
 
 

 

  

Abstract—The aircraft landing problem (ALP) is a practical 
and challenging optimization problem for the air traffic 
industry. ALP involves allocating a set of aircrafts to airport 
runways and allocating landing times for which the goal is to 
minimize the total cost of landing deviation from the preferred 
target times. Differential evolution (DE) is a population based 
algorithm that has been shown to be an effective algorithm for 
solving continuous optimization problems. However, DE can 
suffer from slow convergence when utilized for combinatorial 
optimization problems, thus hindering its ability to return good 
quality solutions in these domains. To address this we propose a 
hybrid algorithm that combines differential evolution with a 
simple descent algorithm. DE is responsible for exploring new 
regions in the search space, whilst the descent algorithm focuses 
the search around the area currently being explored. 
Experimenting with widely used ALP benchmark instances, we 
demonstrate that the proposed hybrid algorithm performs 
better than DE without the simple descent algorithm. 
Furthermore, performance comparisons with other algorithms 
from the scientific literature demonstrate that our hybrid 
algorithm performs better, or at least comparably, in terms of 
both solution quality and computational time. 
 

I. INTRODUCTION 
Over the past 20 years, the demand for air transportation has 
increased significantly [1]. This leads to congestion in 
airspace, resulting in airports not being able to cope with all 
the demands placed upon it. Consequently, airport managers 
face challenges in providing efficient services, and having to 
shift or change the landing and/or the departure time of some 
aircrafts. These changes lead to inefficient use of airport 
resources and potentially poor customer service. The aircraft 
landing problem (ALP) plays a pivotal role in determining the 
landing time of the arrival aircrafts [1], [2]. The ALP involves 
the construction of a landing schedule for a set of aircrafts, 
such that each aircraft is assigned to land on a specific 
runway, at a specific time, while ensuring that all the problem 
and safety constraints are respected. The aim is to minimize 
the overall penalty that will be incurred when an aircraft lands 
before or after its preferred time [1], [2].  

ALP is an NP-hard problem. For this reason heuristic and 
meta-heuristic algorithms have been widely used to seek 
good quality solutions, within an acceptable time, instead of 
using exact methods [1], [2]. Although exact methods can 
provide optimal solutions, their computational time tends to 
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grow exponentially as the problem size increases, which 
makes them only suitable for small/medium-sized problems 
[1]. Examples of heuristic and meta-heuristic algorithms that 
have been proposed for ALP are: first-come-first-serve [2], 
scatter search [3], bionomic [3], genetic algorithm [4], 
cellular automata [5], simulated annealing [6], and hybrid 
algorithms [6], [4]. Despite the numerous algorithms for 
ALP, no one algorithm has been shown to be an efficient 
solution method over all problem instances and their 
performance decreases as the instances grow larger.  

In this work, we propose a hybrid algorithm to tackle ALP. 
The proposed algorithm combines differential evolution (DE) 
with a simple descent local search algorithm. DE is a 
well-known population based algorithm that has been shown 
to be very efficient in handling continuous optimization 
problems [7], [8]. Unfortunately, the application of DE to 
combinatorial optimization problems is not without any 
modification on DE operators and is not as good as 
continuous optimization [8]. This is because the DE 
evolutionary operators (mutation and crossover), which are 
used to generate new solutions, were introduced to deal with 
real values and thus some modifications are needed to deal 
with combinatorial optimization problems that, typically, use 
integers to represent their solutions. In other words, a basic 
DE algorithm cannot be applied to combinatorial 
optimization problems without modification to the main DE 
operators. In addition, despite the success in solving 
continuous optimization problems, DE has been criticized for 
its slow convergence and this is also apparent when dealing 
with combinatorial optimization problems, due to the 
exploration bias of DE [8]. 

