
Optimization of the Picking Sequence of
an Automated Storage and Retrieval System (AS/RS)

Rolf Dornberger, Thomas Hanne, Remo Ryter and Michael Stauffer

Abstract— In this paper we consider the problem of an
optimal picking order sequence in a multi-aisle warehouse that
is operated by a single automatic storage and retrieval system
(AS/RS). The problem is solved by using a genetic algorithm
(GA) similar to the one in the earlier research [3]. The problem
and the solution approach are implemented in the OpenOpal
software which provides a suitable test bed for simulation
and optimization (see http://www.openopal.org/). As a result
it becomes evident that the genetic algorithm can be improved
by changing the selection method and introducing an elitism
mechanism.

I. INTRODUCTION

This paper is based on results of Khojasteh-Ghamari
and Son [3], in which a solution for an optimal picking
order sequence for a multi-aisle warehouse, controlled by
a single automated storage and retrieval machine (AS/RS)
is described. This routing problem is a special case of the
known Travelling Salesman problem, which is proven to be
NP-hard [8]. Khojasteh-Ghamari and Son [3] developed a
genetic algorithm (GA) that can approximately solve this
known NP-hard problem. This paper implements and en-
hances the GA and the used problem representations using
the optimization and simulation software OpenOpal (see
http://www.openopal.org/) and [2]. Of course, other solution
approaches such as, for instance, differential evolution or
various metaheuristics might be suitable for the considered
problem as well.

The optimal picking sequence not only depends on the
used algorithm but also on the distribution of the items
to be picked within the warehouse. This is exactly where
the work of Khojasteh-Ghamari and Son [3] lacks of some
further explanation as they only mentioned that an item can
occur several times within a warehouse. However, in most
warehouses the stored items occur in a certain distribution
which leads to the fact that not all the items are stored
in the same amount. Another obstacle in [3] is the too
strong abstraction of reality, resulting in many simplifications
in their proposed GA. This paper analyses where exactly
the GA needs to be improved in order to better represent
real world conditions. Moreover, it needs to be investigated
whether the proposed GA of Khojasteh-Ghamari and Son [3]

Rolf Dornberger is with the University of Applied Sciences and Arts
Northwestern Switzerland, School of Business, Institute for Information
Systems, Peter Merian-Str. 86, CH-4002 Basel, Switzerland (phone: +41-
61-279-1790; fax: +41-61-279-1798; e-mail: rolf.dornberger@fhnw.ch).
Thomas Hanne, Remo Ryter, and Michael Stauffer are with the
University of Applied Sciences and Arts Northwestern Switzerland,
School of Business, Institute for Information Systems, Riggenbach-
str. 16, CH-4600 Olten, Switzerland (e-mail: {thomas.hanne, remo.ryter,
michael.stauffer}@fhnw.ch).

can be improved or not regarding performance, especially the
rate of convergence, to find a nearly ideal picking order.

The focus of this paper lies on the fine tuning of the
different parameters of a GA such as the selection method
of the next generation and the probability of crossover and
mutation. There is a high probability to optimize the GA
by adapting the different parameters as [3] only focused
on specific settings of parameter (roulette wheel selection
method, crossover and mutation probability 100 percent) and
they did not provide a sufficient analysis or discussion of
respective parameter settings.

The research results are divided into three constructive
parts the Analysis, the Implementation and the Evaluation of
the Implementation. The Analysis reveals the missing infor-
mation in the work in [3] that is necessary in order to success-
fully implement the GA in OpenOpal. Such knowledge gaps
are the missing warehouse item distribution as mentioned
before. A solution can then be modelled and implemented in
OpenOpal based on the results of the Analysis. In the end
the implementation is analysed and optimized in order to
improve the performance of the GA.

II. LITERATURE REVIEW

The paper by Khojasteh-Ghamari and Son [3] is the basis
of our study as it was the starting point for the general idea
of the algorithm. The implementation first tried to follow
their approach as closely as possible. However, there were
some implementation-relevant parts not described. In those
cases, assumptions and approximations were made to cope
with this problem. The biggest gap of information was the
missing description of the initial warehouse item distribution.
This has a high impact on the overall performance of the
order picking and should therefore be specified.

