
A Verifiable PSO Algorithm in Cloud Computing

Tao Xiang, Weimin Zhang and Fei Chen

Abstract—In this paper, we study the verification problem of
particle swarm optimization (PSO) when it is outsourced to the
cloud, i.e. making sure that the cloud executes PSO algorithm
as requested. A verifiable PSO algorithm and its verification
algorithm are proposed. The proposed scheme does not involve
expensive cryptography, and it is efficient and effective to verify
the honesty of the cloud.

I. INTRODUCTION

PARTICLE swarm optimization (PSO) is a population-
based heuristic optimization algorithm introduced by

Kennedy and Eberhart [1], [2]. It is a metaphor of the
social behavior of animals such as bird flocking and fish
schooling. PSO optimizes a problem by iteratively trying to
refine candidate solution with regard to a given measure of
quality. It makes few or no assumptions about the problem
being optimized. PSO outperforms other population-based
optimization algorithms, such as genetic algorithm (GA) and
other evolutionary algorithms, mainly in its simplicity [3],
[4], [5]. It has proved its capability and efficiency of solving
various optimization problems [6], [7], [8].

PSO consists of particles and each particle has its position
and velocity. The position represents a potential solution;
the particle flies through search space at its velocity and
dynamically changes the velocity according to its own flying
experience and the flying experiences of other particles. The
velocity and position updating rules can be formulated as
follows.

Vi(t+1) = ωVi(t)+c1r1(Pi−Xi(t))+c2r2(G−Xi(t)) (1)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (2)

where Vi(t) and Xi(t) denote the velocity and position of
the i-th particle at the t-th iteration, respectively. Pi is the
best position found so far by the i-th particle. G the global
best position found so far by all particles. ω is inertia weight
[9]. r1 and r2 are uniformly distributed random numbers
between 0 and 1. c1 and c2 are positive constants referred as
acceleration constants.

The principle of PSO and its implementation are simple;
notwithstanding, the running of PSO algorithm in practice
is often extremely computationally intensive, as practical
problems are usually extremely complicated (e.g. multimodal
and high-dimensional). For this reason, when someone with

The corresponding author is Tao Xiang (txiang@cqu.edu.cn).
Tao Xiang and Weimin Zhang are with the College of Computer

Science, Chongqing University, Chongqing 400044, China (email: txi-
ang@cqu.edu.cn; qwe4037@qq.com).

Fei Chen is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong (email: fchen@cse.cuhk.edu.hk).

This work was supported by the Fundamental Research Funds for the
Central Universities (No. CDJZR13185501), the Natural Science Foundation
Project of CQ CSTC (No. cstc2013jcyjA40001), and the Program for New
Century Excellent Talents in University (No. NCET-12-0589).

limited resources has a complicated problem to be optimized
by PSO algorithm, he can offload the computing to a third
party with much more powerful computational resources.
Especially in the coming age of cloud computing [10], a
thin client such as smartphone can outsource this computing
task to the cloud. There are great benefits of being doing
so: the client can save the money on expensive hardware for
running the algorithm; and he can get the desirable solution
from the cloud with the help of outsourcing.

However, there are security and privacy challenges in
cloud computing environments [11], [12]. Although out-
sourcing the running of PSO algorithm has attractive supe-
riority, it induces a serious problem: how could the result
returned by the cloud be verified? In other words, to reduce
overhead cost, the cloud could possibly cheat the client
by not faithfully running the PSO algorithm, or even by
returning a random guess without executing the algorithm
at all. There are some general solutions in principle for this
problem in the field of complexity theory and cryptography
[13]; however, most of them are infeasible in practice because
they are based on heavy cryptographic operations and are
extortionately expensive to be implemented [14].

In this paper, to the best of our knowledge, we consider
the outsourcing of PSO algorithm and its verification for
the first time. Unlike existing general solutions for verifiable
computing relying on expensive cryptography, we propose a
simple and efficient scheme. Some reasonable assumptions
are made to simplify the problem, and the client can verify
the honesty of the cloud.

