
A Hybrid Adaptive Coevolutionary Differential

Evolution Algorithm for Large-scale Optimization

Sishi Ye, Guangming Dai*, Lei Peng, Maocai Wang

School of Computer Science

China University of Geosciences

Wuhan, China

gmdai@cug.edu.cn

Abstract—In this paper, we propose a new algorithm, named

HACC-D, for large scale optimization problems. The motivation

is to improve the optimization method for the subcomponents in

the cooperative coevolution framework. In the new HACC-D

algorithm, an algorithm selection method named hybrid adaptive

optimization strategy is used. It is aimed to hybridize the

superiority of two very efficient differential evolution algorithms,

JADE and SaNSDE, as the subcomponent optimization

algorithm of the cooperative coevolution. In the beginning stage,

the novel strategy evolves the initial population with JADE and

SaNSDE as the subcomponent optimization algorithm for a

certain number of iterations separately. Then the one obtained

better fitness value will be chosen to be the subcomponent

optimization algorithm for the following evolution process. In the

later stage of evolution, the selected algorithm may be trapped in

a local optimum or lose its ability to make further progress. So it

exchanges the subcomponent optimization algorithm with the

other one when there is no improvement in the fitness every

certain number of iterations. The proposed HACC-D algorithm

is evaluated on CEC’2010 benchmark functions for large scale

global optimization.

Keywords—hybrid adaptive optimization; differential evolution;

cooperative coevolution; large scale global optimization

I. INTRODUCTION

Many Evolution Algorithm (EAs) have been used for large

scale optimization problems. But the performance of these

algorithms deteriorate rapidly as the dimensionality of

problem increases. It is chiefly derived from the exponential

growth in the size of search space of the problems [1]. As EAs

are applied to increasingly large and complex problems, their

scalability has become one of the most urgent challenges. The

problem of finding the global optimum becomes even more

difficult when some or all of the decision variables have

interaction among themselves. This kind of problems is

classified as non-separable problems. Variable interaction in

large scale problems drastically increases the total number of

function evaluation in order to find a reasonable solution.

Recently, there are two solutions to solve large scale

optimization problems. The first one is to utilize a

decomposition strategy, and the second one is to apply a

hybridization approach.

The first attempt of decomposition was the Cooperative

Coevolution (CC) method proposed by Potter et al. [1]. CC is

a popular technique in EAs for large scale optimization. It

uses a divide-and-conquer approach to divide the decision

variables into low dimensional subcomponents, each of which

is optimized with a certain EA in a round robin fashion. CC

strategy is very successful with separable optimization

problems but lose its efficiency with non-separable ones. In

order to improve the performance of CC with non-separable

optimization problems, the variable interaction among the

subcomponents should be minimized. This emphasizes the

importance of decomposition strategy in CC. Some kinds of

grouping approaches were developed recently, such as

Random Grouping (RG) technique [2], correlation based

Adaptive Variable Partitioning (AVP) [3], Delta Grouping [4],

and Variable Interactive Learning (VIL) [5].

The second solution is in hybrid manner. The hybridization

of the EAs with other technique has been proven to enhance

the performance of the optimization algorithms when solving

large scale optimization problem. Memetic Algorithms (MAs)

has become a popular one for large scale optimization [6, 7]. It

is a hybridization of EA and Local Search (LS). Exploration

and exploitation are two major issues when designing a global

search method. MAs attempt to accomplish the compromise

by putting together two specialized components: an EA that

may assume the task of exploring the search space, and an LS

algorithm that refines promising individuals being evolved by

the EA. The ratio of local search and global search has a

significant influence on the performance of the algorithm. In

this paper, we focus on the first solution to solve large scale

optimization problems.

Differential Evolution (DE) is a popular algorithm as the

subcomponent optimization algorithm of CC. There are many

sorts of adaptive and self-adaptive DE variants [8-11]. Nearly

all of the algorithms for large scale optimization problems

only use a single DE variant as the subcomponent

optimization algorithm [2,4,12,13]. Self-adaptive Differential

Evolution with Neighborhood Search (SaNSDE) [10] has the

highest adoption rate [2,4,12]. However, there are several

This work was supported by "Twelve Five-Year Plan" Civil Aerospace

Professional and Technical Pre-Research Project, the National Natural
Science Foundation of China under Grant No. 61103144, 60873107 and

China Postdoctoral Science Foundation Funded Project No. 2011M501260,

2012T50681, 2012M511301 and Hubei Natural Science Foundation under
grant No. 2010CDB04104, 2011CDB348 and the Fundamental Research

Funds for the Central Universities, China University of Geosciences(Wuhan)

No.CUG120114.