A small and simple overview of different types of selection
for genetic algorithms. The webpage of NeuroDimension
[4] includes a short description of the selection type which
explains the basic idea of the method.

The tutorial of Obitko [5] describes the different parts of
genetic algorithms in general. For our paper the part of the
steady-state selection was particularly interesting since it is
not included in [4].

To close the gap of information related to the initial
warehouse item distribution another paper had to be taken as
source of knowledge. In [1] the storage locations of products
inside a warehouse are analysed. During their experiments,
different combinations of storage assignment policies were
tested and evaluated. They state that the random storage

2817

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

assignment is comparable in performance to an ABC class-
based one. This confirms that the assumption of a normal
distribution combined with a random storage assignment is
a valid approximation.

Further papers which deal with optimization problems in
AS/RS control under different assumptions are [6], [7], [8],
and [9]. In [6] the order picking sequence of an AS/RS
is formulated in a TSP like manner and optimized by a
recursive algorithm. Based on a simulation model, the design
of an AS/RS operated warehouse is optimized by performing
experiments in [7]. In [8] a more complex study is undertaken
which combines simulation and optimization approaches for
order picking problems. In [9] the assignments of storage
locations are optimized in an AS/RS operated warehouse
which is modeled using the simulation software FLEXSIM.

III. ANALYSIS

There are many research papers available regarding the
picking order problem in a warehouse, but [3] has revealed
a research need regarding the situation where one particu-
lar item can be stored in several storage locations within
the same warehouse. They tried to evaluate whether their
approach of using a GA to optimize the picking order of
an AS/RS machine is suitable or not. Subsequently, a brief
listing is provided which topics are covered in this paper:

• Description of the warehouse design (I/O stations,
AS/RS machine, racks, aisles, etc.)

• Explanation of the GA (representation of chromosome,
initialization of population, crossover, mutation, evalu-
ation and selection)

• Test results with the settings and evaluation (models,
results and analysis)

[3] is precise in the description of the warehouse design
and the GA. However, in the section on simulation some
information necesssary to reproduce their research is missing.
In particular the initial storage of the items in the warehouse
is completely missing in the simulation model description.
Only the settings of the warehouse design are mentioned
(warehouse capacity, warehouse density, and shape factor),
these parameters are described in more detail in the section
IV-A. Therefore, further parameters are needed in order to
develop a GA which better represents real world conditions,
such as:

• The number of different items in the warehouse in total
• The number of positions in the warehouse for each item
• The distribution of items in the warehouse
• The population size for the GA
• The number of generations of the GA
The last detail to be clarified is the starting position of the

AS/RS machine to pickup the items of a new order. In [3]
it is mentioned that the starting position is depending on the
storage location of the last picked item of the previous order.
This means that the starting position is the I/O station of the
aisle in which the previous order was finished. Since there
is no information about the previous order, the I/O station in
the first aisle is picked as starting point.

IV. IMPLEMENTATION

To align the Warehouse Problem as well as the Warehouse
GA as described in [3] with the architectural principle of
OpenOpal, both parts are separated from each other as
shown in Figure 1. Nevertheless, there is a need for a
common part in the form of the so called Problem Properties.
Subsequently, each part of the model is explained in a
programming language neutral way.

Warehouse Problem Warehouse GA

Warehouse Options

Problem PropertiesInitalisation Create Generation

Crossover /
Mutation

Selection

Evaluation

GA Options

1

1

1

1

Fig. 1. Implementation model of the warehouse problem and GA in
OpenOpal

A. Warehouse Options

Even though the Warehouse Options are a separate class
due to the design pattern of OpenOpal, they are tightly
coupled to the Warehouse Problem. This class is mainly
necessary to offer all the parameters to initialize a warehouse
in the Warehouse Problem class. An overview of the needed
parameters is provided subsequently:

• Warehouse Capacity (Integer)
• Number of Aisles (Integer)
• Warehouse Density (Float)
• Number of Different Items (Integer)
• Shape Factor (Float)

The Warehouse Capacity is proportional to the Number of
Aisles since the Number of Storage Locations per Rack is
firmly defined as 780 in [3]. For this reason, the Warehouse
Capacity directly depends on the Number of Aisles and can
only be a multiple of 1560 (two racks per aisle). In the
simulation described in [3] a warehouse with one, two, three
or four aisles is evaluated. The reason for this limitation of
aisles to four or fewer lies in the fact that a high number
of aisles decreases the practical efficiency of a warehouse
system that is served by a single AS/RS machine only [3].

