

IV. EXPERIMENTAL SETUP
In this section, we discuss the main characteristic of the ALP
benchmark instances and the parameter settings of the
proposed hybrid algorithm.

A. Benchmark Instances
The performance of the proposed algorithm is assessed using
the 13 ALP benchmark instances that have been used by other
researchers in the scientific literature [2]. The instances are
introduced in [2] and are publically available at the
OR-library1. Table 2 shows the main characteristics of the
ALP 13 instances. The first column represents instance
names, the second column represents the number of aircraft
(n), the third column represents the number of runways (m)
and fourth column represents instance number (instance no.).

In these instances, the number of aircraft and runways is
different from one to another. That is, the number of aircraft is
10 to 500 and the number of runways varies from 1 to 5.
Based on the number of aircraft in each instance, Airland1 to
Airland8 instances (instance no. 1 to 25, Table 2) are
categorized as a small-sized instances, while Airland9 to
Airland13 (instance no. 26 to 49, Table 2) are classified as a
large-sized instances.

TABLE 2 THE CHARACTERISTICS OF THE ALP BENCHMARK
INSTANCES

Instance name n m Instance no.

Airland1 10
1 1
2 2
3 3

Airland2 15
1 4
2 5
3 6

Airland3 20
1 7
2 8
3 9

Airland4 20

1 10
2 11
3 12
4 13

Airland5 20
1 14
2 15
3 16

1 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html (last

accessed, 15th Dec 2013)

523

4 17

Airland6 30
1 18
2 19
3 20

Airland7 44 1 21
2 22

Airland8 50
1 23
2 24
3 25

Airland9 100

1 26
2 27
3 28
4 29

Airland10 150

1 30
2 31
3 32
4 33
5 34

Airland11 200

1 35
2 36
3 37
4 38
5 39

Airland12 250

1 40
2 41
3 42
4 43
5 44

Airland13
 500

1 45
2 46
3 47
4 48
5 49

B. Parameter settings
The parameter settings of proposed hybrid algorithm are
presented in Table 3. These settings were determined based
on preliminary experiments by taking into consideration the
solution quality and the computational time.

TABLE 3 THE PARAMETER SETTINGS
Parameter Value

1 No. Of generations 200
2 Population size, NP 20
3 Scaling factor, F 0.1
4 Crossover rate, CR 0.4

5 Non-improvement iterations for the
simple descent algorithm 20 iterations

V. RESULTS AND COMPARISONS
In this work, we have performed two experimental tests. The
goal of the first one is to assess the benefit of coupling DE
with the simple descent algorithm by comparing the results of
DE with and without using simple descent algorithm (section
V.A). In second experiment (section V.B), we compare the
results of our algorithm with the best results obtained by the
state of the art algorithms.

A. Effectiveness evaluation of the integrated local search
In this experiment, we assess the benefit of hybridizing DE
with a simple descent algorithm. Therefore, DE is tested with
a simple descent algorithm (denoted as DE-SD) and without a
simple descent algorithm (denoted as DE). For both
algorithms the initial solutions, random seeds, number of

runs, the stopping condition and computer resources are the
same for all experiments. In addition, for each ALP instance,
both algorithms (DE-SD and DE) are executed for 31
independent runs with different random seeds.

The percentage gap (∆(%)) of the best results produced by
DE-SD and DE over 31 runs from the best known values in
the literature (BKV) are presented in Table 4. ∆(%) is
calculated as follows: ∆(%)=(B-BKV/BKV)*100, where B is
the best result retuned by the tested algorithm (DE-SD or DE)
over 31 runs and the BKV results are obtained from [3]. The
best obtained results are shown in bold.

From the results reported in Table 4, we can see that, on
small-sized instances (Airland1 to Airland8), DE-SD reached
the best known results on all instances (instances 1 to 25). DE
only reached the best known results on 15 instances, being
worse than DE-SD on 10 out of 25 tested instances.
Considering the large-sized instances (Airland9 to
Airland13), the results in Table 4 clearly indicate that DE-SD
outperformed DE on all instances (instances 26 to 49).
Furthermore, on six instances (instances 26, 28, 35, 36, 37
and 46), DE-SD managed to update the best known results in
the literature. From the above results, we can draw the
conclusion that DE-SD outperforms DE which clearly
justifies the benefit of coupling DE with the simple descent
algorithm.