2014 IEEE Congress on Evolutionary Computation (CEC)

July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE 1277

proposed DE variants with different search preference have

shown great performance as well. Recently in a newly

proposed algorithm named JACC-G [13], a new variant of DE

called JADE [5] has been applied to CC as its subcomponent

optimization algorithm. JADE is an adaptive DE algorithm

with a novel mutation strategy, called “DE/current-to-pbest”,

and an optional external archive. Different DE variants might

provide different searching manner toward the global

optimum and improve the diversity of the population as well.

In order to utilize different search bias in the

subcomponents evolution process, we proposed a algorithm

selection method, named hybrid adaptive optimization

strategy, to synthesize the superiority of different DE variants

serving as the subcomponent optimization algorithm of CC.

Among the DE variants, JADE and SaNSDE are the two most

efficient ones [4,5]. Both of them are adaptive and have show

great performance in solving large scale optimization

problems [2,4,12,13]. It is worth the effort to explore the

possibility of hybridizing their efficiency and searching bias to

tackle large scale optimization problems.

The hybrid adaptive optimization strategy composites the

searching preferences of JADE and SaNSDE in a two-level

adaptive manner. Considering that it is difficult to distinguish

which DE candidate is more suitable for the current problem

without any prior knowledge, there needs a way to find out the

better one in the early stage of the evolution process. Wrong

selection might lead to small progress at the beginning of

evolution and a waste of fitness evaluation number, especially

when the selected one is almost unable to make any progress.

In the later period of evolution, the selected DE candidate

might be trapped in a local optimum or lose its ability towards

the global optimum further more. However, the unselected DE

algorithm might be more efficient than the selected one. The

exchange will infuse new searching ability and direction into

the evolution process. Experimental analysis reveals that this

new technique successfully integrated the search superiority of

these two DE algorithms for solving large scale optimization

problems.
The organization of the rest of this paper is as follows.

Section II gives a briefly explanation of the preliminaries and
background information. Section III describes the proposed
hybrid adaptive optimization strategy in details. Section IV
demonstrates and analyzes the experimental results. Finally
Section V concludes this paper and give directions for further
potential improvements.

II. PRELIMINARIES

A. Cooperative Coevolution

Based on a divide-and-conquer manner, CC has been

proved to be a promising framework for tackling those large

scale optimization problems. The original CC proposed by

Potter and De Jong decomposes the decision variables into

smaller subcomponents each of which is optimized by a

certain EA separately. This algorithm is named as Cooperative

Coevolution Genetic Algorithm (CCGA) [1]. They

successfully incorporated CC into Genetic Algorithm for

function optimization. It is a significant inspiration for the

incorporation of CC with various kinds of EA such as

Evolutionary Programming [14], Evolutionary Strategies [15],

Particle Swarm Optimization [16], and Differential Evolution

[2,4,7].

Liu et al. made the first attempt of applying CC to solve

large scale optimization problems. They combined Fast

Evolutionary Programming with Cooperative Coevolution

(FEPCC) [18] for tackling problems with up to 1000

dimensions. However, it is inefficient in dealing with non-

separable functions. It demonstrated that CC loses its ability in

variables interaction.

The first combination of CC with PSO which was

implemented by Van Ben Bergh and Englbrecht led to the

formation of Cooperative Particle Swarm Optimization (CPO)

[16]. It adopts a statistic grouping method that the

arrangement of variables stays the same during the evolution

process. By concatenating the variables of every individual

with the best-fit individuals of other subcomponents which

forms a context vector [14], the individuals in each of the

subcomponents is evaluated. Then the context vector is fed

into fitness function for evaluation.

Shi et al. [17] proposed a decomposition strategy which

applied DE into CC. They used a splitting-in-half strategy that

divides the decision variables into halves and each of them is

optimized by DE. With the increasing dimension of the halves,

this strategy can hardly be scaled up in an effective way.

Yang et al. [2] took the first step to develop a more

systematic way of dealing with variable interaction by random

grouping the decision variables into different subcomponents.

