
Bare Bones Particle Swarm With Scale Mixtures Of
Gaussians For Dynamic Constrained Optimization

Mauro Campos
Department of Statistics

Graduate Program in Computer Science
Federal University of Espírito Santo, UFES
Avenida Fernando Ferrari 514, 29075-910

Vitória ES, Brazil
Email: maurocm.campos@gmail.com

Renato A. Krohling
Department of Production Engineering

Graduate Program in Computer Science
Federal University of Espírito Santo, UFES
Avenida Fernando Ferrari 514, 29075-910

Vitória ES, Brazil
Email: krohling.renato@gmail.com

Abstract—Bare bones particle swarm optimization (BBPSO)
is a well-known swarm algorithm which has shown potential
for solving single-objective constrained optimization problems
in static environments. In this paper, a generalized BBPSO for
dynamic single-objective constrained optimization problems is
proposed. An empirical study was carried out to evaluate the per-
formance of the proposed approach. Experimental results show
the suitability of the proposed algorithm in terms of effectiveness
to find good solutions for all benchmark problems investigated.
For comparison purposes, experimental results found by other
algorithms are also presented.

I. INTRODUCTION

Dynamic single-objective constrained optimization prob-
lems (DCOPs) form a class of problems where the objective
function or the constraints can change over time. In static
optimization problems, finding a global optimum is considered
as the main goal. In dynamic environments, the goal is not only
find an optimal solution but also track its trajectory as closely
as possible over time. Thus, these problems are to be solved
online [1].

Nguyen et al. [2] reported an in-depth survey of the state-
of-the-art of academic research on evolutionary computation
to deal with dynamic optimization problems (DOPs). Li and
Yang [3] presented a review of different approaches based
on particle swarm optimization (PSO) [4]–[7] for DOPs. In
the literature on DOPs, many algorithms have been designed
and tested mainly on dynamic single-objective unconstrained
optimization problems (DUOPs) [8]–[19]. Most of these ap-
proaches have been tested on the moving peaks benchmark
problem proposed by Branke [9]. However, many real-world
DOPs have been identified as DCOPs. As a consequence,
new algorithms specifically developed for DCOPs have been
reported [20]–[24].

Bare bones PSO (BBPSO) [25]–[27] is a well known variant
of swarm algorithm originally introduced by Kennedy [25]. In
this paper, a generalized BBPSO for DCOPs is proposed. The
algorithm is endowed with four mechanisms: 1) a generalized
rule based on scale mixture of normal (SMN) distributions
[28], [29] which governs the dynamics of the particles in
the population; 2) a mechanism to control the population
diversity based on concepts from the general framework of

information theory; 3) a method to handle constraints based
on sum of ranks; and 4) a mechanism to detect changes in the
environment based on a fixed set of detectors.

To deal with DOPs, optimization algorithms must be able
to detect changes in the environment and efficiently respond
to the changed environment. Therefore, algorithms must be
capable of maintaining a good balance between exploration
(diversification) and exploitation (intensification). Too much
stress on exploration would result in pure random search. On
the other hand, too much stress on exploitation would result in
pure local search. Thus, our approach consists of monitoring
the population diversity throughout the search process by
employing the concept of entropy as a measure of diversity
and use that information to switch (whenever necessary) the
search strategy between two regimes: Gaussian local search
(exploitation) and global search (exploration) by employing
a heavy-tailed distribution in its SMN representation. Experi-
mental results show the suitability of the proposed approach in
terms of effectiveness to find good solutions for all benchmark
problems investigated.

The remainder of this paper is organized as follows. Sec-
tion II presents the background information required for the
subsequent development of BBPSO with SMN distributions
for DCOPs. Section III describes all the ingredients of the
proposed algorithm. Experimental results are presented in
Section IV. Finally, conclusions are given in Section V.

II. BACKGROUND

A. Dynamic Constrained Optimization

A dynamic single-objective constrained optimization prob-
lem (DCOP) with inequality, equality, upper bound, and lower
bound constraints can be stated as follows [1], [2], [20]–[24]:

minimize f(x, t)
subject to hj(x, t) = 0 j ∈ J

gi(x, t) ≤ 0 i ∈ I
ld ≤ xd ≤ ud d ∈ {1, . . . , D}

(1)

where x = (x1, . . . , xD)′ is an D dimensional vector of
decision variables, t ∈ T ⊆ N := {0, 1, 2, . . .} represents
the time, f(x, t) is an objective function to be minimized,

202

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

hj(x, t) = 0 are |J | equality constraints, and gi(x, t) ≤ 0
are |I| inequality constraints. The functions f, hj , and gi are
linear or non-linear real-valued functions. The values ud and
ld are the upper bound and the lower bound of xd, respectively.
The upper and lower bounds define the search space S. The
inequality and equality constraints define the feasible space
F(t), such that F(t) ⊆ S for all t. For each value of t, solutions
in F(t) are called feasible solutions. The goal is to find an
optimal feasible solution for all t.