The Warehouse Density describes the percentage of used
Number of Storage Locations per Rack compared to the
overall Warehouse Capacity. A setup of 60%, 75% or 90%
can be chosen [3].

Due to the parameter Number of Different Items the
number of different items that are stored in a warehouse

2818

I/O 1

I/O 2

I/O 3

J A I

C D

B

G

H A

E F

Aisle 1

Aisle 2

Aisle 3

4

1

1

S/R

Fig. 2. Warehouse scheme (top-view)

can be defined. This parameter has a strong influence on the
picking duration since a high number of Number of Different
Items leads to fewer picking possibilities in a warehouse and
therefore the chance to pick all needed items in a single
aisle becomes smaller. This parameter can have an arbitrary
positive integer value that is smaller or equal to the effective
Warehouse Capacity.

The Shape Factor describes the ratio of height and length
of the rack (see Figure 3), a rack that is for example 6m high
and 10m long has a shape factor of 0.6. In the GA a shape
factor of 0.6, 0.73 or 1 can be chosen [3].

B. Warehouse Problem

The problem of an optimal picking order sequence of a
multi-aisle warehouse by a single AS/RS machine (Ware-
house Problem) is already described in [3]. However, this
paper has a strong focus on the description of the Warehouse
GA only (see sub subsection IV-E), without explaining the
initialization and structure of the warehouse in general.

For clarification and simplification the following con-
straints need to be considered for the Initialization as well
as the Evaluation of the Warehouse Problem [3]:

• One or more aisles can be chosen
• An aisle has on each side a multilevel storage rack
• Each item can be stored in several locations
• A picking sequence consists of one or more different

items
• One single automated storage/retrieval system (AS/RS)
• Starting position of the AS/RS is the I/O station of the

aisle where the last item of the previous order has been
picked

• The AS/RS can move simultaneously in horizontal and
vertical direction

• The AS/RS has a constant velocity
In addition to the constraints proposed in [3] the following

constraints are defined:
• There is an input/output (I/O) station at each aisle

• The AS/RS can switch aisles on each side of the aisle
• The AS/RS has an infinite storing capacity

1) Initialization: The algorithm to initialize a warehouse
consists of three steps:

Step 1 - Initialization: As already mentioned in the
warehouse constraints, each aisle consists of two racks per
aisle, therefore the total Number of Racks can easily be
calculated by multiplying it by the Number of Aisles. Even
though the Number of Storage Locations per Rack is defined
as 780 items per rack in [3], it is better to choose a Number
of Rows and Columns per Rack where the square root leads
to an integral number. By doing so it can be guaranteed
that there are now half rows or columns. For this reason the
Number of Storage Locations per Rack is defined as 784 as
well as the Number of Rows and Columns per Rack is defined
as 28. In the next step the effective Warehouse Capacity,
known as Total Items To Place, can be calculated according
to the chosen Warehouse Density.

Step 2 - Randomly calculate number of items to place:
An entry is generated for each item in a list (ItemsTo-
PlaceList) based on the Number of Different Items. As a next
step, an item is randomly chosen out of this list and added
to a map (WarehouseNrOfStorageMap) that determines the
total Number of Storage Locations per Item in the warehouse.
This random position within the linked map guarantees that
the position itself has no influence on the number of storage
locations that is generated subsequently.

In the next step, a random number with a standard devia-
tion of σ is generated. This random number has a range of
-1 to +1 (full width at half maximum) and a mean of 0. This
means that 68.27% of all generated random values are in-
between this range of -1 to +1 and that the rest of 31.73% is
outside this range. As we divide all warehouse items within
the range from -1 to +1 it is necessary to throw away every
random number that is outside this range.

This distribution of items is an approximation of the well
known ABC distribution. There are different publications
regarding the optimization of the warehouse inventory and
positioning of items. In [1] the ABC distribution is extended
with specific factors related to the order details. For our
purpose it is sufficient to just approximate a regular ABC
distribution since the order is highly artificial and so are the
warehouse items.