In Random Grouping approach, every decision variable is

randomly arranged into any of the subcomponents with equal

probability and it is repeated at the beginning of every cycle

[2]. Despite its success in increasing the probability of

grouping two interacting variables into the same

subcomponent, the efficiency drops considerably when there

are more than two interacting variables.

Based on the shortcoming of Random Grouping, Omidvar

et al. proposed a more systematic strategy named Delta

Grouping [4] to capture the interaction among variables.

Unlike the blind mechanism of random grouping, Delta

Grouping calculates the amount of change (delta value) in

each of the decision variables in every iteration to identify the

interacting variables. Eventually, the grouping of decision

variables is decided on the basis of the sorted delta values.

The Delta Grouping method showed its good performance in

grouping up to fifty interacting variables in to the same

subcomponent. In this paper, we adopt the Delta Grouping

approach as the problem decomposition method in HACC-D

algorithm.

B. Algorithm Selection Method

Most problems can be solved by more than one algorithm.

The choice of the algorithm can dramatically affect the quality

of the solution and the time spent obtaining it. Algorithm

selection is aimed to identify the best-performing algorithm

from a set of candidate algorithms. Existing approaches for

algorithm selection can be divided into two main categories,

1278

i.e., the so-called inter-problem methods and the intra-problem

ones.

An inter-problem approach usually focuses on selecting

algorithm for a given problem class. For example, statistical

racing [19] is a general-purpose tool to find an algorithm that

performs as well as possible on a problem class. First, a

number of problem instances are sampled and used as the

training instances. Then, candidate algorithms are evaluated

on the training instances. The algorithms that perform poorly

will be discarded sequentially as soon as statistically sufficient

evidence is gathered against them.

Differently from the inter-problem approaches, a typical

intra-problem method aims to select the best algorithm for a

single problem instance instead of a problem class. A

representative method is “racing multiple algorithms on a

single problem” approach proposed by Yuan and Gallagher

[20], which is an extension of statical racing. For a given

problem, it first executes all the candidate algorithms on the

problem and compares the different algorithms with a pre-

defined statistical test. This procedure is repeated until only

one candidate is left or the time budget is used up. In this

paper, the proposed hybrid adaptive optimization strategy is

more like a intra-problem method.

III. PROPOSED TECHNIQUES

A. Hybrid Adaptive Optimization Strategy

Most of the recent proposed algorithms for large scale

optimization are based on CC. Almost all of them only adopt a

single DE variant as the subcomponent optimization algorithm

while there are several DE variants with different search

preferences and great efficiency. It is worth the effort to

explore the possibility of hybridizing the search bias of

different DE variants. Among all of them, SaNSDE and JADE

are the two most efficient ones [10, 11].

SaNSDE integrates the advantages of SaDE [8] and NSDE

[20]. It utilizes the self-adaptive mutation strategy of SaDE

which composites two well performed mutation strategies to

avoid the dilemma that the mutation strategies of DE are often

highly dependent on the problems. In another aspect, SaNSDE

makes use of the neighborhood searching method of NSDE to

mix two NS operators with different searching preferences by

the scaling factor F. The NS operators are Cauchy random

number and Gaussian random number. The former one is

more likely to provide long jumps in the early period of

evolution which will make the population move fast forwards.

The latter one is more feasible to produce small jumps when

the current searching point is near the global optimum. In

addition, the parameter CR of SaNSDE is based on a weighted

self-adaptive manner to learn from the successful crossover

operation.

JADE is an adaptive DE algorithm with a novel mutation

strategy called “DE/current-to-pbest” and an optional external

archive. The new mutation strategy in JADE is a

generalization of the traditional “DE/current-to-best”. It relies

on the historical data instead of the best solutions in the

current population. The best solution is usually less reliable

and might lead to premature convergence [21,22]. The

external archive of JADE stores the inferior solutions that fail

in the selection process. Their difference from the current

population might give a promising direction towards the

global optimum when the evolution procedure is trapped in a

local optimum and improve the diversity of the population as

well.

The new proposed technique is aimed to integrate the

preponderance of JADE and SaNSDE as subcomponent

optimization algorithm of CC to tackle the large scale

optimization problems. The hybrid adaptive optimization

strategy hybridizes the DE candidates at two levels:

1) In the beginning stage of evolution, the initial population

is evolves with JADE and SaNSDE as subcomponent

optimization algorithm for an appropriate number of iterations

separately. Then, the one gained better fitness value will go

into the following evolution procedure and the worse one is

abandoned.

