
Balancing the Exploration and Exploitation in an Adaptive
Diversity Guided Genetic Algorithm

Fatemeh Vafaee, György Turán, Peter C. Nelson, and Tanya Y. Berger-Wolf

Abstract—Exploration and exploitation are the two cor-
nerstones which characterize Evolutionary Algorithms (EAs)
capabilities. Maintaining the reciprocal balance of the explo-
rative and exploitative power is the key to the success of
EA applications. Accordingly, this work is concerned with
proposing a diversity-guided genetic algorithm with a new
mutation scheme that is capable of exploring the unseen regions
of the search space, as well as exploiting the already-found
promising elements. The proposed mutation operator specifies
different mutation rates for different sites of an encoded
solution. These site-specific rates are carefully derived based
on the underlying pattern of highly-fit solutions, adjusted to
every single individual, and adapted throughout the evolution
to retain a good ratio between exploration and exploitation.
Furthermore, in order to more directly monitor the exploration
vs. exploitation balance, the proposed method is augmented
with a diversity control process assuring that the search process
does not lose the required balance between the two forces.

I. INTRODUCTION AND RELATED WORK

EVOLUTIONARY Algorithms are nature-inspired
search algorithms whose efficacy stems from exploring

unseen regions of the search space and exploiting already
encountered promising solutions. Exploration is the ability
of a search algorithm to discover entirely new regions of
the search space in order to avoid convergence to local
optima, while exploitation is the capability of the “good
use of good information” [1] by visiting regions of search
space within the neighboring of previously found promising
points. Accordingly, a search algorithm with well-adjusted
exploitative power can improve the possibility of generating
“better” solutions from already found “good” ones.

It is widely understood that exploration and exploitation
are opposite forces, and thus, the success of a search algo-
rithm resides in achieving equilibrium between the two [2].
Excessive exploratory power usually leads to the discovery
of the global optimum, but critically slows down the conver-
gence rate. Conversely, the excessiveness of the exploitation
rapidly results in the convergence to local optima.

There has been a considerable amount of discussion
and sometimes contradictory studies on how exploration
and exploitation can be achieved in evolutionary algo-
rithms. Wong et al. [3], for instance, argued that variation
operators—mutation and crossover—are supposed to intro-
duce the required explorative and exploitative power into

Fatemeh Vafaee is with the Charles Perkins Centre, University of Sydney,
Sydney, NSW, Australia (email: fatemeh.vafaee@sydney.edu.au). György
Turán is with the Department of Mathematics, Statistics and Computer
Science, University of Illinois at Chicago, Chicago, IL, USA, and MTA-
SZTE Research Group on Artificial Intelligence (email: gyt@uic.edu).
Peter C. Nelson and Tanya Y. Berger-Wolf are with the Department of
Computer Science, University of Illinois at Chicago, Chicago, IL, USA
(email: {nelson, tanyabw}@uic.edu).

genetic algorithms (GAs). On the other hand, a consensus
view is that variation operators explore the search space,
while exploitation is attained through the selection process.
Eiben and Schippers [1], however, questioned this common
opinion, and concluded that there is no generally accepted
perception about exploration and exploitation in EAs, and
more intensive research is required for deeper understanding
of the fundamentals of evolutionary search processes.

Črepinšek et al. [4] recently presented a more compre-
hensive and systematic treatment on evolutionary exploration
and exploitation. They have argued that both variation and
selection operators as well as other factors (e.g., population
size and representation) can individually or collectively
contribute to exploration and exploitation. For instance,
while selection is mainly seen as an exploitation operator by
moving the search toward the regions of the best individuals,
it can control the level of both exploration and exploitation
by varying the selection pressure—i.e., higher selection
pressure moves the search towards more exploitation, while
lower selection pressure pushes the search towards more
exploration [5]. Furthermore, mutation and crossover opera-
tors are also involved in exploration as well as exploitation.
Variation operators modify or exchange genetic information,
and thus increase the population diversity. From this point
of view, they are counted as exploration operators. However,
they are also aimed to generate better neighbors from the
existing good individuals, and thus have an exploitation role;
the exploitatory power of variation operators enhances if the
locality property1 holds [6].

While evolutionary exploration and exploitation can be
achieved by variation and/or selection operators, the recip-
rocal balance between these two complementary forces has
been usually managed by proper parameter-control settings
in which the parameter values (e.g., variation operator rates)
are subject to change during an EA run. Note that EAs are
intrinsically dynamic processes requiring variable amounts
of exploration vs. exploitation at different times or states of
the evolution. Parameter control techniques can be divided
into two major categories, referring to the taxonomy intro-
duced by [7]: self-adaptive and adaptive approaches. In the
self-adaptive paradigm, the parameters are encoded into the
representation of the individual solutions and undergo mu-
tation and recombination. The intuition is that the parameter
values (e.g., the genetic operator rates) have a chance to co-
evolve with problem solutions to hopefully (near)-optimal
settings; see [8], [9], and [10] as a few examples.

On the other hand, in an adaptive scheme, the direction
and/or magnitude of the parameters are determined based on
some form of feedback (e.g., the quality of solutions) from

1The concept of locality describes how well neighboring genotypes
correspond to neighboring phenotypes.

2570

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

the search. Among different parameters, adapting operator
probabilities has long been recognized as a commendable
path toward improving the performance of Evolutionary
Algorithms; see for example [11],[12], [13], and [14].

In this work, we propose a mutation scheme with both
explorative and exploitative capabilities. The proposed mu-
tation operator assigns specific rates to different sites (loci)
of individuals in the population. The rates are derived in
such a way that good individuals are exploited, while bad
individuals are freely disrupted to allow a vast exploration
of the search space. The mutation rates are also adaptively
adjusted throughout the evolution. Furthermore, in order
to more directly monitor the exploration vs. exploitation
balance, we augmented the proposed EA with a diversity
control process assuring that the search process does not
lose the required balance between the two forces.