To deal with ALP, a combinatorial optimization problem, 
we need an appropriate solution representation that allows 
DE to use its original evolutionary operators to generate new 
solutions, and we also need to accelerate convergence. To 
deal with the solution representation, we utilize a real value 
representation, mapping each solution onto an ALP schedule. 
To overcome slow convergence, the proposed DE is coupled 
with a simple descent algorithm in such a way that DE is 
responsible for exploring new regions of the search space, 
whilst the simple descent algorithm focuses the search around 
the area currently being explored. The computational 
experiments on the widely used ALP benchmark instances [2] 
demonstrate that the proposed hybrid algorithm outperforms 
DE when used without the simple descent algorithm. The 
proposed hybridized approach is also highly competitive, 
even better on some instances, when compared to the 
algorithms reported in the scientific literature. 
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II. PROBLEM DESCRIPTION  
The aircraft landing problem (ALP) can be defined as follows 
[2]. When a set of arrival aircrafts enter the radar coverage of 
the destination airport, the air traffic controller assigns, for 
each aircraft, a landing runway and a specific landing time on 
the determined runway. The assignment is subject to a set of 
constraints that should be respected under any circumstances. 
These are [2]: 
 

- Each aircraft is assigned to exactly one runway. 
- No more than one aircraft should be assigned the same 

landing time on the same runway. 
- Each aircraft should be assigned a landing time, which has 

a predefined landing time window. 
- The separation time between the aircrafts that have been 

assigned to land on the same runway should be respected. 
 
In APL, each aircraft is associated with a predefined, 
preferred landing time and landing time window. The main 
goal is that each aircraft should land at its landing time. A 
penalty cost will be added if the aircraft is assigned to land 
before or after the preferred landing time. The main aim of the 
optimization algorithm is to minimize the total penalty cost 
by generating, for a given set of aircrafts, the best landing 
sequence on given runways and assigning a landing time for 
each aircraft. The problem inputs and the formulation are as 
follows [2], [5]: 
 
- n: the number of the arrival aircrafts. 

- m: the number of runways. 

- sij: the separation time (sij > 0) between aircrafts i and j 

when they are assigned to same runway. 

- Ti: the preferred landing time (target time) of aircraft i. 

- Ei: the earliest landing time of aircraft i. 

- Li: the latest landing time of aircraft i. 

- C1i: the incurred penalty per unit of time for late landing 

of aircraft i. 

- C2i: the incurred penalty per unit of time for early landing 

of aircraft i. 

- xi: the assigned landing time of aircraft i ( 1, 2, ..., )i n=  

The penalty cost of the ith aircraft that has been assigned for 
landing before or after the target landing time is calculated as 
follows: 
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And the total penalty cost for all aircrafts is calculated as 
follows: 

Minimize 
1

n

i
i

f p
=

= ∑                                                              (2) 

Subject to:  
 

, 1, 2, ...,i i iE x L i n≤ ≤ =                                               (3) 
, ( 1, ..., , 1, ..., )j i ijx x s i n j n− > = =                           (4) 

Equation (3) ensures that each aircraft is assigned to land 
within its time windows, while equation (4) verifies that the 
safety constraint between the aircrafts assigned to the same 
runway is respected. 

III. THE PROPOSED ALGORITHM 
In this section, we first discuss the basic differential evolution 
algorithm followed by the proposed hybrid algorithm. 

A. Differential evolution algorithm  
Differential evolution (DE) is a stochastic population based 
algorithm introduced by [7] as a variant of an evolutionary 
algorithm. DE was originally proposed to deal with 
continuous optimization problems or to optimize real 
parameter and real valued functions. DE has a greedy nature 
that generates, at each generation, a new population of 
solutions to replace the old population, provided that the new 
solutions are better in terms of fitness function [8]. In DE, a 
new population of solutions is created using two main 
operators (mutation and crossover). The mutation operator 
selects three different solutions from the current population 
and then combines them to generate a new solution. Then, the 
generated solution is combined with the initial solution via 
the crossover operator. The new solution is added to the new 
population if its quality is better than the initial solution. The 
basic steps of the DE (DE/rand/1/bin) are as follows [7]: 
 
Step 1:  Randomly generate a population of solutions, NP. 
Step 2: Evaluate the fitness, f, of the population. 
Step 3: For each solution G

ix in the current population NP (i 
is the solution index and G is the current generation) 
generate a mutated solution ( G

im ) using (5):  

, 1, 2 , 3,* ( ), {1, ..., }G G G G
i j j j jm x F x x j n= + − ∀ ∈       

(5) 
where j represent the decision variable, n represent the 
maximum number of decision variables in a given 
problem instance, F is the scaling factor (F ∈ [0, 1]) 
and 1

Gx , 2
Gx  and 3

Gx are three randomly selected 
solutions from the current population where 

1 2 3
G G Gx x x≠ ≠ .  