The rest of this paper is organized as follows: Section
II defines the problem and its security model. Section III
proposes the solution in detail. Section IV gives the analysis
of the proposed scheme. Experimental results are provided
in Section V. Section VI concludes the paper.

II. THE PROBLEM FORMULATION

A. The Problem Definition

We consider a client has a complicated problem F to
be optimized by PSO, then he outsources the execution
of PSO algorithm with some parameters to the cloud who
has much more powerful computational resources. After the
cloud solves the problem by running PSO algorithm, it
returns the result to the client. Upon receiving the result
from the cloud, the client wants to verify whether the result
is correct. In other words, whether the cloud has invoked the
PSO algorithm faithfully.

To simplify the problem, we make some hypotheses on
PSO algorithm. First, without loss of generality, we assume
F is a minimum optimization problem. Second, as we know,
PSO algorithm has some parameters that should be deter-
mined before running, such as population size and velocity

190

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

limitation; to simplify the problem, we only consider that the
client can config the stop criterion as other parameters are
not strictly problem specific and usually have recommended
configuration. Last, there are usually two stop criteria for
PSO algorithm: reaching a predefined error measure or a
maximum iteration number t; we follow the latter because it
is widely accepted.

Based on these hypotheses, we can formally model the
PSO outsourcing problem as

r = PSO outsouce(t) (3)

where PSO outsouce(∗) is the PSO algorithm to be out-
sourced to the cloud for the optimizing problem F ; t is a
parameter whose value is provided by the client; r is the
result returned by the cloud, and it is to be verified by the
client.

B. Security Model

We assume that the cloud is semi-malicious, i.e. the cloud
may deviate the protocol but will not tamper with the inside
of PSO algorithm. This assumption is reasonable because the
algorithm is usually implemented and provided by the client
in real-world scenarios, and it can be sent to the cloud in
the form of library or other executable format which is only
readable. Upon receiving the outsourcing request from the
client, the cloud may manipulate the parameters and then
runs PSO algorithm with the manipulated parameters; after
the running of PSO algorithm, the cloud may also change
the return value and sends it back to the client; or the cloud
may not even invoke PSO algorithm at all.

We also assume that the PSO algorithm is efficient for
solving the problem F , and the value of t is not too small,
otherwise there is no need for the client to outsource the
computing. In this circumstance, the cloud is supposed to
return a suboptimal solution which will not deviate much
from the global optimum.

Finally, we follow the common assumption in cryptogra-
phy that all the protocol and algorithms involved are public
knowledge, except for the secret keys. The capability of any
party, including the adversary, is bounded by its polynomial
computational power and storage space.

III. THE PROPOSED SCHEME

A. General Framework

Generally speaking, the core of our proposed scheme is
a verifiable PSO algorithm. In order to solve the formulated
problem, there are three phases to fulfill the outsourcing of
the proposed algorithm and its verification.

∙ Request: The client sends a outsourcing request to
the cloud. The request contains the verifiable PSO
algorithm and its arguments including additional
information for subsequent verification.

∙ Outsourcing Computing: Upon receiving the re-
quest from the client, the cloud uses the arguments
to run the verifiable PSO algorithm, and returns the
output of it back to the client.

∙ Verification: When the client gets response from the
cloud, he runs the verification algorithm to check
whether the cloud has faithfully done his job.

B. Verifiable PSO Algorithm

We now describe the verifiable PSO algorithm in detail.
The algorithm and its arguments are provided by the client
and it is run by the cloud.

The input arguments include the maximum iteration num-
ber t, the signature t sig = Esk(t) of t by the user’s private
key sk, and the public key pk corresponding to sk. The
output of the algorithm consists of a status value indicating
whether the arguments from the client are correctly passed
in, the optimized solution, and the public key pk. To further
ensure the indistinguishability of status value for the cloud
and the privacy for the client, all these values are encrypted
by pk before being output.