In brief, diversity refers to differences among individuals,
which can be at the genotype or phenotype levels. In the
genotype level, differences among genomes/structures within
the population is of interest, while in the phenotype level,
differences among fitness values are sought. Loss of diversity
corresponds to the lack of exploration, resulting in prema-
ture convergence and trapping into local optima. Excessive
diversity, on the other hand, is counterproductive when high
exploitation is required. It is widely accepted within the
EA community that well-adjusted diversity of a population
greatly contributes to EA performance [15]. Both genotype
and phenotype diversity measures are classified to difference-
based, distance-based and entropy-based measures [4]. The
latter is a very succinct measure representing the amount
of population disorder as a measure of the diversity. It also
incorporates the distribution of values within the population.
Interested readers may wish to consult [4] for a compre-
hensive review of different types of diversity measures.
In this work we proposed a new genotypic entropy-based
diversity measure which is used to dynamically monitor the
exploration and exploitation balance.

The method proposed in this paper fits into the cate-
gory of adaptive parameter control Evolutionary Algorithms.
Accordingly, we selected several adaptive and self-adaptive
operator rate control methods as benchmark evolutionary
algorithms to evaluate the performance of our suggested
method.

We also evaluated our proposed method against a set
of Estimation of Distribution Algorithms (EDAs), a class
of stochastic optimization techniques closely related to evo-
lutionary algorithms. EDAs search the space of potential
solutions by building and sampling explicit probabilistic
models of promising candidate solutions [16]. The main
difference between EDAs and most conventional evolution-
ary algorithms is that EAs generate new candidate solutions
using a distribution model implicitly defined by the current
state of the search and the set of variation and selection
operators, whereas EDAs use an explicit probability distri-
bution encoded by probability vectors, Bayesian networks,
or another model class [17].

The method proposed in this paper is a modified version
of our recently developed site-specific rate algorithm [18];
it is henceforth referred to as DiG-SiRG which stands for
Diversity-Guided Site-specific Rate Genetic-algorithm.

The remainder of this paper is organized as follows:
Section II provides a detailed description of the DiG-SiRG
algorithm and the underlying ideas. Sections IV, V, and VI
respectively describe the benchmark problems, the compared
algorithms, and the experimental results for the MAX-SAT
problem domain. Finally, Section VII briefly summarizes the
proposed algorithm.

II. A DIVERSITY GUIDED GA WITH AN EXPLORATIVE
AND EXPLOITATIVE MUTATION SCHEME

Exploration in GAs can be simply achieved by a random
perturbation of individuals. However, achieving an exploita-
tive power, and then, retaining its balance with the required
exploration are properties which are not readily attainable.
As it is formerly mentioned, exploitation is good use of
good information to move the search towards the desirable
improvements. However, what is good information, and how
can it be extracted and used for further improvements?

In non-deceptive environments, the underlying pattern of
already found highly-fit individuals seems to be a reliable
source of the currently available good information. To learn
such patterns, we made use of a revised version of motif
representation in biology (roughly speaking, motifs are bio-
logically important patterns frequently recurring in different
DNA sequences). Once the pattern of good individuals has
been derived, it is used to compute mutation rates specified
to each site of every individual.

Note that prior to pattern derivation, highly-fit individuals
should be extracted out of the population. Such individuals
should be carefully selected to preserve the genetic diver-
sity in the resultant pattern. We accordingly, developed a
genotypic entropy-based diversity measure and incorporated
it into the “elite set” selection phase.

To better understand the proposed motif-based approach
it is worth to make a very brief detour into DNA motif
representation: in genetics, a DNA2 motif is defined as a
nucleotide acid sequence pattern that is widespread and has
some biological significance [19]. Given a set of m DNA
sequences, the problem of motif discovery can be roughly de-
fined as finding a set of m subsequences {x1, x2, . . . , xm},
one from each input sequence, that maximizes a predefined
scoring criterion. The set of discovered patterns is usually
represented in a matrix form referred to as position frequency
matrix (PFM). Considering n subsequences of length l and
b = 4 nucleotide bases, a PFM is a matrix F = (fi,j) of
size b× l, where fi,j is the frequency of the occurrence of
nucleotide basis bi at site j of all n sequences.

A. DiG-SiRG Algorithm (General Ideas)

In our framework, highly-fit individuals can be thought
of as motifs since they are “important” sequences in a sense
that they possibly carry the underlying patterns of promising
solutions. Assume that out of a population of n binary
solutions, m(≤ n) individuals have been drawn based on the
superiority of their fitness values. Intuitively, we interpret the
underlying pattern of (available) promising solutions as the

2On its most elementary level, the structure of DNA sequence can be
thought as a long succession of four letters—A, C, G, and T—representing
the four nucleotide bases of a DNA strand.

2571

possibility of the occurrence of each allele (i.e., ‘0’ and ‘1’)
appearing at each site of high-quality individuals selected
out of the current population.

To derive such a pattern, we can construct a revised
version of position frequency matrix, denoted as PFM ′ =
(f ′i,j) in which each component f ′i,j corresponds to the
probability of the occurrence of allele i ∈ {0, 1} at site
j (i.e., simply divide the allele frequency by the size of the
selected population).

However, the PFM ′ representation suffers from an
important drawback: all chosen individuals have an identical
effect on determining the pattern of promising solutions.
However, intuitively, better individuals should play a more
important role in the procedure.To resolve this problem, we
further refine the representation by constructing a position
weight matrix, PWM = (wi,j), wherein the individuals are
weighted by their fitness values. Accordingly, wi,j is derived
by Equation 1 where f(xk) is the fitness of individual xk.

wi,j =

m∑
k=1

f(xk).δ(xk,j = i)

m∑
k=1

f(xk)
, (1)

PWM is then used to derive site-specific mutation rates.
Nonetheless, the key to PWM construction is the selection
of highly-fit individuals such that the genetic diversity
is preserved among the selected individuals. Let st =
{xt1, . . . , xtn} be the population of n individuals at time t,
and Et ⊆ st = {x1, . . . , xm} is the elite set containing
individuals with comparatively higher fitness values. If Et
happens to contain genotypically identical individuals—
i.e., no diversity—all the allele probabilities (wi,j’s) of the
corresponding PWM matrix drop off to 0 or raise to 1. Such
PWM will possibly lead the evolution towards trapping into
local optima and premature convergence resulted from the
loss of enough exploration. Conversely, by an excessively
diverse Et, PWM loses the information content required
for an effective exploitative search. Hence, the number of
individuals in the elite set should be carefully adjusted at
each generation in order to preserve the required diversity
throughout the evolution.