B. Dynamic Benchmark Problems

One useful way to create dynamic benchmark problems is
to combine existing static benchmark problems with dynamic
rules found in dynamic constrained applications. This can
be done by applying the dynamic rules to the parameters
of the static problems. Formally, this idea can be described
as follows. Consider a static function fP (x) with a set of
parameters P = {p1, p2, . . .}. It is possible generalize fP (x)
to its dynamic version fPt(x, t) by replacing each static
parameter in P by a time-dependent expression pi(t). The
dynamic of the time-dependent problem then depends on how
pi(t) varies over time [21]–[23]. Using this idea, Nguyen and
Yao [21] introduced a set of six benchmark problems named
by G24. This benchmark set was formulated based on a static
problem (g24) proposed in [30]. The general form for each
problem in the G24 set is as follows:

minimize f(x, t)
subject to gi(x, t) ≤ 0 i ∈ I (2)

where x = (x1, x2) ∈ F(t) ⊆ S = [0, 3]× [0, 4] and t ∈ T ⊂
N. The objective function takes the following functional form:
• f(x, t) = −(F1,t + F2,t)

where Fj,t = Fj,t(xj , t) = pj(t)(xj + qj(t)) with pj(t)
and qj(t), j = 1, 2, as the dynamic parameters which deter-
mine how the objective function of each benchmark problem
changes over time. The constraint functions may take the
following functional forms:
• g1(x, t) = −2G4

1,t + 8G3
1,t − 8G2

1,t +G2,t − 2
• g2(x, t) = −4G4

1,t+32G3
1,t−88G2

1,t+96G1,t+G2,t−36

where Gj,t = Gj,t(xj , t) = rj(t)(xj + sj(t)) with rj(t) and
sj(t), j = 1, 2, as the dynamic parameters which determine
how the constraint functions of each benchmark problem
changes over time. Each benchmark problem in the G24 set
has a different mathematical expression for pj(t), qj(t), rj(t)
and sj(t):

1) G24-0 (or G24-u in [23]). In this problem I = ∅, p1(t) =
sin(κπt + π/2), p2(t) = 1, and q1,2(t) = 0 where κ ∈
{1.00, 0.50, 0.25} determines the severity of objective
function changes.

2) G24-1. I = {1, 2}, p1(t) = sin(κπt+ π/2), p2(t) = 1,
q1,2(t) = 0, r1,2(t) = 1, and s1,2(t) = 0.

3) G24-2. I = {1, 2}, p1(t) = sin(κπt/2 + π/2),

p2(t) =

 0 if t = 0
p2(t− 1) if t mod 2 = 0
sin(κπ(t− 1)/2 + π/2) if t mod 2 6= 0

q1,2(t) = 0, r1,2(t) = 1, and s1,2(t) = 0.
4) G24-3. I = {1, 2}, p1,2(t) = 1, q1,2(t) = 0, r1,2(t) = 1,

s1(t) = 0, and s2(t) = 2 + (δ/S)t where δ = x2,max −
x2,min and S ∈ {10, 20, 50} determines the severity of
constraint changes.

5) G24-4. I = {1, 2}, p1(t) = sin(κπt+ π/2), p2(t) = 1,
q1,2(t) = 0, r1,2(t) = 1, s1(t) = 0, and s2(t) = (δ/S)t.

6) G24-5. I = {1, 2}, p1(t) = sin(κπt/2 + π/2),

p2(t) =

 0 if t = 0
p2(t− 1) if t mod 2 = 0
sin(κπ(t− 1)/2 + π/2) if t mod 2 6= 0

q1,2(t) = 0, r1,2(t) = 1, s1(t) = 0, and s2(t) = (δ/S)t.
Subsequently, Nguyen and Yao expanded the G24 set to a set
of eighteen benchmark problems [23].

C. Short Review of BBPSO

In order to keep the description of the algorithm as simple
as possible, assume that the optimization process occurs in
a static environment and that the search space is also the
feasible space, that is, there are no additional constraints
posed on the candidate solutions. BBPSO utilizes a population
of individuals during the search process. The population is
referred to as swarm and its individuals are referred to as
particles. The position of a particle represents a potential so-
lution to the problem. Each particle moves in the search space,
obeying dynamic rules to update its position. The particles are
capable of interacting with the environment and with other
particles, namely those particles in its neighborhood. Each
particle search by a solution to a given problem, learning
from its own past experience and from the experiences of its
neighbors. The swarm as a whole explores the search space,
first at random, and then, when better solutions are found and
communicated, the swarm begins to converge by refining its
search until a good enough solution is found.

Let S ⊂ RD be the search space of an objective function
f and consider a swarm S with K particles. The position
of a particle is denoted by an D-dimensional vector xτk =
(xτk1, . . . , x

τ
kD)′ in S. The index k (k = 1, . . . ,K) labels the

k-th particle and the index τ (τ = 1, 2, . . .) represents the iter-
ation counter. Each particle has a neighborhood consisting of a
set of particles which it can communicate. The neighborhood
of a particle is denoted by Nk (Nk ⊆ S) and the neighborhood
system N = {Nk|k = 1, . . . ,K} represents a communication
structure often thought of as a social network. There is a
number of different schemes to connect the particles. Most
implementations use one of two simple sociometric principles.
The first, called global topology (or gbest model), connects
each particle in the population with all others. The second,
called local topology (or lbest model), creates a neighborhood
for each particle comprising generally of the particle itself
and L neighbors in the population (L < K). Each particle
keeps the memory of the best solution found by itself during
the search process (the personal best position found up to the
current iteration). The particles use the neighborhood system to
exchange information between them. As a result, each particle

203

Require: K,N , f
1: Initialize the swarm with random positions in S
2: for each particle do
3: Define pk and nk
4: end for
5: repeat
6: for each particle do
7: for d ∈ {1, . . . , D} do
8: Change the position according to Eq. (4)
9: end for

10: Update pk and nk
11: end for
12: until some termination condition is met
13: x∗ = BEST(nk|k = 1, . . . ,K); f∗ = f(x∗)
14: return x∗ and f∗

Fig. 1. The canonical BBPSO(K,N , f).

also keeps the memory of the best solution found by any
particle in its neighborhood during the search process (the
neighborhood best position found up to the current iteration).
The personal and neighborhood best positions are respectively
denoted by pτk = (pτk1, . . . , p

τ
kD)′ and nτk = (nτk1, . . . , n

τ
kD)′.