Step 4: Recombine (crossover step) the solution generated by 
a mutation operator ( G

im ) with the target solution ( G
ix

) based on the crossover rate CR (CR ∈ [0, 1]) to 
generate a new offspring ( 1G

im + ) as follows (6): 

( ) ( ),1
,

( ) ( ),

{1, ..., }, {1, ..., | |}

Gm if Rand j CR or j Rnd ii jGmi j Gx if Rand j CR and j Rnd ii j

j n i NP

≤ =+ =
> ≠

∀ ∈ ∀ ∈

⎧⎪
⎨
⎪⎩

     (6) 

where Rand(j) is a random number (Rand(j) ∈ [0, 1]) 
selected for the jth decision variable, Rnd(i) is a 
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random decision variable index (Rnd(i) ∈ {1,…, n}). 
Rnd ensure that 1G

im +  gets at least one decision 

variable from G
im . 

Step 5: Calculate the fitness of 1G
im +  and compare it with

G
ix . Replace G

ix  with 1G
im +  if 1G

im + fitness is 

better than G
ix  as follows (7): 

1 1
1

1

( ) ( )

( ) ( )
{1, ..., | |}

G G G
i i iG

i G G G
i i i

m if f m f x
x

x if f m f x
i NP

+ +
+

+

⎧ ≤⎪= ⎨
>⎪⎩

∀ ∈

                      (7) 

Step 6: If the termination criterion is satisfied (the number of 
generations), stop and return the best solution. 
Otherwise, go to Step 3. 

 

B. The proposed hybrid algorithm for the ALP 
In this section, we first discuss the application of DE for the 
ALP and then the proposed hybrid DE algorithm.  
 
1) DE for ALP 
To apply a DE to ALP, we need to define a suitable solution 
representation. This is because DE mutation and crossover 
operators were originally proposed to deal with continuous 
optimization problems or real valued functions. In these kinds 
of problems, the decision variables are assigned real values 
and these values are directly used in the calculation of the 
fitness function f(x). Unfortunately, the mutation and 
crossover operators of the basic DE cannot be used to solve 
combinatorial optimization problems such as ALP [8]. This is 
because ALP deals with integer values and it has some 
problem related constraints that have to be respected.  
Therefore, to have a direct relation between ALP and DE 
operators, in this work, we represent the ALP solutions using 
real value numbers, in the same way as is used for continuous 
optimization problems, but each part of the real number 
represents a different role in ALP. More precisely, in ALP we 
need to assign for each aircraft a runway and landing time on 
the selected runway. Here our solution representation has n 
decision variables and each one represents one aircraft. Each 
decision variable takes a real value between 1 and m, where m 
is the number of runways in a given problem instance. Then, 
for each decision variable, the integer part of generated 
number represents the allocated runway, whilst the fraction 
part denotes the order of the aircraft on this runway. For 
example, assume an instance of ALP that has 6 aircraft (n=6) 
that need to be scheduled to land on 3 runways (m=3). If we 
assign numbers for the aircrafts from 1 to 6, the decision 
variables will be (1, 2, 3, 4, 5, 6), as shown in the first row of 
Table 1. Next, generate for each decision variable a random 
number r (r ∈ [1, 3])), as shown in second row of Table 1. 
 

TABLE 1 THE DECISION VARIABLES AND THEIR 
CORRESPONDING REAL VALUES 

Decision variables 1 2 3 4 5 6 
Values  2.2 1.45 1.4 3.8 3.65 2.2 

To decode Table 1 into an ALP solution, the procedure will 
be as follows: 
 

- Aircraft 1 is assigned to land on the second runway, 
aircraft 2 is assigned to land on the first runway, 
aircraft 3 is assigned to land on the first runway, 
aircraft 4 is assigned to land on the third runway, and 
so on. 

- On each runway we sort the assigned aircraft in an 
ascending order in such a way that the order represents 
the landing time on this runway. 
 

In this work, we use this kind of representation in order to 
avoid modifying the DE mutation and crossover operators 
and also to perverse DE original features. We also restricted 
the decision variable boundaries in order to ensure that their 
values are within the feasible area. That is, the integer part of 
each decision variable is restricted between 1 and m. In this 
work, the initial population of solutions of DE is generated by 
assigning for each decision variable a random value drawn 
from a uniform distribution in the interval of (1, m) and the 
generated solutions are assigned a fitness values using 
equation (2). Afterwards, the six steps of DE discussed in 
section III.A are repeatedly applied until the stopping 
condition is satisfied.  
 