As previously mentioned, diversity refers to the differ-
ences among the individuals, either in genotypic (structure)
or phenotypic (fitness) levels. In EAs, identical genotypes
produce the same fitness, and thus, a decrease in geno-
type diversity necessarily decreases the phenotype diversity.
Therefore, to measure the diversity, one may favour to define
some structural measures. Entropy is a succinct measure
of diversity, and it is shown to be a useful measure for
genotypic diversity (e.g., [20]).

In the information theory, entropy is a measure of un-
certainty or disorder in a signal or a random event. Shannon
[21] defines the entropy of a random event X , with possible
states {X1, . . . , Xn} as:

H(X) = −
n∑
i

pi log2(pi) (2)

function: DiG-SiRG-MUTATION(st)
inputs: population st = {xt1, . . . , xtn}
returns: mutated population

1. Et ←FORM-ELITE-GROUP(st)
2. PWM t ←CONSTRUCT-PWM(Et)
3. for each individual xt

k = 〈xtk,0, . . . , xtk,l−1〉 ∈ st do
4. for each site j = 0, . . . , l − 1 do
5. µt

k,j ←COMPUTE-MU(xt
k, j, PWMt)

6. if rand(0, 1) ≤ µt
k,j do

7. xtk,j ← xtk,j ⊕ 1
8. return st

Fig. 1. Site-specific Rate Mutation scheme

where pi is the probability of observing the ith outcome,
Xi. When more states are available to a system, the sys-
tems’ unpredictability and disorder/diversity increase, and
thus, entropy rises. When only one outcome is observed,
there is no uncertainty, and therefore, the entropy of the
system is zero. Conversely, entropy becomes maximal if all
the outcomes are equally likely—i.e., if the system has n
states which are equiprobable (pi = 1/n), the entropy is

maximum: Hmax = −
n∑
i

1
n log2(1

n) = log2 n

Here, we define the entropy for a set of selected popula-
tion Et = {x1, . . . , xm} by first placing each individual xi
into a genotype class Ci. C0, C1, . . . , Cl are possible geno-
type classes where l is the individual length and Ci com-
prises individuals whose hamming distance3 with the best in-
dividual in the current population x∗(st) is i. pi in Equation
2 is therefore the proportion of the population occupied by
the population partition Ci. More formally, pi is derived by
Equation 3 where h∗(xtk) = hamming-distance(x∗(st), x

t
k),

and δ(c) returns 1 if condition c (i.e., h∗(xtk) = i) holds and
0 otherwise.

pti =
1

m

m∑
k=1

δ(h∗(xtk) = i) (3)

In the next section, we describe how this entropy measure
is used to preserve the elite set diversity.

B. DiG-SiRG Algorithm (Pseudo-code)

DiG-SiRG starts by randomly initializing a population
of n individuals of length l. Then, following the inherent
mechanism of evolutionary algorithms, it incorporates two
primary operations of selection and reproduction during the
main evolutionary cycle. As for the selection mechanism,
DiG-SiRG employs a modified version of the canonical
elitist fitness-proportional selection [22] in which the best
individual survives with the probability of one and replaces
the worst individual in the reproduced population. The
reproduction operation is then accomplished by means of the
newly proposed mutation operator. Fig. 1 gives the detailed
pseudo-code of the proposed mutation scheme. As the Figure
shows, the DiG-SiRG-MUTATION function begins by forming

3Hamming distance between two strings of equal length is the number
of positions at which the corresponding symbols are different.

2572

an elite set containing highly-fit individuals selected out of
the population st. An individual xtk ∈ st is eligible for being
selected if

f(xtk) ≥ αtfmax,

where fmax is the best individual in the current population,
and αt is the reduction factor at time t which should be
adjusted dynamically to preserve Et diversity. Let H(Et)
be the entropy diversity measure of elite set Et (based on
Equations 2 and 3). We define [dmin, dmax] ⊂ [0, Hmax] to
be a healthy diversity interval such that if H(Et) falls within
this interval, the exploration and exploitation are assumed to
be in a good ratio, and thus the process is proceeded without
concern. Otherwise, H(Et) < dmin implies that evolution
is starved of exploration, while H(Et) > dmax means that
the process falls into excessive exploration. We empirically
assigned 1

5Hmax to dmin and 3
5Hmax to dmax. A better

practice, however, is to make the healthy diversity interval
time-sensitive based on the intuition that at the earlier stages
of evolution more exploration is required while towards the
end of the process exploitation is more demanding.

αt =

{
αt−1 − 0.01 if H(Et) < dmin

αt−1 + 0.01 if H(Et) > dmax

αt−1 otherwise
(4)

According to Equation 4, when the elite set diversity falls
below the given dmin threshold, reduction factor decreases
by the step-size of 0.01 to increase the genotypic diversity
by including individuals with slightly lower fitness values.
On the contrary, if the diversity exceeds the dmax threshold,
αt increases; this will restrict the number of individuals in
the elite set to reduce the diversity, and consequently the
exploration rate.

Once a controlled elite set is formed, the selected indi-
viduals are considered as the currently available promising
solutions to construct the position weight matrix (PWM)
according to Equation 1. The resultant PWM gives the
weighted probability of occurrence of each allele at every
site of high-quality individuals. This has been considered as
the underlying pattern of the promising solutions discovered
so far.

Accordingly, for each site j = 0, . . . , l − 1 of every
individual xtk ∈ st, a distinct mutation rate µt

k,j is computed
(COMPUTE-MU function in line 5 of Fig. 1), and used to
mutate site j of individual xtk. µt

k,j is computed according
to Equation 5, where ε is a small positive number to avoid
zero probabilities. Furthermore, wi,j is the (i, j)th element
of matrix PWM where i = xtk,j is the allele number (i.e.,
either 0 or 1 corresponding to alleles ‘0’ and ‘1’) appearing
in site j of individual xtk.