The increase of storage locations per item is then done
according to a threshold that is increased step by step from
-1 to +1. It will be checked whether the random number
is below this threshold and if so, the corresponding item
counter in the map will be increased by 1, this means that the
selected item receives an additional storage location within
the warehouse.

Through this normal distribution it can be guaranteed that
not all items are stored in the same number of positions, e.g.
item A is stored at 10 different warehouse locations whereas
item B is only stored at 3 different warehouse locations. If
this would not be the case, the chance that an AS/RS needs
to change its aisle would be reduced significantly as there is

2819

a high chance that all items are stored at least once within
the same aisle (under the settings discussed below). Finally,
this also leads to a more realistic warehouse in which not all
items are available in the same number, e.g. according to an
ABC distribution.

Step 3 - Randomly calculate item positions in ware-
house: In the last step, an item position is generated for
each of the possible storage locations according to the overall
Warehouse Capacity. All possible positions are stored in a list
(WarehousePositionList) where from for each of the Number
of Different Items the number of storage locations is retrieved
from the map (WarehouseNrOfStorageMap) generated in
the previous step. According to the retrieved number of
storage locations random positions are removed from the
position lists (WarehousePositionList) until for each item the
corresponding warehouse position is placed.

2) Evaluation: Based on this initialized warehouse the
Warehouse GA can now generate and test different chro-
mosomes to probably find a good solution after several
generations.

During the evaluation, a picking order sequence repre-
sented in the form of a chromosome is proposed by the
GA to evaluate how well the solution performs according
to the chosen fitness function. In the case of the Warehouse
Problem, the fitness value is simply the minimal distance to
pick up all required items in the given sequence.

I

A

J

3

2

1

I/O 1

length

height

Fig. 3. Storage rack scheme

To accurately calculate the fitness of a solution, further
constraints are necessary and listed below:

• The distance is measured in integer values without any
specific unit

• The distance between two adjacent items is one (e.g.
Figure 2 the distance between item E and item F)

• The distance between two obverse items is zero (e.g.
Figure 2 the distance between item C and item A)

• The distance between the I/O station and the first
column in the storage rack is one (e.g. Figure 2 the
distance between I/O 1 and item J)

• The distance between two aisles is four (e.g. Figure 2
the distance between I/O 1 and I/O 2)

• The I/O station is positioned on the ground level
According to the constraints mentioned before the total

distance of a picking order sequence can be calculated as in
algorithm 1 below:

Data: Picking order sequence
Result: Total distance of picking order sequence
totalDistance t = 0;
t += Distance from last I/O station to first item;
for i← 1 to Number of Different Items− 1 do

t += Distance from Item i to Item i+1;
end
t += Distance from item to next I/O station;

Algorithm 1: Calculation of total distance of a picking
order

Additionally, the distance between different items or
between an item and an I/O station needs to be calculated
as mentioned in Algorithm 2 below. Given the fact that
the AS/RS machine can move simultaneously at constant
velocity, the distance between two travel points is the
maximum of the horizontal or the vertical travel distance.
In Figure 3, the distance between item A and item I is
therefore three as the AS/RS machine has already travelled
the vertical distance before the horizontal distance was
reached [3]. The dashed line illustrates the actual path of
the AS/RS machine.

Data: Position of Item1 and Item2
Result: Distance between Item1 and Item2
if Item1 and Item 2 are in stored in the same aisle then

Calculate Vertical Distance between Items;
Calculate Horizontal Distance between Items;
return min. of Vertical and Horizontal Distance;

end
else

Calculate Left Move;
Calculate Vertical Distance from left side to Item2;
Calculate Horizontal Distance from left side to
Items2;
Left Distance = Left Move + min. of Vertical and
Horizontal Distance;
Calculate Right Move;
Calculate Vertical Distance from right side to Item2;
Calculate Horizontal Distance from right side to
Items2;
Right Distance = Right Move + min. of Vertical and
Horizontal Distance;
return min. of Left and Right Distance;

end
Algorithm 2: Calculation of distance between two items

Algorithm 2 for the calculation of the distance between
two items simply checks whether two items are in the same
aisle or not, If this is the case, it calculates the Vertical
Distance and Horizontal Distance between the two items
and returns the smaller value of both. If the two items are
not in the same aisle there are theoretically two possible
ways which the AS/RS machine can take, one way goes
left around to switch the aisle and the other way goes right