2) A hybrid DE for ALP 
In DE, the mutation operator (equation (5), section III.A) 
generates a new solution by adding the weighted difference of 
the two selected solutions into the third one. In ALP, any 
small modification on a current solution might lead to a big 
change in the solution fitness value because this modification 
might shift or swap several aircrafts from their current 
runway and landing time to new ones. This may cause slow 
convergence and generate a low quality solution. Therefore, 
to accelerate the convergence rate of DE, we coupled it with a 
simple descent algorithm. That is, at each generation of DE, 
solutions that are generated by the mutation and crossover 
operators are further improved by the simple descent 
algorithm. Hence, the simple descent algorithm takes place 
after the mutation and crossover operators and before DE 
population update step. Thus DE is responsible for exploring 
new regions of the search space, whilst the simple descent 
algorithm focuses the search around the area currently being 
explored. The simple descent algorithm is an improvement 
method that starts with an initial solution and iteratively 
explores its neighborhood solutions using a move operator. A 
generated neighborhood solution is accepted if its quality is 
better than the current one (our solution quality is calculated 
using equation (2)). In this work, a neighborhood solution is 
generated by applying one of the following move operators 
which is selected at random: 
 

- MO1: randomly select a runway and examine all 
possible swaps between each pair of aircrafts. 

- MO2: randomly select two different runways and 
examine all possible swaps of aircraft between the 
selected runways.  
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- MO3: randomly select one aircraft and move it to 
another runway. 
 

The simple descent algorithm stops the search if there is no 
improvement in the fitness function after a predefined 
number of consecutive iterations (20 non-improvement 
iterations, fixed based on a preliminary test). Generally, 
invoking the simple descent algorithm at every generation 
would be computationally expensive and also might cause 
DE to prematurely converge in the early stages of the search. 
To avoid this tendency, and to control the number of calls to 
the simple descent algorithm, the application of the simple 
descent algorithm will be based on the probability of Ps 
which is calculated as follows: 

iter_cPs
iter_max

=                                                                             (8) 

 
where iter_c represents the current iteration and iter_max 
represents the maximum number of iterations. In equation 
(8), the simple descent algorithm is applied more frequently 
in the latter stages of the search process than in the early 
stages. Hence, the search will be more explorative in the early 
stages and will gradually change to be more exploitive in the 
latter stages. The pseudocode of the proposed hybrid 
algorithm is presented in Algorithm 1((DE/rand/1/bin) [8]). 
 
Algorithm 1: The basic DE algorithm (DE/rand/1/bin) 

1 
2 
3 
4 
5 
6 

 
7 
8 
9 

10 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

 
 

23 
 

24 
25 
26 
27 
28 

Set NP, F, CR,  Maxg, LSiter, D=n, G=0; 
Randomly generate a population of solutions 
Calculate the fitness value (f) for each solution  
while (G< Maxg) do 

  for i=1 to |NP| do 
      Randomly select r1, r2, and r3 from NP  

where  r1≠ r2 ≠ r3≠i 
     for j=1 to D do // eq. (5) 

     , 1, 2, 3,*( )G G G G
i j r j r j r jm x F x x= + −  

            endfor 
            Rnd(j)=rand [1, d] 
            for j=1 to D do      //eq. (6) 
                 if(rand(0,1)≤ CR or j== Rnd (j) then 
                    , ,

G G
i j i ju m=  

                else 
                      , ,

G G
i j i ju x=  

            endfor 
            Ps= G/Maxg; r=rand [0,1] 
             if (r ≤ Ps) then //eq. (8) 
            Call the simple descent algorithm to  
             improve G

iu  

             If(f( G
iu ) < f( G

ix )) then 1G G
i ix u+ =  

             else 1G G
i ix x+ =  

          endfor 
      G=G+1; 
end while 
Return the best solution 

The proposed hybrid algorithm works as follows: first set DE 
parameters (line 1), generate a population of solutions (line 2) 
and calculate the fitness value for each solution (line 3). Then, 
the while-loop is executed (lines 4 to 27). In each generation, 
a new population of solutions is created (lines 5 to 25) using 
the mutation (lines 7 to 9) and crossover operators (lines 12 to 
19). Next, calculate the probability of calling the simple 
descent algorithm (line 21) and apply the simple descent 
algorithm to improve the current solution (line 22). Replace 
the new solution with the incumbent one if new one is better 
in term of the fitness value (line 23). Otherwise, keep the old 
solution (line 24). Update the generation counter (line 26) and 
check the stopping condition. If the stopping condition is 
satisfied stop and return the best solution (line 28). Otherwise, 
start a new generation. 