In the algorithm, we first need to verify the arguments
to check whether the value of t is really what the client
requested. This can be done by verifying the signature
of t, i.e. by decrypting t sig with pk (Dpk(t sig)) and
checking whether the decrypted value is identical with t.
If the arguments verification succeeds, we then follow the
procedures of traditional PSO algorithm to find the optimized
solution G, and return the result r = Epk(true,G, pk).

The pseudocode of the verifiable PSO algorithm is given
in Algorithm 1.

Algorithm 1 Verifiable PSO Algorithm
Input: t, t sig, pk
Output: r

1: if t != Dpk(t sig) then
2: return Epk(false, 0, pk);
3: end if
4: Parameter initialization;
5: for i = 1 to t do
6: Calculate fitness function;
7: Update Pi, G;
8: Update velocities;
9: Update positions;

10: end for
11: return Epk(true,G, pk);

C. Verification Algorithm

When the client receives response from the cloud, he
runs the verification algorithm to verify the result. As the
result r is returned in encrypted format, the client needs to
decrypt it using his private key sk. After that, he verifies the
following points: 1) the returned public key is unchanged, 2)
the arguments verification succeeds, and 3) the problem F
is really optimized by PSO algorithm.

The first two points are quit easy to be accomplished,
but the last one is a challenge because the solution found
by PSO algorithm is suboptimal and it may be different
from the real global minimum. For this reason, it is hard
to find a deterministic method to verify the solution in
general; however, under the assumptions we have made in

191

this paper, we propose a simple and efficient way to verify
the solution found by PSO algorithm. The basic idea is to
disturb the received solution and check whether it is still
optimal. Specifically, the client generates n disturbed values
of G within the range of [−δ, δ]. If these n solutions are
better than the cloud’s response G by more than ϵ in a ratio
greater than η, then the verification fails because the cloud
may cheat in extremely high probability.

The pseudocode of the verification algorithm is described
in Algorithm 2.

Algorithm 2 Verification Algorithm
Input: r, n, δ, ϵ, η
Output: verification result

1: (pass,G, pk′) = Dsk(r);
2: if (pk′ != pk) or (pass != true) then
3: return false;
4: end if
5: count = 0;
6: for i = 1 to n do
7: Randomly generate a X ∈ [−δ, δ];
8: if (F (G)− F (G+X))/F (G)) > ϵ then
9: count = count+ 1;

10: end if
11: end for
12: if (count/n) > η then
13: return false;
14: else
15: return true;
16: end if

IV. THEORETIC ANALYSIS

A. Verifiability

Provided the cloud follows the algorithm specifications,
he will be successfully verified by the client. First, if the
cloud invokes the verifiable PSO algorithm with the argu-
ments from the client, i.e. t, t sig, and pk, the arguments
verification will succeed since the decryption of signature
t sig with pk is t exactly; furthermore, the execution of
the verifiable PSO algorithm will produce the desirable
optimized solution as its output. After that, if the output is
sent back to the client, it will obviously pass the checking
of parameters in the verification algorithm; the optimized
solution will also pass the verification in extremely high
probability, as the solution is supposed to be very close to
the global optimum under our assumptions and it is hard to
find a better one in limited tries.

In the case that the cloud deviates from the algorithm
specifications, it will definitely fail in the verification. Please
find the detail in the subsequent part of statements.

B. Security

Under the assumptions in our security model, the cloud
has the following two ways to cheat, and we will prove that
both of them are infeasible.

One way for the cloud to cheat is that he returns a random
guess r′ of r without executing the verifiable PSO algorithm

at all. Actually, the cloud only needs to randomly generate a
solution G′ and returns r′ = Epk(true,G

′, pk) to the client.
As G′ is a random guess rather than the solution found by
PSO algorithm, it is not optimal. The client is easy to find
some better solutions compared with G′ in the running of
verification algorithm, so the verification will fail.