2820

around to switch the aisle. For this reason the Left Move
and the Right Move from the current aisle of item 1 to item
2 needs to be calculated. In the case of the Left Move this
is done by first calculating the vertical distance from item
1 to left outer border of this aisle, secondly the change of
the aisle is calculated by multiplying the number of aisles
to change by the predefined constant of 4 (distance between
two aisles). Finally the distance from the outer border to item
2 is exactly as if the item were in the same aisle. The same
needs to be done for the right move and finally the smaller
of both distances needs to be returned. The distance from
the I/O station to an item is done in the same way as if two
items were located in the same aisle.

In Figure 2 an exemplary picking order sequence is illus-
trated. The order is sorted according to the pickup position
and consists of the following items A, C, I, D, G, B H, E
and F. The total distance of this picking order sequence is
calculated as follows:

From To Distance
+ I/O 1 A 3
+ A C 0
+ C I 3
+ I D 2
+ D G 9
+ G B 4
+ B H 9
+ H E 3
+ E F 1
+ F I/O3 5
= 35

TABLE I
CALCULATION OF PICKING ORDER SEQUENCE OF FIGURE 2

All items are on the same height so there are only
horizontal movements in the calculation above to simplify
the distance calculation. The total distance of this picking
order sequence of 35 will then be returned to the Warehouse
GA, where from in a next iteration new chromosomes are
provided to evaluate, this process continues until a certain
termination criterion is fulfilled, e.g. after a certain number
of iterations.

C. Problem Properties

It is necessary to store the different positions at which an
item is stored all over the warehouse after the initialization.
The Warehouse GA, respectively its crossover and mutation,
depends on the information of the different positions at which
a certain item is stored in the warehouse.

D. GA Options

To define the behaviour of the GA there are some param-
eters required:

• Number of generations (Integer)
• Number of individuals per generation (Integer)
• Selection method (Integer)
• Mutation method (Integer)
• Crossover method (Integer)
• Probability of crossover (Float)

• Probability of mutation (Float)
• Percent of elitist (Float)
These parameters exceed the minimum requirements to

reproduce the solution of [3]. Only the selection, crossover
and mutation methods are specified. The probabilities if a
crossover or a mutation happens are not discussed in [3]
and it is assumed that the probability is equal to 1.0. The
idea of elitism is also not considered in [3]. The idea is that
at least a small percentage of the population forms an elite
(best solutions found in one generation). Such solutions are
directly transferred to the next generation without using the
selection method, i.e. the best solutions are preserved for the
next generation. Since this is not specified, it is assumed
to be equal to 0 percent. However, these options can clearly
improve the convergence rate (performance), especially when
the population is large.

E. Warehouse GA

The goal of the algorithm is now to minimize the travel
time of the AS/RS machine to complete the retrieval process
of the orders [3]. This means to find the optimal sequence of
item positions, which the AS/RS machine has to visit before
the order is completely collected and can be delivered to the
nearest I/O station. This is not trivial since the items can be
stored at several storage locations and the path of the AS/RS
machine has to be optimized inside the current aisle and rack
as well as the number of aisle changes which should be as
small as possible.

1) Create Generation: To start with the GA it is required
to randomly create a starting population. This has to be done
in accordance with the warehouse since there are restrictions
regarding the possible items and their storage locations. The
necessary information from the warehouse is shared via the
Problem Properties with the GA. The goal of the developed
approach is to avoid infeasible solutions, like for example
inexistent items or positions.

2) Mutation: The mutation faces the same problem since
it should change the position of an item. Therefore, it is nec-
essary to know the possible positions for the particular item
in order to avoid infeasible individuals [3]. The procedure is
fairly simple, one just has to pick another position for this
item. But again, knowledge about the actual warehouse is
required. Figure 4 shows an example encoding of a mutated
chromosome.

C A I B D

3 7 2 8 9

C A I B D

3 7 4 8 9

Before

After

Fig. 4. Example of a mutation, assuming item I to be available at locations
2 and 4

2821

3) Crossover: During the crossover, two possible pickup
sequences are combined. Since the order of the items can
be very different, it is highly probable that the combined
sequence will contain duplicate items or miss some items
which are required to be picked up. To avoid this, the
partially matched crossover method is used in [3]. We have
adapted this approach for our study. An example of using
this genetic operator is shown in Figure 5.