To statistically investigate the effect of the simple descent
algorithm on DE performance, we have conducted a pairwise
comparison between DE-SD and DE using the Wilcoxon
statistical test with a significance level of 0.05. The p-value
results of DE-SD versus DE are shown in last column of
Table 4. In this comparison, we use the “+” symbol if DE-SD
is statistically better than DE (p-value < 0.05), “-” if DE is
statistically better than DE-SD (p-value > 0.05), and “=” if
both DE-SD and DE have the same performance (p-value =
0.05). From Table 4 (last column), we can see that DE-SD is
statistically significant than DE on 34 out of 49 tested
instances (p-value < 0.05). The reported p-value (last column,
Table 4) shows that, on 15 out of 49 instances, the
performance of DE-SD and DE are the same. This finding,
again, justifies the benefit of integrating the simple descent
algorithm to improve the exploitation process of DE. Indeed,
the use of simple descent algorithm does help DE to obtain
very good results especially over the large-sized instances.
Overall, the results demonstrate that the use of a simple
descent algorithm can effectively enhance the performance of
DE.

TABLE 4 THE RESULTS OF DE-SD COMPARED TO DE

Instance
name

Instance
no. m BKV

DE-SD DE DE-SD
Vs DE

∆(%) ∆(%) p-value

Airland1
1 1 700 0 0 =
2 2 90 0 0 =
3 3 0 0 0 =

Airland2
4 1 1480 0 0 =
5 2 210 0 0 =
6 3 0 0 0 =

Airland3
7 1 820 0 0 =
8 2 60 0 0 =
9 3 0 0 0 =

Airland4 10 1 2520 0 0 =

524

11 2 640 0 0 =
12 3 130 0 0 =
13 4 0 0 0.24 +

Airland5

14 1 3100 0 0 =
15 2 650 0 0 =
16 3 170 0 0 =
17 4 0 0 0.3 +

Airland6
18 1 24442 0 3.8 +
19 2 554 0 6.1 +
20 3 0 0 1.5 +

Airland7 21 1 1550 0 2.7 +
22 2 0 0 0.91 +

Airland8
23 1 1950 0 2.6 +
24 2 135 0 3.4 +
25 3 0 0 0.8 +

Airland9

26 1 5611.70 -0.22 21.24 +
27 2 452.92 0 11.52 +
28 3 75.75 -0.12 27.01 +
29 4 0 0 8.81 +

Airland10

30 1 12329.31 0.22 60.31 +
31 2 1288.73 0 18.42 +
32 3 220.79 0 25.41 +
33 4 34.22 0 37.26 +
34 5 0 0 3.2 +

Airland11

35 1 12418.32 -0.14 8.11 +
36 2 1540.84 -1.21 12.07 +
37 3 280.82 -3.12 7.86 +
38 4 54.53 0 64.54 +
39 5 0 0 14.17 +

Airland12

40 1 16209.78 0 57.12 +
41 2 1961.39 0 19.62 +
42 3 290.04 0 43.75 +
43 4 3.49 0 62.78 +
44 5 0 0 48.17 +

Airland13

45 1 44832.38 0 35.24 +
46 2 5501.96 -0.51 22.37 +
47 3 1108.51 0 44.41 +
48 4 188.46 0 20.16 +
49 5 7.35 0 11.25 +

B. Comparison of DE-SD with the state of the art algorithms
In this experiment, the performance of DE-SD over 31
independent runs is compared with the state of the art
algorithms from both a solution quality and a computational
time perspective. The algorithms considered in the
comparison are:

- SS: Scatter search algorithm proposed in [3].
- BA: Bionomic algorithm proposed in [3].
- SA1: A hybrid simulated annealing and variable

neighborhood descent proposed in [6].
- SA2: A hybrid simulated annealing and variable

neighborhood search proposed in [6].

The comparison of DE-SD and other algorithms in terms of
the percentage gap (∆(%)) from the best known value in the
literature (BKV) is summarized in Table 5. Best obtained
results are indicated in bold font. The results in Table 5

demonstrate that DE-SD able reach the best known values in
the literature on all small-sized instances (instances 1 to 25).
On large-sized instances (instances 26 to 49), DE-SD reached
the best known results on 9 instances and being slightly
inferior on 10 out of 24 instances. For 5 instances (instances
26, 28, 35, 37 and 46), DE-SD produced new best results.

In Table 6, we compare the computational times (in
seconds) of DE-SD with other algorithms. As Table 6
indicates, across all instances, the computational time of
DE-SD is lower than the compared algorithms. Thus, we can
conclude that DE-SD is an effective algorithm for ALP.