µt
k,j = [ε+ (1− ε)(1− f(xtk)/fmax)] ∗[

ε+ (1− ε)(1− wt
i,j)
]
.

(5)

By using the above equation, the mutation rate at each
site is gauged based on 1) the probability of having the cor-
responding allele at that site based on the PWM constructed
out of high-quality individuals, and 2) the fitness of the

individual which is about to get mutated. In general, better
individuals are more probable to be close to the promising
regions of the search space, and they usually carry more
valuable information. Accordingly, they need to be modified
more carefully. In other words, assigning them high mutation
rates is rather risky and may cause destruction of the useful
information.

III. EXPERIMENTS

We evaluated the performance of our proposed method
on the maximum satisfiability (MAX-SAT) problem, a stan-
dard problem in the theoretical computer science. Note
that DiG-SiRG is a general-purpose (domain-independent)
search algorithm and it can be applied to any GA-compatible
optimization problem. As it is thoroughly discussed in the
next Sections, we were interested in MAX-SAT problem
mainly due to the fact that it can be simply used to generate
problems with controllable degree of “difficulty”.

IV. PROBLEM FORMULATION

Given a Boolean formula in conjunctive normal form
(CNF), MAX-SAT is the problem of finding an assignment
of variables that maximizes the number of satisfied clauses
of the given formula. MAX-SAT generalizes the problem
of Boolean satisfiability (SAT) which is a decision problem
aimed to determine whether or not variables of the given
formula can be assigned in such a way that makes the given
formula evaluate to true [23].

We have chosen the MAX-SAT domain since because of
the natural binary string representation of Boolean expres-
sions [24], GAs can be simply applied and evaluated over
the MAX-SAT problem domain.

More importantly, MAX-SAT problems can be realized
as “GA-hard” problems as they are shown to be particularly
difficult for standard genetic algorithms to solve them [25].
A problem would be characterized as GA-hard if it is
identified to be hard from a GA point-of-view. Although
the terminology recalls that of computational complexity,
fundamentally different criteria (e.g., epistasis, deception,
massive multi-modality, and long paths to a single global
optimum) were used in this context to define the term “GA-
hard”.4 Hence, once a genetic algorithm performs effectively
over a GA-hard search environment, its efficacy can be
extrapolated to a wide range of problem domains.

Furthermore, as shown by [26], MAX-SAT problems
share similar structures with NK-landscapes [27], and both
belong to the encompassing class of embedded landscapes.
NK-landscapes are often used as benchmark problems of
scalable difficulty (epistasis) for genetic algorithms. How-
ever, from a practical perspective, there is a problem in using
a generator of NK-landscapes, that is, the space required to
store the tables used to compute fitness is exponential in
K. This restricts us to small models in which the perfor-
mance difference among the competing methods may not
be decisive enough. Furthermore, all genes in NK-landscape
models have an identical degree of dependency (K), whereas

4Note that, unlike the notion of NP-hardness, GA-hardness is an informal
notion with no known formal counterpart.

2573

in many real-world problems, the dependencies among the
problem variables vary considerably.

We instead used the Boolean satisfiability problem gen-
erator developed by [28], which helps us to avoid concerns
associated with the NK model, and at the same time, allows
us to systematically generate MAX-SAT problems with
controllable degree of difficulty in terms of the problem’s
scale and “epistasis”. Epistasis expresses the relationship
between separate genes in a chromosome. More precisely, a
system has low (high) epistasis if the optimal allele for any
locus depends on small (large) number of alleles at other loci
[28]. Epistasis can be interpreted as expressing non-linearity
in the fitness function, thus, the more epistatic the problem
is, the harder it is to find an optimum [29]. We note that there
is no general agreement on a formal definition of epistasis.
In what follows, we use a formal measure (the degree of the
Walsh representation of a Boolean function) which can be
considered as one specific approach to define this notion.

A. Boolean Satisfiability and Genetic Algorithms

Prior to applying GAs to any particular problem two
critical decisions should be made: 1) selecting an appropriate
representation for the solution space, and 2) defining an
external evaluation function to determine the utility of the
candidate solutions. (MAX-)SAT appears to have highly
GA-compatible string representation, namely, binary strings
of length l in which the ith bit represents the truth value of
the ith Boolean variable (assuming that l Boolean variables
appear in the given Boolean expression).

Regarding the evaluation function, a common practice is
to assign fitness to individual subexpressions in the original
expression and combine them in some way to generate a total
fitness value [28]. We accordingly follow Smith’s suggestion
[24] which defines the value of true to be 1 and the value of
false to be 0. He then determines the fitness f of a simple
subexpressions ei according to the following formulae.

f(ē) = 1− f(e),

f(e1 ∨ e2 ∨ . . . ∨ en) = Max(f(e1), f(e2), . . . , f(en)),

f(e1 ∧ e2 ∧ . . . ∧ en) = Ave(f(e1), f(e2), . . . , f(en)),

B. Creating epistatic problems

As proposed by [28], Boolean satisfiability expressions
can also be easily used to gauge the difficulty of the problem
under study by changing the degree of the epistasis of the
interactions. The proposed technique is mainly centered on
creating specific Hamiltonian circuit problems which are
then converted to SAT expressions. The generated Boolean
expressions have always only one solution which makes the
problem harder to solve. The (directed) Hamiltonian circuit
(HC) problem consists of finding a tour in a directed graph
that touches every node exactly once. The definition of the
HC problem implies that, for any solution, each node must
have exactly one incoming edge and one outgoing edge.
Thus any subgraph which violates this constraint cannot be
a solution [30]. Thus, a satisfiability instance expressing this
necessary condition for the existence of a Hamiltonian cycle
can be formulated as the conjunction of terms indicating
valid edge combinations for each node. Assigning value 1

TABLE I. THE NO. OF VARIABLES AND CLAUSES OF THE
CORRESPONDING CNF BOOLEAN FORMULA, AS THE DEGREE OF

EPISTASIS CHANGES.