C A I D B

3 7 2 9 3

A D C B I

1 4 5 8 6

cut cut

Parent 1

Parent 2

C A C B B

3 7 5 8 3

A D I D I

1 4 2 9 6

Offspring 1

Offspring 2

2

replace duplicates in sequence from parent 1

9

B C

replace duplicates in sequence from parent 2

I D

8 5

Fig. 5. Example of the partially matched crossover

4) Selection: The only criterion of the fitness of an
individual is the total distance the AS/RS machine has to
travel to pick up all demanded items. The selection of the
fittest individuals relies solely on this evaluation. [3] defines
that the Roulette Wheel is used as a selection method. This
method spins a virtual roulette wheel and stops at a random
position. The wheel itself is divided into sections, each
section is assigned to an individual of the population. The
fitter an individual, the bigger its section on the wheel and
therefore the more likely its selection for the next generation.
Figure 6 shows that individual 3 is the fittest and has
therefore the highest probability to be picked for the next
generation.

V. EVALUATION OF THE IMPLEMENTATION

To prove whether the implemented Warehouse GA has
provided a nearly ideal solution or not, it would be necessary
to enumerate all possible picking order sequences and then
select the solution with the best fitness value to compare it

50 %

25 %

8.3 %

8.3 %

8.3 %

wheel is
rotated

Selection
Point

Fittest individual (3)
has largest share

of the roulette wheel Weakest individual
has smallest share

of the roulette wheel

Fig. 6. Roulette wheel selection method

with the proposed solution. This is exactly what is described
in [3], even though this would be ideal for comparison, it is
very expensive regarding computational time as the number
of possible combinations increases exponentially. Due to the
considered problem size and time limitations this could not
be proved in the same way. The current implementation of
the Warehouse GA in OpenOpal allows settings that result
in a much higher number of possible pickup sequences. The
number of feasible solutions can be calculated by [3]:

n!

k∏
i=1

(
mi

ni

)
= n!

k∏
i=1

(
mi!

ni! (mi − ni)!

)
(1)

Where k is the Number of Different Items, mi is the total
inventory of the ith item (e.g. Number of Storage Locations
per Item) in the warehouse and n =

∑k
i=1 ni. With the

maximum settings (k = 1000, mi = 123 (average, rounded),
ni = 1 and n = 1000) the number of possible solutions
results to

1000!
1000∏
i=1

(
123!

1! (123− 1)!

)
= 1000! · 1231000

.
Due to this high number of different possible solutions,

it is not possible to find the best solution in a reasonable
computation time. Even though it cannot be proved that the
newly implemented Warehouse GA generates a nearly ideal
solution, it is possible to check whether the proposed settings
for the Warehouse GA [3] are ideal or not.

To compare different parameter settings for the Warehouse
GA it is necessary to have fixed settings for the Warehouse
Problem. For this reason, the following default settings [3]
are chosen:

• Rack Capacity : 784
• Number of Aisles : 4
• Warehouse Density : 75%
• Number of Different Items : 5

2822

• Shape Factor : 1
For this warehouse capacity and number of different items

it is recommended to take a Number of Generations of
5000 with a Number of Individuals per Generation of 100.
However, this is just a rule of thumb and depending on the
Warehouse Problem, it is recommend to test the Warehouse
Problem with different settings so that a nearly optimal
solution can be reached.

The first valuable observation is that Khojasteh-Ghamari
and Son [3] did not implement any kind of elitism in their
Warehouse GA at all. Even though they have implemented
a Roulette Wheel that increases the probability that a good
solution is selected for the next population, they have elitism
neither recommended nor used. However, it became evident
that this selection mechanism is not enough to steadily
improve the fitness value with the increasing number of
generations, the result is an oscillating fitness value in
relation to the increasing number of generations. Moreover,
apart from avoiding fitness deteriorations, elitism often leads
to a faster convergence and is usually an essential assump-
tion in convergence proofs. It is therefore recommended to
implement an elitism mechanism in the originally proposed
Warehouse GA in [3] to minimize the fluctuation of fitness
during the population construction.