IV. EXPERIMENTAL SETUP 
In this section, we discuss the main characteristic of the ALP 
benchmark instances and the parameter settings of the 
proposed hybrid algorithm.  

A. Benchmark Instances  
The performance of the proposed algorithm is assessed using 
the 13 ALP benchmark instances that have been used by other 
researchers in the scientific literature [2]. The instances are 
introduced in [2] and are publically available at the 
OR-library1. Table 2 shows the main characteristics of the 
ALP 13 instances. The first column represents instance 
names, the second column represents the number of aircraft 
(n), the third column represents the number of runways (m) 
and fourth column represents instance number (instance no.).  

In these instances, the number of aircraft and runways is 
different from one to another. That is, the number of aircraft is 
10 to 500 and the number of runways varies from 1 to 5. 
Based on the number of aircraft in each instance, Airland1 to 
Airland8 instances (instance no. 1 to 25, Table 2) are 
categorized as a small-sized instances, while Airland9 to 
Airland13 (instance no. 26 to 49, Table 2) are classified as a 
large-sized instances.  
 

TABLE 2 THE CHARACTERISTICS OF THE ALP BENCHMARK 
INSTANCES 

Instance name n m Instance no. 

Airland1 10 
1 1 
2 2 
3 3 

Airland2 15 
1 4 
2 5 
3 6 

Airland3 20 
1 7 
2 8 
3 9 

Airland4 20 

1 10 
2 11 
3 12 
4 13 

Airland5 20 
1 14 
2 15 
3 16 

 
1  http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html (last 

accessed, 15th Dec 2013) 
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4 17 

Airland6 30 
1 18 
2 19 
3 20 

Airland7 44 1 21 
2 22 

Airland8 50 
1 23 
2 24 
3 25 

Airland9 100 

1 26 
2 27 
3 28 
4 29 

Airland10 150 

1 30 
2 31 
3 32 
4 33 
5 34 

Airland11 200 

1 35 
2 36 
3 37 
4 38 
5 39 

Airland12 250 

1 40 
2 41 
3 42 
4 43 
5 44 

Airland13 
 500 

1 45 
2 46 
3 47 
4 48 
5 49 

 

B. Parameter settings 
The parameter settings of proposed hybrid algorithm are 
presented in Table 3. These settings were determined based 
on preliminary experiments by taking into consideration the 
solution quality and the computational time. 

TABLE 3 THE PARAMETER SETTINGS 
# Parameter Value 

1 No. Of generations  200 
2 Population size, NP  20 
3 Scaling factor, F 0.1 
4 Crossover rate, CR 0.4 

5 Non-improvement iterations for the 
simple descent algorithm  20 iterations 

V. RESULTS AND COMPARISONS 
In this work, we have performed two experimental tests. The 
goal of the first one is to assess the benefit of coupling DE 
with the simple descent algorithm by comparing the results of 
DE with and without using simple descent algorithm (section 
V.A). In second experiment (section V.B), we compare the 
results of our algorithm with the best results obtained by the 
state of the art algorithms. 

A. Effectiveness evaluation of the integrated local search 
In this experiment, we assess the benefit of hybridizing DE 
with a simple descent algorithm. Therefore, DE is tested with 
a simple descent algorithm (denoted as DE-SD) and without a 
simple descent algorithm (denoted as DE). For both 
algorithms the initial solutions, random seeds, number of 

runs, the stopping condition and computer resources are the 
same for all experiments. In addition, for each ALP instance, 
both algorithms (DE-SD and DE) are executed for 31 
independent runs with different random seeds.  

The percentage gap (∆(%)) of the best results produced by 
DE-SD and DE over 31 runs from the best known values in 
the literature (BKV) are presented in Table 4. ∆(%) is 
calculated as follows: ∆(%)=(B-BKV/BKV)*100, where B is 
the best result retuned by the tested algorithm (DE-SD or DE) 
over 31 runs and the BKV results are obtained from [3]. The 
best obtained results are shown in bold. 