VI. CONCLUSION
This work has proposed a hybrid algorithm for the aircraft
landing problem. The proposed algorithm hybridizes a
well-known population based algorithm, Differential
Evolution, with a simple descent local search algorithm. The
differential evolution algorithm is utilized to effectively
explore the solution search space, while the simple descent
algorithm focuses the search on the area currently being
explored. Experiments have been carried out on the
small-sized and large-sized instances that are available in the
scientific literature. The computational results demonstrate
that hybridizing differential evolution with a simple descent
algorithm produces very good results compared to differential
evolution without a simple descent algorithm, indicating that
is it beneficial to include a local search algorithm within
differential evolution for combinatorial optimization
problems. The results also show that the proposed hybrid
algorithm produced new best results for some instances
compared to state of the art algorithms.

525

TABLE 5 THE COMPUTATIONAL RESULTS OF DE-SD COMPARED TO THE STATE OF THE ART ALGORITHMS

Instance name Instance no. m BKV DE-SD SS BA SA1 SA2
∆(%) ∆(%) ∆(%) ∆(%) ∆(%)

Airland1
1 1 700 0 0 0 0 0
2 2 90 0 0 0 0 0
3 3 0 0 0 0 0 0

Airland2
4 1 1480 0 0 0 0 0
5 2 210 0 0 0 0 0
6 3 0 0 0 0 100 100

Airland3
7 1 820 0 0 0 0 0
8 2 60 0 0 0 16.66 16.66
9 3 0 0 0 0 100 100

Airland4

10 1 2520 0 0 0 0 0
11 2 640 0 0 0 3.12 3.12
12 3 130 0 0 0 23.07 27.07
13 4 0 0 0 0 100 100

Airland5

14 1 3100 0 0 0 0 0
15 2 650 0 0 3.08 0 0
16 3 170 0 0 0 0 0
17 4 0 0 0 0 100 100

Airland6
18 1 24442 0 0 0 0 0
19 2 554 0 0 3.61 0 0
20 3 0 0 0 0 0 0

Airland7 21 1 1550 0 0 0 0 0
22 2 0 0 0 0 0 0

Airland8
23 1 1950 0 52.05 36.15 0 0
24 2 135 0 0 0 0 0
25 3 0 0 0 0 100 100

Airland9

26 1 5611.70 -0.22 30.06 14.51 8.55 8.55
27 2 452.92 0 5.67 54.73 -0.58 0
28 3 75.75 -0.12 0 87.46 0 0
29 4 0 0 0 - 0 0

Airland10

30 1 12329.31 0.22 44.96 33.90 0 0
31 2 1288.73 0 7.87 25.95 -5.39 0
32 3 220.79 0 8.88 195.88 -6.49 0
33 4 34.22 0 16.74 292.40 3.09 3.09
34 5 0 0 0 - 100 100

Airland11

35 1 12418.32 -0.14 17.95 16.67 0 0
36 2 1540.84 -1.21 9.19 38.54 -8.04 0
37 3 280.82 -3.12 21.59 290.09 -2.81 0
38 4 54.53 0 2.77 474.47 0 0
39 5 0 0 0 - 0 0

Airland12

40 1 16209.78 0 22.15 23.58 0 0
41 2 1961.39 0 18.80 50.18 0 0
42 3 290.04 0 17.48 198.01 -3.56 0
43 4 3.49 0 271.63 13216.91 0 0
44 5 0 0 0 - 0 0

Airland13

45 1 44832.38 0 3.24 1.03 -7.54 0
46 2 5501.96 -0.51 3.72 37.47 -0.47 0
47 3 1108.51 0 1.98 182.69 -32.79 0
48 4 188.46 0 22.98 1186.81 -46.62 0
49 5 7.35 0 0 22308.44 -48.16 0

Note: Best results are shown in bold font. Δ (%) represents the percentage gap from the best result. “-“ indicates no
feasible solution has been reported.