No. of Nodes No. of variables No. of clauses
N = 5 15 43
N = 10 55 333
N = 15 120 1123
N = 20 210 2663
N = 25 325 5203
N = 30 465 8993
N = 35 630 14283
N = 40 820 21323

to an edge variable indicates that the edge is in the tour.
Conversely, an edge variable with the value of 0 would not
be considered to be in the tour. Please refer to [28] for
complementary examples and more detailed explanations.

Using the above idea, Spears uses the following family
of HC instances to create MAX-SAT instances with different
degrees of epistasis. Consider a graph of N + 1 nodes
G = (V,E) where nodes are labeled using consecutive
integers from 0 to N (i.e., V = {0, 1, . . . , N}). Suppose
the first node has directed edges to all other nodes except
the last one. The next N − 1 nodes have edges to all other
nodes with the higher label, and the last node has a direct
edge back to the first node. Having such a graph, the only
valid Hamiltonian tour is to follow the nodes labeled in the
increasing order, and then from the last node travel back to
the first one. Increasing N increases the epistasis (see [30]
for more details).

Note that the resultant Boolean formula should be first
converted to CNF format to be used as input to the MAX-
SAT problem. Due to the specific form of Boolean expres-
sions employed in this work, the equivalent CNF expression
can be achieved quite efficiently, i.e., the resulting CNF
expression has size O(N2).

It is also worth mentioning that Rana et al. [25] con-
sidered the epistasis of MAX-SAT problems defined as the
degree (the maximal number of variables in a nonzero term)
is equal to the size of the largest clause. In our examples
the largest clause size is N − 2, where N is the number of
nodes in the corresponding graph.

Table I shows the number of variables (i.e., the number
of edges in Hamiltonian circuits) and the number of clauses
in the equivalent CNF expressions as the number of nodes
(i.e., the degree of epistasis) varies from 5 to 40 with the
step size of 5.

V. COMPARED ALGORITHMS

The performance of the proposed method on a wide
range of Boolean satisfiability problems has been compared
to the canonical GA as well as some evolutionary algorithms
formerly designed to control the rates of variation operators.
We have selected the following adaptive/self-adaptive evolu-
tionary algorithms which support the binary representation,
and thus applicable to the MAX-SAT problem:

1) auto-tuning based genetic algorithm (atGA) [31],
2) canonical genetic algorithm (CGA),
3) adaptive genetic algorithm based on fuzzy mecha-

nism (FuzzyAGA) [32],

2574

4) adaptive genetic algorithm with mutation and
crossover matrices (Matrix-GA) [33],

5) ranked based genetic algorithm (Rank-GA) [13],
6) self-adaptive genetic algorithm (SAGA) [34], and
7) site specific rate genetic algorithm (SSRGA) [11].

The compared algorithms are either recently devised and
shown to outperform some of the former mutation rate
heuristics, or they are pioneer works in this context, fre-
quently cited, and seem to be well-matured benchmark
algorithms. Due to the space limitation, we refer readers
to the corresponding references for the description of the
selected EAs.

We also chose a set of estimation of distribution algo-
rithms (EDAs) to compare our method against a benchmark
suite of stochastic optimization techniques, which are closely
related to evolutionary algorithms. EDAs explore the space
of possible solutions by building and sampling explicit
probabilistic models of high-quality candidate solutions [17].
The main difference between EDAs and EAs including
DiG-SiRG, is that EDAs estimate an explicit distribution to
sample new solutions, while EAs use selection and variation
operators together with the current population to define
an implicit probability distribution over the populations of
solutions; the new population can be then viewed as a sample
of such distribution [17].

EDAs are usually categorized according to the com-
plexity of distribution models they use. Univariate EDAs
assume that the variables in a problem are independent,
while multivariate EDAs are designed to capture multivariate
interactions among problem variables [16]. We have selected
the following well-known examples of univariate and mul-
tivariate EDAs for comparison:

1) Univariate Marginal Distribution Algorithm
(UMDA) [35]

2) Extended Compact Genetic Algorithm (ECGA)
[36]; we used ECGA’s C++ package developed by
[37], and

3) Bayesian Optimization Algorithm (BOA) [38]; we
used BOA’s C++ package implemented by [39].

We have selected these EDAs as they have been applied to
different problems, and have shown successful records of
performance (e.g., [40] and [41]). Furthermore, as the im-
plementations of multivariate EDAs are generally complex,
to avoid any replication bias, we sought for EDAs whose
source code is publicly available.

Note that besides the above-mentioned general differ-
ence between EDAs and GAs, DiG-SiRG individualizes the
mutation vector µj to each candidate solution based on the
individual’s fitness value, while EDAs typically sample an
entire population using an identical distribution probability
vector. There are, of course, some other differences between
DiG-SiRG’s mutation scheme and each particular EDA. For
instance, both DiG-SiRG and UMDA work on a set of
high-quality solutions to derive position-dependent sampling
probabilities or mutation rates. However, at every site of
high-quality individuals, DiG-SiRG uses the weighted prob-
ability of occurrence of each allele, while UMDA uses the
relative frequency of ‘1’. Please refer to the corresponding
references for the description of the selected EDAs.

VI. RESULTS

A. Comparison with benchmark EAs

Using the Spear’s mechanism [28] described in section
IV-B, we have constructed several graphs where N was set to
5, 10, 15, 20, 25. 30, and 40, derived the Boolean expressions
of the corresponding Hamiltonian circuits,5 and converted
the expressions to conjunctive normal forms.

The remaining shared free parameters include the pop-
ulation size which is set to 50 in all experiments, and
the maximum number of generations which is set to 500.
The initial value of the reduction factor, α0 in DiG-SiRG
is chosen to be 0.99. Due to the stochastic nature of
evolutionary algorithms, the performance of all algorithms
over each problem is evaluated based on statistics obtained
from 50 independent runs.