The rules that control the dynamics of the particles can be
presented as follows. The swarm is initialized with random
positions. On the initialization, p1k = x1

k for all k and n1
k is

given by:

n1
k = BEST(p1l |l ∈ Nk) = arg min{f(p1l)|l ∈ Nk} (3)

for all k. The position of a particle is updated as follows:

xτ+1
kd = µτkd + στkd · z (4)

where µτkd = 0.5 · (pτkd + nτkd), στkd = (|pτkd − nτkd|), and
z ∼ N(0, 1) (z has a Gaussian or normal distribution with
mean 0 and variance 1). Note that xτ+1

kd ∼ N(µτkd, (σ
τ
kd)

2)
for all k, d and τ ≥ 1. The swarm explores the search space
of the problem by sampling of explicit probabilistic models
constructed from the information associated with promising
candidate solutions. The search for solutions is the result of a
constructive cooperation between particles. After updating the
position, the personal best position is updated as follows:

pτ+1
k = BEST(xτ+1

k ,pτk). (5)

Finally, the neighborhood best position is given by:

nτ+1
k = BEST(pτ+1

l |l ∈ Nk). (6)

The process is repeated until some stopping criterion is met.
BBPSO returns the global best position x∗ and the value of
the objective function in x∗. The essential steps of BBPSO
can be summarized as the pseudo code shown in Fig. 1.

D. Scale Mixtures of Normal Distributions

Let x be a real-valued random variable with a continuous,
symmetric, and unimodal distribution having a probability
density function (pdf) p, location µ ∈ R, and scale σ > 0. The

distribution of x is referred to as a scale mixture of normal
(SMN) distributions (or scale mixture of Gaussians) [28], [29]
if the pdf p can be expressed as

p(x|θ, µ, σ2) =

∫ ∞
0

N(x|µ, φ(λ)σ2)h(λ|θ)dλ (7)

where N(x|·, ·) is the normal density function, φ(λ) is a
positive function of λ, and λ is a random variable with a pdf
h(·|θ) defined on [0,∞) and indexed by a parameter vector
θ. The pdf h is referred to as the mixing density of this SMN
representation. Note that the distribution of x can be expressed
hierarchically as

x|λ ∼ N(x|µ, φ(λ)σ2) (8)
λ ∼ h(λ|θ). (9)

From a suitable choice of the mixing density, a rich class
of continuous, symmetric, and unimodal distribution can be
described by the pdf given in Eq. (7), that can readily accom-
modate a thicker-than-normal process. The normal distribution
can be retrieved when λ = 1 almost surely. Apart from the
normal model, three different types of heavy-tailed densities
are explored in this work. These are as follows:

1) THE PEARSON TYPE VII DISTRIBUTION. This model
is a member of the elliptical family of distributions and
its density is given by

P (x|ν, δ, µ, σ2) =
B−1(ν2 ,

1
2)

√
δσ2

[
1 +

(x− µ)2

δσ2

]− ν+1
2

(10)
where µ ∈ R and σ > 0 are the location and scale
parameters, ν > 0 and δ > 0 are the shape parameters,
and B(a, b) is the beta function defined by

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(11)

with a, b > 0. It can be shown that

P (x|ν, δ, µ, σ2) =

∫ ∞
0

N(x|µ, σ
2

λ
)Ga(λ|ν

2
,
δ

2
)dλ

(12)
where Ga(a, b) is the gamma distribution with density

Ga(λ|a, b) =
ba

Γ(a)
λa−1e−bλ (13)

for a, b, λ > 0. Therefore, the Pearson type VII dis-
tribution has a SMN representation. As a result the
distribution of x can be expressed hierarchically as

x|λ ∼ N(x|µ, λ−1σ2) λ ∼ Ga(λ|ν/2, δ/2). (14)

From this SMN representation, some particular models
can be obtained. The t-distribution with location µ, scale
σ, and ν degrees of freedom can be retrieved when ν =
δ. The Cauchy distribution can be retrieved when ν =
δ = 1.

2) THE VARIANCE GAMMA (VG) DISTRIBUTION. This
model was first proposed by Madan and Seneta [31]

204

to model share market returns and its density is given
by

V G(x|ν, µ, σ2) ∝
[
|x− µ|√
νσ2

] ν−1
2

K ν−1
2

(
ν|x− µ|√

νσ2

)
(15)

where µ ∈ R and σ > 0 are the location and scale
parameters, ν > 0 is the shape parameter, and Kη(a)
is the modified Bessel function of the third kind with
index η defined by

Kη(a) =
1

2

∫ ∞
0

zη−1e−
a
2 (z+z

−1)dz (16)

with a > 0 and η ∈ R. It can be shown that

V G(x|ν, µ, σ2) =

∫ ∞
0

N(x|µ, σ
2

λ
)IGa(λ|ν

2
,
ν

2
)dλ

(17)
where IGa(a, b) is the inverse gamma distribution with
density

IGa(λ|a, b) =
ba

Γ(a)
λ−(a+1)e−b/λ (18)

for a, b, λ > 0. Therefore, the VG distribution has a
SMN representation. As a result the distribution of x
can be expressed hierarchically as

x|λ ∼ N(x|µ, λ−1σ2) λ ∼ IGa(λ|ν/2, ν/2). (19)

From this SMN representation, the Laplace distribution
(also known as the double-sided exponential distribu-
tion) can be retrieved when ν = 2.