From the results reported in Table 4, we can see that, on 
small-sized instances (Airland1 to Airland8), DE-SD reached 
the best known results on all instances (instances 1 to 25). DE 
only reached the best known results on 15 instances, being 
worse than DE-SD on 10 out of 25 tested instances. 
Considering the large-sized instances (Airland9 to 
Airland13), the results in Table 4 clearly indicate that DE-SD 
outperformed DE on all instances (instances 26 to 49). 
Furthermore, on six instances (instances 26, 28, 35, 36, 37 
and 46), DE-SD managed to update the best known results in 
the literature. From the above results, we can draw the 
conclusion that DE-SD outperforms DE which clearly 
justifies the benefit of coupling DE with the simple descent 
algorithm.  

To statistically investigate the effect of the simple descent 
algorithm on DE performance, we have conducted a pairwise 
comparison between DE-SD and DE using the Wilcoxon 
statistical test with a significance level of 0.05. The p-value 
results of DE-SD versus DE are shown in last column of 
Table 4. In this comparison, we use the “+” symbol if DE-SD 
is statistically better than DE (p-value < 0.05), “-” if DE is 
statistically better than DE-SD (p-value > 0.05), and “=” if 
both DE-SD and DE have the same performance (p-value = 
0.05). From Table 4 (last column), we can see that DE-SD is 
statistically significant than DE on 34 out of 49 tested 
instances (p-value < 0.05). The reported p-value (last column, 
Table 4) shows that, on 15 out of 49 instances, the 
performance of DE-SD and DE are the same. This finding, 
again, justifies the benefit of integrating the simple descent 
algorithm to improve the exploitation process of DE. Indeed, 
the use of simple descent algorithm does help DE to obtain 
very good results especially over the large-sized instances. 
Overall, the results demonstrate that the use of a simple 
descent algorithm can effectively enhance the performance of 
DE. 
 

TABLE 4 THE RESULTS OF DE-SD COMPARED TO DE 

Instance 
name 

Instance 
no. m BKV 

DE-SD DE DE-SD 
Vs DE 

∆(%) ∆(%) p-value 

Airland1 
1 1 700 0 0 = 
2 2 90 0 0 = 
3 3 0 0 0 = 

Airland2 
4 1 1480 0 0 = 
5 2 210 0 0 = 
6 3 0 0 0 = 

Airland3 
7 1 820 0 0 = 
8 2 60 0 0 = 
9 3 0 0 0 = 

Airland4 10 1 2520 0 0 = 
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11 2 640 0 0 = 
12 3 130 0 0 = 
13 4 0 0 0.24 + 

Airland5 

14 1 3100 0 0 = 
15 2 650 0 0 = 
16 3 170 0 0 = 
17 4 0 0 0.3 + 

Airland6 
18 1 24442 0 3.8 + 
19 2 554 0 6.1 + 
20 3 0 0 1.5 + 

Airland7 21 1 1550 0 2.7 + 
22 2 0 0 0.91 + 

Airland8 
23 1 1950 0 2.6 + 
24 2 135 0 3.4 + 
25 3 0 0 0.8 + 

Airland9 

26 1 5611.70 -0.22 21.24 + 
27 2 452.92 0 11.52 + 
28 3 75.75 -0.12 27.01 + 
29 4 0 0 8.81 + 

Airland10 

30 1 12329.31 0.22 60.31 + 
31 2 1288.73 0 18.42 + 
32 3 220.79 0 25.41 + 
33 4 34.22 0 37.26 + 
34 5 0 0 3.2 + 

Airland11 

35 1 12418.32 -0.14 8.11 + 
36 2 1540.84 -1.21 12.07 + 
37 3 280.82 -3.12 7.86 + 
38 4 54.53 0 64.54 + 
39 5 0 0 14.17 + 

Airland12 

40 1 16209.78 0 57.12 + 
41 2 1961.39 0 19.62 + 
42 3 290.04 0 43.75 + 
43 4 3.49 0 62.78 + 
44 5 0 0 48.17 + 

Airland13 
 

45 1 44832.38 0 35.24 + 
46 2 5501.96 -0.51 22.37 + 
47 3 1108.51 0 44.41 + 
48 4 188.46 0 20.16 + 
49 5 7.35 0 11.25 + 

 

B. Comparison of DE-SD with the state of the art algorithms 
In this experiment, the performance of DE-SD over 31 
independent runs is compared with the state of the art 
algorithms from both a solution quality and a computational 
time perspective. The algorithms considered in the 
comparison are:  
 

- SS: Scatter search algorithm proposed in [3]. 
- BA: Bionomic algorithm proposed in [3]. 
- SA1: A hybrid simulated annealing and variable 

neighborhood descent proposed in [6]. 
- SA2: A hybrid simulated annealing and variable 

neighborhood search proposed in [6]. 
 