Table II lists the simulation results of the epistatic
problems when N is set to 5, 10, . . . , 40. The results include
the average, the standard deviation of the best-found fitness
values, and the average CPU time (in seconds) of a single
run. The average best fitness (abbreviated as ave in the
Table) is calculated from all of the end-of-run best fitness
values which are either obtained when the maximum number
of generations is encountered, or if a perfect solution is
found. Any bold average value in the Table indicates that the
corresponding algorithm outperforms the rest for the given
problem.

As the statistics displayed in Tables II demonstrate, in all
experiments, except for the epistatic problem with N = 5,
DiG-SiRG outperforms the compared algorithms regarding
both the efficiency (running time) and the precision (average
fitness) of the best found solutions. Rank-GA and Matrix-
GA are the second and the third winners, respectively. Even
though Rank-GA and then Matrix-GA perform relatively
well as compared to other benchmark algorithms, they
both suffer from excessive fitness evaluations and run time
complexity. Comparing to DiG-SiRG and other benchmark
algorithms, number of fitness evaluations are doubled per
generation. In addition, sorting the population two times at
every iteration further raises the algorithmic time complexity
as the results in Table II demonstrate.

Last but not least, in order to illustrate the significant
statistical differences between DiG-SiRG and the benchmark
algorithms, we decided to perform a statistical hypothesis
test among the compared methods. Prior to opt for an
appropriate parametric test, we employed Shapiro-Wilk test
to ensure the data being used follows a Normal distribution.
As the data were normally distributed according to Shapiro-
Wilk test, we were open to choose t-test to detect significant
differences between our proposed method and the compared
algorithms. According to the obtained results, except for
problems with N = 5 in which all algorithms perform
almost perfectly, p-value of every comparison is almost
always quite close to 0 (p ≈ 0) indicating that the superiority
of DiG-SiRG over all benchmark evolutionary algorithms is
significant at any typical significance level.

5Note that the number of Boolean variables would be identical to the
number of the edges of the constructed graphs that is equal to N(N +1)/2
where the number of nodes is N + 1 .

2575

TABLE II. BEST FOUND FITNESS OF COMPARED EAS AS THE DEGREE OF EPISTASIS CHANGES.

Epistasis level N = 5 N = 10 N = 15 N = 20 N = 25 N = 30 N = 35 N = 40

DiG-SiRG ave (std.) 0.989 (0.020) 0.992 (0.003) 0.993 (0.001) 0.994 (0.001) 0.993 (0.001) 0.986 (0.002) 0.975 (0.003) 0.963 (0.002)
time(sec.) 0.013 0.202 0.602 1.388 2.588 4.373 6.953 10.752

SSRGA ave (std.) 1.000 (0.000) 0.974 (0.003) 0.944 (0.006) 0.907 (0.005) 0.879 (0.007) 0.859 (0.006) 0.842 (0.004) 0.830 (0.004)
time(sec.) 0.026 0.297 0.808 1.806 3.283 5.378 8.347 12.413

SAGA ave (std.) 0.985 (0.019) 0.944 (0.006) 0.904 (0.008) 0.874 (0.007) 0.852 (0.005) 0.838 (0.005) 0.826 (0.004) 0.817 (0.004)
time(sec.) 0.036 0.257 0.826 1.593 2.875 4.840 7.465 11.713

Rank-GA ave (std.) 1.000 (0.000) 0.989 (0.004) 0.991 (0.002) 0.984 (0.003) 0.969 (0.005) 0.950 (0.005) 0.933 (0.006) 0.915 (0.005)
time(sec.) 0.017 0.579 1.820 4.225 7.924 13.435 21.077 32.028

Matrix-GA ave (std.) 0.998 (0.009) 0.985 (0.005) 0.981 (0.005) 0.965 (0.007) 0.943 (0.007) 0.920 (0.006) 0.904 (0.006) 0.888 (0.007)
time(sec.) 0.166 1.847 4.025 8.029 13.514 20.727 30.113 41.935

FuzzyAGA ave (std.) 1.000 (0.000) 0.932 (0.017) 0.891 (0.016) 0.864 (0.018) 0.845 (0.011) 0.832 (0.012) 0.821 (0.008) 0.817 (0.011)
time(sec.) 0.109 0.328 1.026 2.380 4.439 7.553 11.852 18.521

CGA ave (std.) 0.977 (0.037) 0.915 (0.017) 0.886 (0.018) 0.861 (0.017) 0.843 (0.019) 0.820 (0.020) 0.810 (0.014) 0.800 (0.014)
time(sec.) 0.047 0.589 1.796 4.122 7.908 13.760 21.956 33.661

atGA ave (std.) 1.000 (0.000) 0.950 (0.016) 0.917 (0.025) 0.880 (0.020) 0.857 (0.022) 0.834 (0.016) 0.821 (0.015) 0.813 (0.012)
time(sec.) 0.031 0.622 2.086 5.081 9.570 16.352 27.017 42.194

TABLE III. END OF RUN STATISTICS OF THE PROPOSED METHOD
AND THE COMPARING EDAS.

Method Epistatic Time to stop Ave. fitness Ave. gen. Stop
level in sec. (std.) to conv. reason

DiG-SiRG

N = 5 0.046 1.000 (0.0) —
op

tim
um

fo
un

dN = 10 0.228 0.994 (1.0E-3) —
N = 15 0.218 0.991 (4.4E-4) —
N = 20 0.652 0.990 (3.2E-4) —
N = 25 2.071 0.990 (2.2E-4) —
N = 30 5.462 0.990 (1.6E-4) —
N = 35 12.919 0.990 (9.8E-5) —
N = 40 31.043 0.990 (1.6E-4) —

UMDA

N = 5 0.06 0.945 (0.027) 803.34

al
le

le
co

nv
er

ge
nc

e

N = 10 1.25 0.949 (0.015) 1,945.06
N = 15 4.98 0.937 (0.015) 2,292.6
N = 20 11.22 0.893 (0.017) 2,622.74
N = 25 20.07 0.857 (0.018) 2,820.94
N = 30 33.32 0.820 (0.019) 2,955.44
N = 35 53.93 0.793 (0.019) 3,106.98
N = 40 90.68 0.767 (0.014) 3,215.64