The second improvement that became evident during the
evaluation of the Warehouse GA is that the proposed selection
method Roulette Wheel [3] seems not to lead to optimal
fitness value. Any other selection method that is implemented
in OpenOpal like Best 20% [4], Steady State [5] and Tourna-
ment [4] not only leads to better solutions, they also have a
higher convergence speed. Finally, the best selection method
seems to be Tournament which found the best solution with
a distance of 13 after 700 generations as shown in Figure
8. In Figure 7 it is shown that the Roulette Wheel found the
best solution with a distance of 23 after 1800 generations!
It is therefore recommended to implement the Tournament
selection method in the originally proposed Warehouse GA
in [3].

Fig. 7. Convergence of the fitness function of the roulette wheel selection
method

The final observation is that a higher Probability of
Crossover and Probability of Mutation only leads to higher
computational time but does not result in better solutions. It
is therefore recommended to have only a small Probability of

Fig. 8. Convergence of the fitness function of the tournament selection
method

Crossover and Probability of Mutation as this not only leads
to better solutions, but also to an increase of the convergence
speed. Of course, the probabilities have to be greater than
zero, otherwise no evolution takes place.

VI. CONCLUSION

In our study, we considered the problem of optimally
controlling an AS/RS for picking orders from a multi-aisle
warehouse. By doing so we mainly followed the earlier
contribution [3]. In this paper, a number of significant details
are missing or described insufficiently. This, in particular,
concerns the problem set-up, i.e. the specification of the
warehouse including the location of items. We investigated
this issue in more details and provided a realistic approach
for the problem set-up including an item distribution in
accordance with an ABC scheme. Moreover, our experiments
with the employed genetic algorithm led to some substantial
improvements, e.g. an elitist based selection scheme.

For future investigations there are still several aspects to be
studied in more details, e.g. a more detailed investigation into
the effects of parameter settings of the genetic alghorithm.
Apart from that, the problem scenario could be extended or
refined. This could include a more realistic representation
of an AS/RS, with a limited capacity for picked items or
with more realistic movement assumptions, e.g. non-constant
velocities. Moreover, in a typical warehouse usually several
AS/RS are used, e.g. one AS/RS per aisle, and often with
further restrictions, e.g. a missing possibility to change aisles.
Scenarios like that will be subject to future research.

REFERENCES

[1] F. T. Chan and H. Chan, “Improving the productivity
of order picking of a manual-pick and multi-level rack
distribution warehouse through the implementation of
class-based storage,” Expert Systems with Applications,
vol. 38, no. 3, pp. 2686–2700, Mar. 2011.

[2] R. Dornberger, T. Hanne, and L. Frey, “The way to
an open-source software for automated optimization
and learningOpenOpal,” In 2010 IEEE Congress on
Evolutionary Computation (CEC), (pp. 1-8). IEEE,
2010.

[3] Y. Khojasteh-Ghamari and J.-D. Son, “Order picking
problem in a multi-aisle automated warehouse served by

2823

a single storage/retrieval machine,” Int. J. Inf. Manag.
Sci., vol. 19, no. 4, pp. 651–665, 2008.

[4] NeuroDimension, “Genetic Algo-
rithms,” 2002. [Online]. Available:
http://www.nd.com/products/genetic/selection.htm.

[5] M. Obitko, “Genetic Algorithms,” Tutorial, 1998. [On-
line]. Available: http://www.obitko.com/tutorials/genetic-
algorithms/selection.php.

[6] M. Shuhua and H. Yanzhu, “Research on the
order picking optimization problem of the automated
warehouse,” In Control and Decision Conference, 2009.
CCDC’09. IEEE, 2009, pp. 990-993.

[7] S. Takakuwa, “Module modeling and economic
optimization for large-scale AS/RS”, In Proceedings of
the 21st Conference on Winter Simulation. ACM, 1989,
pp. 795-801.

[8] M. Yu, Enhancing Warehouse Performance by
Efficient Order Picking, Rotterdam: Erasmus University
Rotterdam, 2008.

[9] G. Zhou and L Mao. “Design and Simulation of Storage
Location Optimization Module in AS/RS Based on
FLEXSIM.” International Journal of Intelligent Systems
and Applications (IJISA), vol. 2, 2010, pp. 33-40.

2824