3) THE SLASH DISTRIBUTION. The pdf of this distribution
is symmetric, unimodal, and has heavier tails than those
of the normal density. The canonical slash distribution
(with location 0 and scale 1) has the same tail heaviness
as the Cauchy. However, it is less peaked in the center
and thus more realistic in representing data. It is also
useful in simulation studies where it can introduce
distributional challenges in order to evaluate a statistical
procedure. It can be shown that the slash density can be
expressed as

S(x|ν, µ, σ2) =

∫ 1

0

N(x|µ, σ
2

λ
)Be(λ|ν, 1)dλ (20)

where Be(a, b) is the beta distribution with density

Be(λ|a, b) = B−1(a, b)λa−1(1− λ)b−1 (21)

for a, b > 0 and λ ∈ [0, 1]. Therefore, the slash
distribution has a SMN representation. As a result the
distribution of x can be expressed hierarchically as

x|λ ∼ N(x|µ, λ−1σ2) λ ∼ Be(λ|ν, 1). (22)

The slash distribution includes the normal case when
ν →∞.

In Section III, SMN representations are applied in the
dynamic rule to update the position of a particle of the swarm.

E. Entropy and Kullback-Leibler Distance

Let x be a discrete random variable with alphabet χ and
probability mass function p(x), x ∈ χ. The entropy of x is a
measure of its uncertainty and it is defined by

Hb(x) = −
∑
x∈χ

p(x) logb p(x) = −Ex(logb p(x)). (23)

The convention that 0 logb 0 = 0 is used and it is easily
justified by continuity since x logb x → 0 as x → 0. Thus
adding terms of zero probability does not change the entropy.
If b = 2, then the entropy is measured in bits. If b = e, then the
entropy is measured in nats. The entropy is a functional of the
distribution of x. It does not depend on the actual values taken
by x, but only on the probabilities. It follows immediately from
the definition (23) that Hb(x) ≥ 0.

The Kullback-Leibler distance (or relative entropy) between
two probability mass functions p(x) and q(x) is defined as

KL(p|q) =
∑
x∈χ

p(x) logb
p(x)

q(x)
= Ex

(
logb

p(x)

q(x)

)
. (24)

It is possible to show that KL(p|q) ≥ 0 with equality if
and only if p(x) = q(x) for all x ∈ χ. One important
consequence of this result is that the discrete distribution
with the maximum entropy is the uniform distribution. More
precisely, Hb(x) ≤ logb |χ|, where |χ| denotes the number of
elements (or states) in the range of x, with equality if and
only if x has a uniform distribution over χ. This result can be
obtained from the following equation:

0 ≤ KL(p|u) = logb |χ| −Hb(x) (25)

where u(x) = |χ|−1, for all x ∈ χ, represents the uniform
distribution over χ. In Section III, the Kullback-Leibler dis-
tance is used as a measure to control the population diversity
of the swarm as a whole.

III. BBPSO WITH SMN DISTRIBUTIONS FOR DCOPS

In this section, BBPSO with scale mixture of normal
distributions (SMN distributions) is introduced. The proposed
algorithm is explained in the following subsections.

A. The Swarm

The structure of the swarm in the proposed algorithm
is equivalent to the structure of the swarm in BBPSO, as
discussed in Section II-C. The swarm has K particles and
a neighborhood system N . Each particle in S is characterized
by a vector (xk,pk,nk)′. The global best model is obtained
when Nk = S for all k and the local best model is obtained
when Nk ⊂ S for all k.

B. The Dynamic Rule

The position of a particle is updated as follows:

xk|λ = µk + λ−1/2 � σk � z (26)

where
• µk = (µk1, . . . , µkD)′ = 1

2 (pk1 + nk1, . . . , pkD + nkD)′

• σk = (σk1, . . . , σkD)′ = (|pk1−nk1|, . . . , |pkD−nkD|)′

205

• λ = (λ1, . . . , λD)′ ∼ (h(λ1|θ), idd. . ., h(λD|θ))′

• z = (z1, . . . , zD)′ ∼ (N1(0, 1), idd. . ., ND(0, 1))′

and λ−1/2 = (λ
−1/2
1 , . . . , λ

−1/2
D)′. Each random variable λd

has a pdf h(λd|θ) defined on [0,∞) and independent of zd,
where θ is a parameter vector indexing the distribution of λd.
The distribution of xkd can be expressed hierarchically as

xkd|λd ∼ N(xkd|µkd, λ−1d σ2
kd) (27)

λd ∼ h(λd|θ) (28)

and its pdf is given by

p(xkd) =

∫ ∞
0

N(xkd|µkd, λ−1d σ2
kd)h(λd|θ)dλd. (29)

Thus, the distribution of xkd has a SMN representation. As
discussed in Section II, the Eq. (26) ensures that:

1) Model I. When λd = 1 (with probability 1), then xkd ∼
N(µkd, σ

2
kd) for all d and k.

2) Model II. When λd ∼ Ga(ν/2, δ/2), then xkd ∼
P (ν, δ, µkd, σ

2
kd) for all d and k.

• If ν = δ, then λd ∼ Ga(ν/2, ν/2) and xkd ∼
t(ν, µkd, σ

2
kd) (t-distribution).