ECGA

N = 5 0.24 0.947 (0.022) 69.92

al
le

le
co

nv
er

ge
nc

e

N = 10 2.96 0.980 (0.004) 82.14
N = 15 13.08 0.982 (0.006) 81.60
N = 20 45.78 0.979 (0.005) 74.40
N = 25 106.72 0.972 (0.005) 95.04
N = 30 148.75 0.965 (0.004) 71.65
N = 35 190.44 0.961 (0.005) 86.65
N = 40 373.84 0.955 (0.005) 97.08

BOA

N = 5 0.04 0.933 (0.015) 68.82

al
le

le
co

nv
er

ge
nc

e

N = 10 0.08 0.939 (0.012) 20.08
N = 15 0.18 0.904 (0.014) 14.14
N = 20 0.50 0.883 (0.015) 16.12
N = 25 1.32 0.865 (0.012) 15.42
N = 30 2.68 0.851 (0.011) 12.48
N = 35 5.38 0.840 (0.009) 13.96
N = 40 8.08 0.832 (0.008) 14.60

B. Comparison with benchmark EDAs

We set up similar experiments to evaluate DiG-SiRG’s
performance as compared to the selected EDAs. EDAs repeat
the model building procedure in each generation, and the
cost per generation is usually high (for multivariate EDA).
Therefore, reaching the maximum number of generation is
not a proper stop condition for runtime comparison. Instead,
we set the algorithms to stop when the optimum is found
(optimum is set to 0.99), or when the population has fully
converged, i.e., when the population consists of n copies of
the same individual, where n is the population size.

Table III shows the end-of-run statistics of each of the
comparing methods as the degree of epistasis changes. The
second column of Table III gives the average time to stop

(in seconds) of a single run. The third column shows the
average and the standard deviation of the best-found fitness
values. Whenever the algorithm terminates due to the allele
convergence, the forth column gives the average number of
generations passed prior to the convergence.

As the results clearly show, while our proposed method
can quickly find optimum in all the problem instances,
EDAs suffer from premature convergence. UMDA has a
very simple model building procedure, and thus, comparing
to multivariate EDAs, the timing cost per generation is
minimal. However, it performs poorly as the problem gets
more difficult. ECGA is the best performing selected EDA
in terms of the quality of the best found solutions prior to
convergence. Its running time, however, is comparatively
high, specifically for larger values of N . Compared to
ECGA, BOA implements a faster model building procedure,
but rapidly converges to a local optimum (in less than 21
generations, except for N = 5).

VII. SUMMARY

In this paper we proposed diversity-guided adaptive ge-
netic algorithm which makes use of a site-specific mutation
scheme enhanced by and entropy-based diversity control
aimed to tackle both explorative and exploitative responsi-
bilities of genetic operators. The proposed mutation scheme
follows an approach similar to motif representation in biol-
ogy, to derive the underlying pattern of highly-fit solutions
discovered so far. This pattern is then used to derive mutation
rates specified for every site along the encoded solutions.
The site-specific rates are amended for every individual
to balance the required explorative and exploitative power.
Additionally, the mutation rates are reassigned at every
generation to get adapted to the current state of the evolution.

Due to the space limitation, we only reported the per-
formance of the proposed method over the MAX-SAT
problem. DiG-SiRG, however, is a general-purpose (domain-
independent) search algorithm which can be applied to
various optimization problems. We, for instance, examined
another problem from a totally different domain of genomic
studies (visualization of functional relationships across dis-
ease loci), and similarly observed significantly higher per-
formance when compared to the benchmark algorithms.

2576

REFERENCES

[1] A. E. Eiben and C. A. Schipper, “On evolutionary exploration and
exploitation,” Fundamenta Informaticae, vol. 35, pp. 35–50, 1998.

[2] S. Tsutsui, A. Ghosh, D. Corne, and Y. Fujimoto, “A real coded
genetic algorithm with an explorer and an exploiter populations,” In
Proc. of the 73th Int. Con. on GAs, pp. 238–245, 1997.

[3] Y. Y. Wong, K. H. Lee, K. S. Leung, and C. W. Ho, “A novel
approach in parameter adaptation and diversity maintenance for
genetic algorithms,” Soft Computing, vol. 7, no. 8, pp. 506–515,
2003.

[4] M. Črepinšek, S. Liu, and M. Mernik, “Exploration and exploitation
in evolutionary algorithms: a survey,” ACM Computing Surveys
(CSUR), vol. 45, no. 3, p. 35, 2013.

[5] T. Back, “Selective pressure in evolutionary algorithms: A charac-
terization of selection mechanisms,” In Proc. of the 1st Conf. on
Evolutionary Computing, 1994.

[6] E. Galván-López, J. McDermott, M. O’Neill, and A. Brabazon,
“Towards an understanding of locality in genetic programming,”
In Proc. of the 12th Annual Conf. on Genetic and Evolutionary
Computation, ACM, 2010.

[7] A. Eiben, R. R. Hinterding, and Z. Michalewicz, “Parameter control
in evolutionary algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 3, no. 2, pp. 124–141, July 1999.

[8] J. Smith and T. Fogarty, “Self adaptation of mutation rates in a
steady state genetic algorithm,” In Proc. of congress on evolutionary
computation, pp. 318–323, 1996.

[9] F. Vafaee, W. Xiao, P. C. Nelson, and C. Zhou, “Adaptively evolving
probabilities of genetic operators,” In IEEE Proc. of Seventh Int.
Conf. on Machine Learning and Applications, vol. 3, pp. 292–299,
2008.

[10] W. J. Kruisselbrink, R. Li, E. Reehuis, J. Eggermont, and T. Back,
“On the log-normal self-adaptation of the mutation rate in binary
search spaces,” In Proc. of the 13th annual Conf. on Genetic and
evolutionary computation (GECCO 11), ACM, 2011.