TABLE 6 THE COMPUTATION TIME OF DE-SD COMPARED TO

OTHER ALGORITHMS
Instance

name
Instance

no.
m DE-

SD
SS BA SA1 SA2

Airland1
1 1 0 4 60 0 0
2 2 0 24 45 0 0
3 3 0 39 34 0 0

Airland2
4 1 1.2 6 90 1.59 1.38
5 2 1.1 45 49 1.66 1.65
6 3 1.6 46 43 1.98 1.91

Airland3
7 1 0 8 99 1.78 1.73
8 2 2.4 48 58 3.12 4.22
9 3 2.1 62 63 3.29 5.11

Airland4 10 1 3.2 8 95 1.98 2.85

526

11 2 2.2 52 55 3.56 3.94
12 3 3.61 46 57 3.74 5.05
13 4 5.4 56 52 4.06 7.15

Airland5

14 1 2.3 9 100 1.85 1.89
15 2 5.2 50 61 3.04 4.84
16 3 3.4 54 43 4.11 4.92
17 4 4.1 56 68 4.35 3.04

Airland6

18 1 0.9 15
8

274 2.12 2.14

19 2 3.5 70 101 3.98 4.01
20 3 4.32 54 87 4.41 5.91

Airland7

21 1 1.6 19
5

79 2.68 2.65

22 2 4.12 11
8

124 2.83 2.37

Airland8

23 1 6.4 42 287 7.1 7.31
24 2 5.6 12

1
196 10.7

3
9.85

25 3 9.71 13
9

181 14.1
1

17.39

Airland9

26 1 7.8 11
9

554 11.5
9

10.12

27 2 10.2
2

34
2

487 13.7
8

13.64

28 3 16.4 39
0

466 17.9
5

18.46

29 4 16.2
2

33
6

439 19.6
9

21.18

Airland10

30 1 15.3
8

22
7

925 20.1
2

20.75

31 2 18.7 60
8

845 21.3
3

22.04

32 3 24.5 66
8

803 27.6
2

25.19

33 4 34.8 64
7

788 30.1
2

41.28

34 5 29.4 60
7

762 39.8
5

40.15

Airland11

35 1 24.1
3

25
6

1417 24.1
7

33.84

36 2 28 95
9

1287 29.0
9

33.99

37 3 36.4 10
21

1203 41.2
2

37.19

38 4 33.7 99
3

1168 42.4 45.96

39 5 51.9
6

95
6

1158 66.2
3

61.05

Airland12

40 1 174 38
1

2011 219.
03

198.8
5

41 2 310.
6

12
66

1835 362.
6

313.4
6

42 3 360.
14

14
54

1710 412.
73

379.9
1

43 4 374.
2

14
45

1688 410.
33

401.0
4

44 5 382.
4

13
86

1662 394.
6

386.1
6

Airland13

45 1 522.
4

12
37

5852 566.
82

528.8
4

46 2 1024 38
36

5379 1047
.93

1294.
23

47 3 1120
.2

45
60

5158 1241 1334.
33

48 4 1186 44
13

4977 1201
.8

1197.
48

49 5 1154
.3

44
21

4887 1203
.93

1185.
46

Note: The presented times are in seconds. Bold indicate the best
computation time.

REFERENCES
[1] J. Bennell, M. Mesgarpour, and C. Potts, "Airport

runway scheduling," Annals of Operations
Research, vol. 204, pp. 249-270, 2013/04/01
2013.

[2] J. E. Beasley, M. Krishnamoorthy, Y. M.
Sharaiha, and D. Abramson, "Scheduling aircraft
landings—the static case," Transportation
science, vol. 34, pp. 180-197, 2000.

[3] H. Pinol and J. E. Beasley, "Scatter search and
bionomic algorithms for the aircraft landing
problem," European Journal of Operational
Research, vol. 171, pp. 439-462, 2006.

[4] G. Hancerliogullari, G. Rabadi, A. H. Al-Salem,
and M. Kharbeche, "Greedy algorithms and
metaheuristics for a multiple runway combined
arrival-departure aircraft sequencing problem,"
Journal of Air Transport Management, vol. 32,
pp. 39-48, 2013.

[5] S.-P. Yu, X.-B. Cao, and J. Zhang, "A real-time
schedule method for Aircraft Landing Scheduling
problem based on Cellular Automation," Applied
Soft Computing, vol. 11, pp. 3485-3493, 2011.

[6] A. Salehipour, M. Modarres, and L. Moslemi
Naeni, "An efficient hybrid meta-heuristic for
aircraft landing problem," Computers &
Operations Research, vol. 40, pp. 207-213, 2013.

[7] R. Storn and K. Price, "Differential evolution–a
simple and efficient heuristic for global
optimization over continuous spaces," Journal of
global optimization, vol. 11, pp. 341-359, 1997.

[8] S. Das and P. N. Suganthan, "Differential
Evolution: A Survey of the State-of-the-Art,"
Evolutionary Computation, IEEE Transactions
on, vol. 15, pp. 4-31, 2011.

527