• If ν = δ = 1, then λd ∼ Ga(1/2, 1/2) and xkd ∼
C(µkd, σ

2
kd) (Cauchy distribution).

3) Model III. When λd ∼ IGa(ν/2, ν/2), then xkd ∼
V G(ν, µkd, σ

2
kd) for all d and k.

• If ν = 1, then λd ∼ IGa(1, 1) and xkd ∼
La(µkd,

√
2σkd/2) (Laplace distribution).

4) Model IV. If λd ∼ Be(ν, 1), then xkd ∼ S(ν, µkd, σ
2
kd)

for all d and k.
The Model I is equivalent to the canonical BBPSO of Kennedy
[25]. The Model II generalizes the dynamic rule proposed by
Krohling and Mendel [32], and the Model III generalizes the
dynamic rule proposed by Krohling and Coelho [33].

C. The Diversity Control

The concept of entropy has been used as a measure of
diversity in swarm and evolutionary computation [34], [35].
Petalas et al. [34] introduced a memetic PSO that combines
PSO with a local search method for computing periodic orbits
of nonlinear mappings. Liu et al. [35] introduced an entropy-
driven evolutionary approach for solving single-objective un-
constrained optimization problems in static environments.

For a population P divided in M classes, the entropy of P
is defined as

H(P) = −
∑
m

Pm logPm (30)

where Pm is the proportion of P that occupies the class m
at a given time t. In our context, P = {f(pk)|k = 1, . . . ,K}
where pk is the personal best position of the particle k. Large
values of entropy are associated with small values of Pm
for nearly every class, that is, the elements of P are evenly
distributed over practically all classes. On the other hand, small
values entropy are associated with large values of Pm for a
few classes, that is, the elements of P are concentrated in

Require: D,K,N ,θ, dc, f(·|Pt), gi(·|Pt)(i ∈ I),∆, τmax

1: τ ← 1; t← 0
2: Establish the set of detectors in S
3: for each particle do
4: xk ← xmin + (xmax − xmin)�U(0, 1)
5: pk ← xk
6: end for
7: for each particle do
8: {See SumRank() procedure in Subsection III-D}
9: nk ← SumRank(pl|l ∈ Nk)

10: end for
11: BEST← SumRank(nk|k = 1, . . . ,K)
12: x∗ ← ∅; x∗ ← x∗ ∪ BEST
13: f∗ ← ∅; f∗ ← f∗ ∪ f(BEST, t|Pt)
14: repeat
15: if τ mod ∆ = 0 then
16: t← t+ 1
17: Update Pt = (p(t), q(t), r(t), s(t))′

18: end if
19: DetectChange() acts on the set of detectors
20: if DetectChange() = TRUE then
21: for each particle do
22: Call SumRank() to update pk and nk
23: end for
24: end if
25: Calculate the KL distance for the current swarm.
26: if KL(p|u) > dc then
27: λ ∼ (h(λ1|θ), idd. . ., h(λD|θ))′ (Exploration)
28: else
29: λ = 1 = (1, . . . , 1) (Exploitation)
30: end if
31: for each particle do
32: Change the position according to Eq. (26)
33: Call SumRank() to update pk and nk
34: end for
35: BEST← SumRank(nk|k = 1, . . . ,K)
36: x∗ ← x∗ ∪ BEST
37: f∗ ← f∗ ∪ f(BEST, t|Pt)
38: τ ← τ + 1
39: until some termination condition is met
40: return Convergence plot: {1, . . . , τmax} × f∗

Fig. 2. BBPSO with SMN distributions for DCOPs.

few classes. Therefore, high entropy indicates high diversity
in the population and low Kullback-Leibler distance (see Eqs.
(24) and (25)) between Pm, m = 1, . . . ,M , and the uniform
distribution over all classes.

An adaptive control of parameter is proposed in our al-
gorithm by using the Kullback-Leibler distance (see Eqs. (24)
and (25)). Our approach employs the following rule: when the
Kullback-Leibler distance is above of an user-defined thresh-
old, a strategy of global search is used to increase diversity and
encourage exploration. Conversely, when the Kullback-Leibler
distance is below of a threshold, a strategy of Gaussian local

206

Require: P ⊆ S
1: for each particle in P do
2: Calculate the properties f(x, t), s(x, t), and v(x, t)
3: end for
4: Rank the particles with respect to f, s, and v indepen-

dently to get rf , rs, and rv
5: if feasible particles exist in P then
6: for each particle do
7: φ(x, t)← rf + rs + rv
8: end for
9: else

10: for each particle do
11: φ(x, t)← rs + rv
12: end for
13: end if
14: Sort the particles according to φ
15: BestParticle← arg min{φ(xl, t) : l ∈ P}
16: return BestParticle

Fig. 3. SumRank(P) procedure.

search is used to decrease diversity and encourage exploitation.
The strategy of global search is realized with a heavy-tailed
distribution in its SMN representation.

D. The Method to Handle Constraints

Consider the following numerical properties associated with
the position of a particle:

1) f(x, t) represents the value of objective function in the
position x at time t.

2) s(x, t) =
∑n
i=1 max{0, gi(x, t)}2 represents the sum of

squares of constraint violation at time t.
3) v(x, t) represents the number of constraints violated at

time t.
The first problem to deal with is the proper scaling of these
three properties. To solve this problem, a simple ranking
method proposed in [36] is used. Consider a population P ⊆ S
of particles. The particles in P are ranked with respect to
each property (f, s, v) independently. This produces three new
terms, denoted by rf , rs, and rv , respectively. Clearly, rf , rs,
and rv are all of the same order of magnitude. As a result,
these three terms can be easily manipulated without bias. Next,
the following aggregation strategy is defined:

φ(x, t) =

{
rs + rv if all particles in P are infeasible
rf + rs + rv otherwise.