[11] F. Vafaee and P. C. Nelson, “An explorative and exploitative mutation
scheme,” IEEE Proc. of 2010 IEEE Congress on Evolutionary
Computation (IEEE CEC 10), 2010.

[12] S. Y. Yuen and C. K. Chow, “A genetic algorithm that adaptively
mutates and never revisits,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 2, pp. 454–472, April 2009.

[13] J. Cervantes and C. R. Stephens, “Limitations of existing mutation
rate heuristics and how a rank GA overcomes them,” IEEE Trans-
actions on Evolutionary Computation, vol. 13, no. 2, pp. 369–397,
2009.

[14] S. Bottcher, B. Doerr, and F. Neumann, “Optimal fixed and adaptive
mutation rates for the leadingones problem parallel problem solving
from nature,” In Proc. of the 11th Int. Conf. on Parallel Problem
Solving from Nature (PPSN XI), Springer, 2010.

[15] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. Berlin, Germany: Springer, 1996.

[16] M. Pelikan, D. E. Goldberg, and F. Lobo, “A survey of optimization
by building and using probabilistic models,” Computational Opti-
mization and Applications, vol. 21, no. 1, pp. 5–20, 2002.

[17] M. Hauschild and M. Pelikan, “An introduction and survey of
estimation of distribution algorithms,” Swarm and Evolutionary
Computation, vol. 1, no. 3, pp. 111–128, 2011.

[18] F. Vafaee, G. Turan, P. C. Nelson, and T. Y. Berger-Wolf, “Among-
site rate variation: Adaptation of genetic algorithm mutation rates at
each single site,” In ACM Proc. of 16th annual Conf. on Genetic and
Evolutionary Computation (GECCO 14), 2014.

[19] M. K. Das and H.-K. Dai, “A survey of DNA motif finding algo-
rithms,” BMC Bioinformatics, p. 8(Suppl 7):S21, 2007.

[20] L.Masisi, V. Nelwamondo, and T. Marwala, “The use of entropy
to measure structural diversity,” In Proc. of IEEE Int. Conf. on
Computational Cybernetics, 2008.

[21] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[22] K. A. DeJong, “Analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. thesis, University of Michigan, Ann Arbor, MI, 1975.

[23] V. V. Vazirani, Approximation Algorithms. Springer, 2003.
[24] G. Smith, “Adaptive genetic algorithms and the boolean satisfiability

problem,” Technical Report, University of Pittsburgh, Pittsburgh, PA,
1979.

[25] S. Rana, R. B. Heckendorn, and D. Whitley, “A tractable walsh
analysis of sat and its implications for genetic algorithms,” In Proc.
of the 15th Conf. on Artificial intelligence/Innovative applications of
artificial intelligence (AAAI 98), ACM, 1998.

[26] R. B. Heckendorn, S. Rana, and D. Whitley, “Polynomial time
summary statistics for a generalization of maxsat,” In Proc. of the
annual Conf. on Genetic and evolutionary computation (GECCO 99),
ACM, 1999.

[27] S. Kauffman, The Origins of Order: Self-Organisation and Selection
in Evolution. Oxford University Press, Oxford, UK, 1993.

[28] W. M. Spears, “Evolutionary algorithms, the role of mutation and
recombination,” Natural Computing, Springer-Verlag, Berlin, 2000.

[29] C. R. Reeves and J. E. Rowe, Genetic Algorithms-Principles and
Perspectives:A Guide to GA Theory. Kluwer, 1995.

[30] K. A. DeJong and W. M. Spears, “Using genetic algorithms to solve
NP-complete problems,” In Proc. of the third Int. Conf. on Genetic
algorithms, pp. 124–132, 1989.

[31] L. Lin and M. Gen, “Auto-tuning strategy for evolutionary algo-
rithms: balancing between exploration and exploitation,” Soft Com-
puting, Springer, vol. 13, pp. 157–168, 2009.

[32] X. B. Hu and S. F. Wu, “A self-adaptive genetic algorithm based on
fuzzy mechanism,” IEEE Congress on Evolutionary Computation,
pp. 4646–4652, 2007.

[33] N. Law and K. Y. Szeto, “Adaptive genetic algorithm with mutation
and crossover matrices,” In Proc. of the 20th Int. joint Conf. on
Artifical intelligence, pp. 2330–2334, 2007.

[34] T. Back and M. Schutz, “Intelligent mutation rate control in canonical
genetic algorithms,” In Foundations of Intelligent Systems, Springer,
pp. 158–167, 1996.

[35] H. Mhlenbein and G. Paass, “From recombination of genes to the
estimation of distributions i. binary parameters,” In Proceeding of
the 4th Int. Conf. on Parallel Problem Solving from Nature (PPSN
IV), Springer, 1996.

[36] G. R. Harik, F. G. Lobo, and K. Sastry, “Linkage learning via
probabilistic modeling in the ECGA,” IlliGAL Report 99010, Uni-
versity of Illinois at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, IL, 1999.

[37] ——, “Linkage learning via probabilistic modeling in the ECGA,”
Extended compact genetic algorithm in C++ (version 1.1). IlliGAL
Report No. 2006012, University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory, Urbana, IL, 2006.

[38] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz, “Linkage problem,
distribution estimation, and bayesian networks,” Evolutionary Com-
putation 8, 2000.

[39] M. Pelikan, “The bayesian optimization algorithm (boa) with de-
cision graphs,” IlliGAL Report No. 2000025, University of Illinois
at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Ur-
bana, IL, 2000.

[40] J. Bacardit, M. Stout, J. D. Hirst, K. Sastry, X. Llora, and N. Krasno-
gor, “Automated alphabet reduction method with evolutionary algo-
rithms for protein structure prediction,” In Proc. of the 9th annual
Conf. on Genetic and evolutionary computation, ACM, 2007.

[41] P. Lipinski, “ECGA vs. BOA in discovering stock market trading ex-
perts,” In Proc. of the 9th annual Conf. on Genetic and evolutionary
computation (GECCO 07), ACM, 2007.

2577