The comparison of DE-SD and other algorithms in terms of 
the percentage gap (∆(%)) from the best known value in the 
literature (BKV) is summarized in Table 5. Best obtained 
results are indicated in bold font. The results in Table 5 

demonstrate that DE-SD able reach the best known values in 
the literature on all small-sized instances (instances 1 to 25). 
On large-sized instances (instances 26 to 49), DE-SD reached 
the best known results on 9 instances and being slightly 
inferior on 10 out of 24 instances. For 5 instances (instances 
26, 28, 35, 37 and 46), DE-SD produced new best results.  

In Table 6, we compare the computational times (in 
seconds) of DE-SD with other algorithms. As Table 6 
indicates, across all instances, the computational time of 
DE-SD is lower than the compared algorithms. Thus, we can 
conclude that DE-SD is an effective algorithm for ALP. 
 

VI. CONCLUSION 
This work has proposed a hybrid algorithm for the aircraft 
landing problem. The proposed algorithm hybridizes a 
well-known population based algorithm, Differential 
Evolution, with a simple descent local search algorithm. The 
differential evolution algorithm is utilized to effectively 
explore the solution search space, while the simple descent 
algorithm focuses the search on the area currently being 
explored. Experiments have been carried out on the 
small-sized and large-sized instances that are available in the 
scientific literature. The computational results demonstrate 
that hybridizing differential evolution with a simple descent 
algorithm produces very good results compared to differential 
evolution without a simple descent algorithm, indicating that 
is it beneficial to include a local search algorithm within 
differential evolution for combinatorial optimization 
problems. The results also show that the proposed hybrid 
algorithm produced new best results for some instances 
compared to state of the art algorithms.  
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TABLE 5 THE COMPUTATIONAL RESULTS OF DE-SD COMPARED TO THE STATE OF THE ART ALGORITHMS 

Instance name Instance no. m BKV DE-SD SS BA SA1 SA2 
∆(%) ∆(%) ∆(%) ∆(%) ∆(%) 

Airland1 
1 1 700 0 0 0 0 0 
2 2 90 0 0 0 0 0 
3 3 0 0 0 0 0 0 

Airland2 
4 1 1480 0 0 0 0 0 
5 2 210 0 0 0 0 0 
6 3 0 0 0 0 100 100 

Airland3 
7 1 820 0 0 0 0 0 
8 2 60 0 0 0 16.66 16.66 
9 3 0 0 0 0 100 100 

Airland4 

10 1 2520 0 0 0 0 0 
11 2 640 0 0 0 3.12 3.12 
12 3 130 0 0 0 23.07 27.07 
13 4 0 0 0 0 100 100 

Airland5 

14 1 3100 0 0 0 0 0 
15 2 650 0 0 3.08 0 0 
16 3 170 0 0 0 0 0 
17 4 0 0 0 0 100 100 

Airland6 
18 1 24442 0 0 0 0 0 
19 2 554 0 0 3.61 0 0 
20 3 0 0 0 0 0 0 

Airland7 21 1 1550 0 0 0 0 0 
22 2 0 0 0 0 0 0 

Airland8 
23 1 1950 0 52.05 36.15 0 0 
24 2 135 0 0 0 0 0 
25 3 0 0 0 0 100 100 

Airland9 

26 1 5611.70 -0.22 30.06 14.51 8.55 8.55 
27 2 452.92 0 5.67 54.73 -0.58 0 
28 3 75.75 -0.12 0 87.46 0 0 
29 4 0 0 0 - 0 0 

Airland10 

30 1 12329.31 0.22 44.96 33.90 0 0 
31 2 1288.73 0 7.87 25.95 -5.39 0 
32 3 220.79 0 8.88 195.88 -6.49 0 
33 4 34.22 0 16.74 292.40 3.09 3.09 
34 5 0 0 0 - 100 100 

Airland11 

35 1 12418.32 -0.14 17.95 16.67 0 0 
36 2 1540.84 -1.21 9.19 38.54 -8.04 0 
37 3 280.82 -3.12 21.59 290.09 -2.81 0 
38 4 54.53 0 2.77 474.47 0 0 
39 5 0 0 0 - 0 0 