(31)
Here, φ(x, t) is the new objective function to be minimized.
When all the particles in the population are infeasible, our
aim is to seek the first feasible solution from the search space.
The information from f then becomes unimportant and hence
only rs and rv are used. When feasible individuals exist
in the population, the algorithm should explore the search
space in order to find the optimum solution. In the second
case, rs and rv serve as a penalty function to penalize the
infeasible solutions. On the other hand, rf enables us to relate

the infeasible individuals to the feasible individuals based on
the f value alone. The consideration of this term allows us
retain for the next generation (iteration) only those infeasible
solutions with a small degree of constraint violation and a
small objective function value. This strategy is necessary to
maintain the diversity of the population, by exploring into the
infeasible regions of the search space.

Clearly, Eq. (31) attempt to integrate the information from
the objective function and constraint violation for the infea-
sible solutions. However, it is important to note that the Eq.
(31) does not require a penalty coefficient and this is the most
important feature of this strategy. By transforming the relevant
numerical properties into ranking terms of the same order of
magnitude, different terms can be summed directly without
invoking a penalty coefficient. The essential steps of BBPSO
with SMN distributions for DCOPs can be summarized as
the pseudo code shown in Fig. 2. The method for handling
constraints is shown in Fig. 3.

E. Detection of Changes in Environment

DCOPs differ from their static counterparts by the fact
that either the objective function or the constraint functions
can change over time. So, the detection of change in the
environment is very important and must be implemented
by a specific mechanism. There are two types of changes
that can affect the search process. One, is a change in the
objective function, and the other is a change in the constraint
functions. Both types of changes can be efficiently detected
by establishing a fixed set of detectors (or sentinels), and
then evaluating their objective values (or fitness values) and
constraint violations after each iteration. If the present and
past objective values and constraint violations are different,
then, indeed, the environment has changed. It is important
to emphasize that our approach uses an entirely isolated set
of detectors, differing fully from particles that constitute the
swarm.

IV. RESULTS AND DISCUSSIONS

A set of experiments were conducted to compare empiri-
cally the performance of BBPSO with SMN distributions for
DCOPs. The G24 set, presented in Subsection II-B, was used
to investigate the performance of the proposed algorithm. The
benchmark problems chosen contain characteristics that are
representative of real-world DCOPs. As discussed in Section
III, the proposed algorithm is endowed with four mechanisms:
1) a generalized rule based on SMN distributions which
governs the dynamics of the particles in the population; 2)
a mechanism to control the population diversity based on
concepts from the general framework of information theory; 3)
a mechanism to handle constraints based on sum of ranks; and,
finally, 4) a mechanism to detect changes in the environment
based on a fixed set of detectors. In all experiments, the
number of particles (the population size K) was set to 25
and the local best ring model was used as the neighborhood
system (the social network).

207

TABLE I
OFFLINE ERRORS FOR DIFFERENT ALGORITHMS IN THE MEDIUM SETTINGS† .

- Problems → G24-0(dF,noC) G24-1(dF,fC) G24-2(dF,fC)
Algorithms ↓ References ↓ Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

GA-noElit [22, p. 181] 0.361 0.064 0.803 0.041 0.429 0.061
RIGA-noElit [22, p. 181] 0.234 0.019 0.633 0.046 0.351 0.060
HyperM-noElit [22, p. 181] 0.249 0.034 0.450 0.094 0.304 0.025
GA-elit [22, p. 181] 0.214 0.037 0.587 0.085 0.329 0.074
RIGA-elit [22, p. 181] 0.131 0.034 0.401 0.046 0.283 0.021
HyperM-elit [22, p. 181] 0.173 0.042 0.475 0.060 0.376 0.055

GA+Repair [22, p. 181], [24] 0.468 0.059 0.226 0.024 0.281 0.036
GSA+Repair [24] 0.049 0.004 0.132 0.015 0.182 0.019

dRepairGA [22, p. 181] 0.362 0.063 0.101 0.022 0.198 0.030
dRepairRIGA [22, p. 181] 0.254 0.048 0.082 0.015 0.162 0.021
dRepairHyperM [22, p. 181] 0.319 0.034 0.093 0.023 0.171 0.026
Genocop [22, p. 181] 0.120 0.028 0.099 0.034 0.177 0.031
dGenocop [22, p. 181] 0.091 0.035 0.085 0.024 0.099 0.028

BBPSO+SMNd+SumRanksa - 0.028 0.017 0.122 0.166 0.071 0.031
BBPSO+SMNd+SumRanksb - 0.062 0.029 0.132 0.148 0.091 0.056
BBPSO+SMNd+SumRanksc - 0.017 0.013 0.078 0.112 0.072 0.027

- Problems → G24-3(fF,dC) G24-4(dF,dC) G24-5(dF,dC)
Algorithms ↓ References ↓ Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

GA-noElit [22, p. 181] 0.884 0.093 0.718 0.095 0.465 0.061
RIGA-noElit [22, p. 181] 0.742 0.100 0.612 0.052 0.401 0.048
HyperM-noElit [22, p. 181] 0.692 0.094 0.562 0.062 0.347 0.068
GA-elit [22, p. 181] 0.384 0.092 0.627 0.045 0.373 0.031
RIGA-elit [22, p. 181] 0.340 0.045 0.492 0.071 0.259 0.031
HyperM-elit [22, p. 181] 0.561 0.104 0.494 0.039 0.297 0.047