The other way for the cloud to cheat is executing the
verifiable PSO algorithm with forged arguments. For saving
computational overhead, the cloud may choose a t′ (t′ << t)
instead of t to invoke the verifiable PSO algorithm. Because
the cloud does not have the private key sk of the client, he
needs to forge a pair of private and public keys sk′ and pk′;
then he signs t′ with sk′ and get t′ sig = Esk′(t′); finally he
passes t′, t′ sig, and pk′ into the verifiable PSO algorithm. In
this case, the forged arguments can pass the verification since
t′ = Dpk′(t′ sig) and a solution G′ is obtained; however,
the output of the verifiable PSO algorithm cannot pass the
verification algorithm run by the client. Because if the cloud
forwards the output r′ = Epk′(true,G′, pk′) to the client, the
verification will fail since the public key of client has been
changed; if the cloud want to forge the output r′ with his
own choice, the situation is the same with returning a random
guess as we have been discussed, and the verification will
fail also.

C. Performance

As we can see from the description of our scheme, both
the proposed verifiable PSO algorithm and its verification
algorithm do not involve much heavy cryptographic compu-
tation. The computational efficiency of traditional PSO algo-
rithm is almost inherited in the verifiable PSO algorithm, and
the verification algorithm is also computationally efficient.

Besides, as the verifiable PSO algorithm is derived from
traditional PSO algorithm and all the virtues of PSO are keep
intact, the optimization efficiency of verifiable PSO algorithm
is identical with traditional PSO algorithm. In other words,
the quality of the solution found by them are the same given
the same parameters.

Last but not the least, although public cryptography is
employed here, we do not need public key infrastructure
(PKI) to certificate the public key of the client. The client can
generate any available key pairs in the scheme, and it will
not degrade the verifiability or the security of the scheme.

V. EXPERIMENTAL RESULTS

Six benchmarks being widely used in literature are adopt-
ed in our experiments, and their mathematical representations
and related parameters configuration are listed in Table I. The
population size is set to 30 throughout the experiments.

In the experiments, the configuration of parameters n,
δ, ϵ, and η are of great importance for the verification.
First, improper values will make the verification result false
positive or false negative; Second, n should be as small as
possible to save the computational overhead of the client in
the verification. By extensive experiments we find that it is a
great tradeoff between the verifiability and the performance
of the verification algorithm by setting n = 10, δ = 0.1,
ϵ = 0.01, and η = 0.05.

192

TABLE I. BENCHMARK FUNCTIONS

Function Name Mathematical representation Dimension Domain Global Minimum
f1 Sphere f1(x) =

∑n

i=1
x2

i 30 [−100, 100] 0

f2 Rosenbrock f2(x) =
∑n−1

i=1

(
100
(
xi+1 − x2

i

)
2

+ (xi − 1)2
)

30 [−30, 30] 0

f3 Rastrigrin f3(x) =
∑n

i=1

(
x2

i − 10 cos (2�xi) + 10
)

30 [−5.12, 5.12] 0

f4 Griewank f4(x) = (1/4000)
∑n

i=1
x2

i −
∏n

i=1
cos
(
xi/
√
i
)
+ 1 30 [−600, 600] 0

f5 Ackley f5(x) = −20exp
(
−0.2

√
1

n

∑n

i=1
x2

i

)
− exp

(
1

n

∑n

i=1
cos (2�xi)

)
+ 20 + e 30 [−32, 32] 0

f6 Schaffer f6(x) = 0.5 +

((
sin
√

x2

1
+ x2

2

)
2

− 0.5

)
/
(
1 + 0.001

(
x2

1
+ x2

2

))
2

2 [−100, 100] 0

As it is discussed in Section IV-B, if the cloud executes
the verifiable PSO algorithm with forged arguments, he
will undoubtedly fail in the verification. Therefore, we only
concentrate on the situation when the cloud returns a random
guess of optimal solution here. For each benchmark function,
t is set to 5000; we flip a random coin b to simulate
whether the cloud cheats; If b = 0 we run the verifiable
PSO algorithm and get its output, otherwise we just generate
a random guess as its output; the output is then used for
verification. This process is repeated 5000 times for each
benchmark functions.