Airland12 

40 1 16209.78 0 22.15 23.58 0 0 
41 2 1961.39 0 18.80 50.18 0 0 
42 3 290.04 0 17.48 198.01 -3.56 0 
43 4 3.49 0 271.63 13216.91 0 0 
44 5 0 0 0 - 0 0 

Airland13 
 

45 1 44832.38 0 3.24 1.03 -7.54 0 
46 2 5501.96 -0.51 3.72 37.47 -0.47 0 
47 3 1108.51 0 1.98 182.69 -32.79 0 
48 4 188.46 0 22.98 1186.81 -46.62 0 
49 5 7.35 0 0 22308.44 -48.16 0 

Note: Best results are shown in bold font. Δ (%) represents the percentage gap from the best result. “-“ indicates no 
feasible solution has been reported. 

 
TABLE 6 THE COMPUTATION TIME OF DE-SD COMPARED TO 

OTHER ALGORITHMS 
Instance 

name 
Instance 

no. 
m DE-

SD 
SS BA SA1 SA2 

Airland1 
1 1 0 4 60 0 0 
2 2 0 24 45 0 0 
3 3 0 39 34 0 0 

Airland2 
4 1 1.2 6 90 1.59 1.38 
5 2 1.1 45 49 1.66 1.65 
6 3 1.6 46 43 1.98 1.91 

Airland3 
7 1 0 8 99 1.78 1.73 
8 2 2.4 48 58 3.12 4.22 
9 3 2.1 62 63 3.29 5.11 

Airland4 10 1 3.2 8 95 1.98 2.85 
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11 2 2.2 52 55 3.56 3.94 
12 3 3.61 46 57 3.74 5.05 
13 4 5.4 56 52 4.06 7.15 

Airland5 

14 1 2.3 9 100 1.85 1.89 
15 2 5.2 50 61 3.04 4.84 
16 3 3.4 54 43 4.11 4.92 
17 4 4.1 56 68 4.35 3.04 

Airland6 

18 1 0.9 15
8 

274 2.12 2.14 

19 2 3.5 70 101 3.98 4.01 
20 3 4.32 54 87 4.41 5.91 

Airland7 

21 1 1.6 19
5 

79 2.68 2.65 

22 2 4.12 11
8 

124 2.83 2.37 

Airland8 

23 1 6.4 42 287 7.1 7.31 
24 2 5.6 12

1 
196 10.7

3 
9.85 

25 3 9.71 13
9 

181 14.1
1 

17.39 

Airland9 

26 1 7.8 11
9 

554 11.5
9 

10.12 

27 2 10.2
2 

34
2 

487 13.7
8 

13.64 

28 3 16.4 39
0 

466 17.9
5 

18.46 

29 4 16.2
2 

33
6 

439 19.6
9 

21.18 

Airland10 

30 1 15.3
8 

22
7 

925 20.1
2 

20.75 

31 2 18.7 60
8 

845 21.3
3 

22.04 

32 3 24.5 66
8 

803 27.6
2 

25.19 

33 4 34.8 64
7 

788 30.1
2 

41.28 

34 5 29.4 60
7 

762 39.8
5 

40.15 

Airland11 

35 1 24.1
3 

25
6 

1417 24.1
7 

33.84 

36 2 28 95
9 

1287 29.0
9 

33.99 

37 3 36.4 10
21 

1203 41.2
2 

37.19 

38 4 33.7 99
3 

1168 42.4 45.96 

39 5 51.9
6 

95
6 

1158 66.2
3 

61.05 

Airland12 

40 1 174 38
1 

2011 219.
03 

198.8
5 

41 2 310.
6 

12
66 

1835 362.
6 

313.4
6 

42 3 360.
14 

14
54 

1710 412.
73 

379.9
1 

43 4 374.
2 

14
45 

1688 410.
33 

401.0
4 

44 5 382.
4 

13
86 

1662 394.
6 

386.1
6 

Airland13 
 

45 1 522.
4 

12
37 

5852 566.
82 

528.8
4 

46 2 1024 38
36 

5379 1047
.93 

1294.
23 

47 3 1120
.2 

45
60 

5158 1241 1334.
33 

48 4 1186 44
13 

4977 1201
.8 

1197.
48 

49 5 1154
.3 

44
21 

4887 1203
.93 

1185.
46 

Note: The presented times are in seconds. Bold indicate the best 
computation time.  
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