GA+Repair [22, p. 181], [24] 0.156 0.008 0.211 0.015 0.236 0.024
GSA+Repair [24] 0.028 0.004 0.073 0.012 0.153 0.013

dRepairGA [22, p. 181] 0.034 0.005 0.170 0.026 0.181 0.032
dRepairRIGA [22, p. 181] 0.029 0.004 0.140 0.028 0.152 0.017
dRepairHyperM [22, p. 181] 0.027 0.005 0.059 0.010 0.131 0.019
Genocop [22, p. 181] 0.099 0.034 0.177 0.031 0.059 0.039
dGenocop [22, p. 181] 0.028 0.007 0.140 0.043 0.114 0.025

BBPSO+SMNd+SumRanksa - 0.013 0.006 0.062 0.035 0.074 0.051
BBPSO+SMNd+SumRanksb - 0.039 0.021 0.083 0.052 0.148 0.114
BBPSO+SMNd+SumRanksc - 0.013 0.008 0.051 0.026 0.061 0.019
†Experimental setup: K = 25, change frequency = 1000 evaluations (∆ = 40), κ = 1/2, and S = 20.
Here dF=dynamic function, noC=no constraint, fC=fixed constraint, fF=fixed function, and dC=dynamic constraint.
aFor this algorithm λd ∼ h(λd|θ) = Ga(λd|1/2, 1/2) for all d.
bFor this algorithm λd ∼ h(λd|θ) = IGa(λd|1, 1) for all d.
cFor this algorithm λd ∼ h(λd|θ) = Be(λd|1, 1) for all d.

For each experiment, summary statistics were calculated
based on 50 runs, each one with the following experimental
setup: change frequency = 1000 evaluations (∆ = 40),
κ = 1/2 (the severity of objective function changes), and
S = 20 (the severity of constraint changes). The experi-
mental results are shown in Table I. For comparison pur-
poses, results found by other algorithms established in the
literature are also presented in Table I. The results show that
the proposed algorithm is comparable in performance with
other algorithms. In particular, the proposed approach which
uses a dynamic rule based on the slash distribution (with

λd ∼ Be(λd|ν, 1) for all d, see Section III) outperforms other
algorithms (GA+Repair, GSA+Repair, dRepairGA, dRepair-
RIGA, dRepairHyperM, Genocop, and dGenocop) for most
of the problems investigated.

V. CONCLUSION

In this article, a generalized BBPSO was proposed for
DCOPs, which are optimization problems to be solved on-
line over time. The proposed algorithm is endowed with
four mechanisms for: 1) monitoring the population diversity
throughout the search process by employing the concept of

208

entropy as a measure of diversity; 2) increasing diversity
when necessary by employing a heavy-tailed distribution in its
SMN representation; 3) handling constraints; and 4) detecting
changes in the environment. The combined effect of these
mechanisms endows the proposed algorithm with the ability to
maintain a good balance between exploration (diversification)
and exploitation (intensification) at any stage of the search
process. The experimental results obtained from an empirical
study revealed the suitability of the proposed approach in
terms of effectiveness to find good solutions for all benchmark
problems investigated. The proposed algorithm is simple and
easy to implement like other swarm algorithms. In future
works, new methods to handle constraints and detect changes
in environments will be investigated.

REFERENCES

[1] R. Morrinson, Designing Evolutionary Algorithms for Dynamic Envi-
ronments. Heidelberg: Springer-Verlag, 2004.

[2] T. Nguyen, S. Yang, and J. Branke, Evolutionary dynamic optimization:
a survey of the state of the art. Swarm and Evolutionary Computation,
vol. 6, pp. 1-24, 2012.

[3] C. Li and S. Yang, A comparative study on particle swarm optimization
in dynamic environments, in S. Yang and X. Yao (Eds.), Evolutionary
Computation for DOPs, Studies in Computational Intelligence 490, pp.
109-136. Heidelberg: Springer-Verlag, 2013.

[4] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proc. IEEE
International Conference on Neural Networks, 1995, pp. 1941-1948.

[5] Y. Shi and R. Eberhart, A modified particle swarm optimizer, in Proc.
IEEE Congress on Evolutionary Computation, 1998, pp. 69-73.

[6] M. Clerc and J. Kennedy, The particle swarm - explosion, stability, and
convergence in a multidimensional complex space. IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58-73, February 2002.

[7] D. Bratton and J. Kennedy, Defining a standard for particle swarm
optimization, in Proc. IEEE Swarm Intelligence Symposium, 2007, pp.
120-127.

[8] T. Back, On the behavior of evolutionary algorithms in dynamic envi-
ronments, in Proc. IEEE Congress on Evolutionary Computation, 1998,
pp. 446-451.

[9] J. Branke, Memory enhanced evolutionary algorithms for changing
optimization problems, in Proc. IEEE Congress on Evolutionary Com-
putation, 1999, pp. 1875-1882.

[10] R. Eberhart and Y. Shi, Tracking and optimizing dynamic systems with
particle swarms, in Proc. IEEE Congress on Evolutionary Computation,
2001, pp. 94-97.

[11] Y. Jin and J. Branke, Evolutionary optimization in uncertain environ-
ments a survey. IEEE Transactions on Evolutionary Computation, vol.
9, no. 3, pp. 303-317, June 2005.

[12] T. Blackwell and J. Branke, Multiswarms, exclusion, and anti conver-
gence in dynamic environments. IEEE Transactions on Evolutionary
Computation, vol. 10, no. 4, pp. 459-472, August 2006.