The verification results are shown in Table II. It is found
that for all benchmark functions, the correct verification
ratios are greater than 99.9%, which demonstrates the feasi-
bility of our scheme. In some cases, such as f1, f3, and f4,
the false positive ratios are greater than zero. The reason is
that there are some chances for PSO algorithm to be trapped
into local minima, and it cannot approximate to the global
minima anymore. This scenario deviates from the assumption
in this paper, and the verification algorithm has a higher
possibility to estimate the response from honest cloud to be
forged. The situation of non-zero false negative ratios are
random, and it is bounded to be small theoretically.

TABLE II. EXPERIMENTAL RESULTS WHEN t = 5000

Function Verification ratio
Correct False positive False negative

f1 99.90% 0.01% 0.00%
f2 99.98% 0.00% 0.02%
f3 99.90% 0.02% 0.08%
f4 99.91% 0.09% 0.00%
f5 99.93% 0.00% 0.07%
f6 99.94% 0.00% 0.06%

VI. CONCLUSIONS

To the best of our knowledge, for the first time, we
study the outsourcing of PSO algorithm and its verification.
We formulate the problem and its security model. Unlike
existing general solutions for verifiable computing relying on
expensive cryptography, we propose a simple and efficient
scheme. The scheme mainly consists of a verifiable PSO
algorithm and its verification algorithm. In the experiments,
we discuss the parameters configuration of the verification
algorithm, and experimental results validate its verifiability.

REFERENCES

[1] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proc. IEEE International Conference on Neural Networks, Perth,
Australia, Nov. 1995, pp. 1942–1948.

[2] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. International Symposium on Micro Machine and
Human Science (MHS’95), Nagoya, Japan, Oct. 1995, pp. 39–43.

[3] P. J. Angeline, “Evolutionary optimization versus particle swarm
optimization: Philosophy and performance differences,” in Proc. In-
ternational Conference on Evolutionary Programming, London, UK,
Apr. 1998, pp. 601–610.

[4] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms
and particle swarm optimization,” in Proc. International Conference
on Evolutionary Programming, London, UK, Apr. 1998, pp. 611–616.

[5] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in
electromagnetics,” IEEE Transactions on Antennas And Propagation,
vol. 52, no. 2, pp. 397–407, 2004.

[6] R. Poli, “Analysis of the publications on the applications of particle
swarm optimisation,” Journal of Artificial Evolution and Applications,
vol. 2008, pp. 1–10, 2008.

[7] M. Omran, A. P. Engelbrecht, and A. Salman, “Particle swarm
optimization method for image clustering,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 19, no. 3, pp.
297–321, 2005.

[8] J. Hettenhausen, A. Lewis, and S. Mostaghim, “Interactive multi-
objective particle swarm optimisation with heatmap visualisation
based user interface,” Journal of Engineering Optimization, vol. 42,
no. 2, pp. 119–139, 2010.

[9] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
Proc. IEEE International Conference on Evolutionary Computation,
Anchorage, USA, May 1998, pp. 69–73.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” Communications of the ACM, vol. 53,
no. 4, pp. 50–58, 2010.

[11] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security Privacy, vol. 8,
no. 6, pp. 24–31, 2010.

[12] Z. Xiao and Y. Xiao, “Security and privacy in cloud computing,” IEEE
Communications Surveys Tutorials, vol. 15, no. 2, pp. 843–859, 2013.

[13] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Proc.
Annual Conference on Advances in Cryptology (CRYPTO’10), Santa
Barbara, CA, USA, 2010, pp. 465–482.

[14] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Mak-
ing argument systems for outsourced computation practical (some-
times),” in Proc. Network and Distributed System Security Symposium
(NDSS’12), San Diego, CA, USA, Feb. 2012.

193