[13] R. Lung and D. Dumitrescu, A collaborative model for tracking optima
in dynamic environments, in Proc. IEEE Congress on Evolutionary
Computation, 2007, pp. 564-567.

[14] W. Du and B. Lin, Multi-strategy ensemble particle swarm optimization
for dynamic optimization. Information Sciences, vol. 178, pp. 3096-
3109, 2008.

[15] H. Richter, Detecting change in dynamic fitness landscapes, in Proc.
IEEE Congress on Evolutionary Computation, 2009, pp. 1613-1620.

[16] R. Lung and D. Dumitrescu, Evolutionary swarm cooperative optimiza-
tion in dynamic environments. Natural Computing, vol. 9, pp. 83-94,
2010.

[17] L. Liu, S. Yang, and D. Wang, Particle swarm optimization with
composite particles in dynamic environments. IEEE Transactions on
Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 40, no. 6, pp.
1634-1648, December 2010.

[18] C. Li and S. Yang, A general framework of multipopulation methods with
clustering in undetectable dynamics environments. IEEE Transactions on
Evolutionary Computation, vol. 16, no. 4, pp. 556-577, August 2012.

[19] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. Meybodi, A novel
multi-swarm algorithm for optimization in dynamic optimization based
on particle swarm optimization. Applied Soft Computing, vol. 13, pp.
2144-2158, 2013.

[20] C.-A. Liu, New dynamic constrained optimization PSO algorithm, in
Proc. Fourth International Conference on Natural Computation, 2008,
pp. 650-653.

[21] T. Nguyen and X. Yao, Benchmarking and solving dynamic constrained
optimization, in Proc. IEEE Congress on Evolutionary Computation,
2009, pp. 690-697.

[22] T. Nguyen, Continuous dynamic optimisation using evolutionary algo-
rithms. Ph.D. thesis, The University of Birmingham, Birmingham, UK.
[Online]. Available: http://etheses.bham.ac.uk/1296, October 2010.

[23] T. Nguyen and X. Yao, Continuous dynamic constrained optimization
the challenges. IEEE Transactions on Evolutionary Computation, vol.
16, no. 6, pp. 769-786, December 2012.

[24] K. Pal, C. Saha, S. Das, and C. Coello, Dynamic constrained optimiza-
tion with offspring repair based gravitational search algorithm, in Proc.
IEEE Congress on Evolutionary Computation, 2013, pp. 2414-2421.

[25] J. Kennedy, Bare bones particle swarms, in Proc. IEEE Swarm Intelli-
gence Symposium, 2003, pp. 80-87.

[26] T. Blackwell, A study of collapse in bare bones particle swarm opti-
mization. IEEE Transactions on Evolutionary Computation, vol. 16, no.
3, pp. 354-372, June 2012.

[27] M. Campos, R. Krohling, and I. Enriquez, Bare bones particle swarm
optimization with scale matrix adaptation. IEEE Transactions on Cyber-
netics. [Online]. Available: http://ieeexplore.ieee.org, November 2013,
DOI:10.1109/TCYB.2013.2290223.

[28] D. Andrews and C. Mallows, Scale mixtures of normal distributions.
Journal of the Royal Statistical Society. Series B (Methodological), vol.
36, no. 1, pp. 99-102, 1974.

[29] S. Choy and J. Chan, Scale mixtures of distributions in statistical
modelling. Australian and New Zealand Journal of Statistics, vol. 50(2),
pp. 135-146, 2008.

[30] J. Liang, T. Runarsson, E. Mezura-Montes, M. Clerc, P. Suganthan, C.
Coello, and K. Deb, Problem definitions and evaluation criteria for the
CEC 2006 special session on constrained real-parameter optimization,
Nanyang Technological University, Singapure, Science Institute, Univer-
sity of Iceland, Iceland, Evolutionary Computation Group, CINVESTAV-
IPN, Mexico, France Télécon, France, Kanpur Genetic Algorithms
Laboratory, Indian Institute of Technology, Kanpur, India, Technical
Report. [Online]. Available: http://www3.ntu.edu.sg/home/EPNSugan,
September 2006, pp. 1-24.

[31] D. Madan and E. Seneta, The variance gamma (V.G.) model for share
market returns. The Journal of Business, vol. 63, no. 4, pp. 511-524,
October 1990.

[32] R. Krohling and E. Mendel, Bare bones particle swarm optimization with
Gaussian or Cauchy jumps, in Proc. IEEE Congress on Evolutionary
Computation, 2009, pp. 3285-3291.

[33] R. Krohling and L. Coelho, PSO-E: particle swarm with exponential
distribution, in Proc. IEEE Congress on Evolutionary Computation,
2006, pp. 5577-5582.

[34] Y. Petalas, K. Parsopoulos, and M. Vrahatis, Entropy-based memetic
particle swarm optimization for computing periodic orbits of nonlinear
mappings, in Proc. IEEE Congress on Evolutionary Computation, 2007,
pp. 2040-2047.

[35] S.-H. Liu, M. Mernik, and B. Bryant, To explore or to exploit: an
entropy-driven approach for evolutionary algorithms. International Jour-
nal of Knowledge-based and Intelligent Engineering Systems, vol. 13,
pp. 185-206, 2009.

[36] P. Ho and K. Shimizu, Evolutionary constrained optimization using an
addition of ranking method and a percentage-based tolerance value
adjustment scheme, Information Sciences, vol. 177, pp. 2985-3004,
2007.

209