The rationality behind it is that the two DE candidates have

different superiority on different problems. Also, it is unclear

which one is more suitable for the current problem without

any available prior knowledge. Therefore, a number of

iterations (called js) is spent in the early learning stage to

identify either JADE or SaNSDE is more suitable for the

current problem. The time (i.e. js) allocated for the early

learning stage needs to be proper. Obviously, a large time

budget might lead to a waste of fitness evaluation number and

a small one is not enough to identify the appropriate DE

candidate.

2) In the later period of evolution process, the selected

subcomponent optimization algorithm might lead the

evolution process be trapped in a local optimum or lose its

efficiency to make further progress. Thus, it exchanges the

subcomponent optimization algorithm when there is not any

improvement in the fitness value every certain number of

iterations (called denum). The different searching ability and

bias of the new one might infuse the population with new

energy and help to escape from a local optimum.

Considering that both JADE and SaNSDE use an adaptive

mechanism to update their control parameters. The value of

denum should not destroy the original exploration ability of

them. The control parameters F and CR of JADE is generated

according to a Cauchy distribution and a normal distribution

separately. They are regenerated in every generation which is

a very fast fashion. On the other hand, the parameter F and CR

in SaNSDE are updated every 50 iterations. This relatively

slow mechanism means to learn from the parameter values of

the successful offspring. So the value of denum needs to be

carefully designed. A small value is not practical and might

cause a bad influence on the original searching ability of the

DE candidates. A large value for denum could not guarantee

changing the subcomponent optimization algorithm in time,

and will make the hybrid adaptive optimization strategy lose

its meaning and efficiency. Given the features of JADE and

SaNSDE, the setting of denum should be at least bigger than

50 and the multiple of it.

B. HACC-D

Based on the idea of Delta Grouping and the hybrid

1279

adaptive optimization strategy, the primary steps of HACC-D

is as follow:

1) Uniformly randomly initialize the population. Set i = 1 to

start a new cycle.

2) Initialize the � vector to zero. It indicates that the Delta

Grouping is not used for sorting the variables in the first cycle.

3) Divide the decision variables into predefined-size

subcomponents. Then optimize the initial population pop with

JADE and SaNSDE as its subcomponent optimization

algorithm for js iterations separately. Then get their current

best fitness value jbest and sbest. Note that each of the

subcomponent is optimized for only one iteration at a time

before evaluation. Also, sort the decision variables based on

the magnitude of their corresponding delta value in every

iterations.

4) If jbest < sbest, choose JADE to be the optimizer in the

following evolution. Otherwise, select SaNSDE instead.

5) Set the num = 0 to start a monitor on the improvement of

fitness value.

6) Evolve all the subcomponents with the selected DE

candidate for one iteration. If the improvement of fitness is

zero between two consecutive cycles, num++. Otherwise, reset

num = 0.

7) If num reaches to the predefined threshold number

denum, replace the subcomponent optimization algorithm with

the other one and reset num = 0.

8) Stop if the halting criterion is satisfied. Otherwise, go to

step 6) for the next cycle.
Here one complete evolution of all subcomponents is called

a cycle. The two control parameters of HACC-D, js and denum,
need to be well defined in order to be effective for as many
kinds of problems as possible. Based on their roles in HACC-D,
we expect these two parameters to be insensitive to different
sorts of problems. As shown in Section IV, HACC-D has the
best performance for most of the problems with

]7000,6000[�js and]150,50[�denum .

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

All the algorithms are evaluated on CEC’2010 benchmark

functions proposed for the Special Session and Competition

on Large Scale Global Optimization [23]. This set of

benchmark functions is suitable because the non-separability

degree is well defined and adjustable. The benchmark

functions are scalable as well.

For the purpose of choosing appropriate setting for the

control parameters of HACC-D, we conducted two sets of

comparative experiment. In the first set of experiment, the

denum value are fixed to 100 for all the compared HACC-D

algorithms while the value of js is ranging from 3000 to 10000.

In the second set of experiment, the value of js are fixed to the

best value gained from the first set of comparative experiment

for all the HACC-D algorithm while the value of denum is

ranging from 50 to 200.
Each of the algorithms is conducted 25 independent runs on

every function. The population size of them are set to 50 and

the maximum number of fitness evaluations are set to
6103�

according to [23]. The dimension of the benchmark functions
are set to 1000 and the subcomponent size of all the algorithms
are set to 100. The global optimum value are zero for all the
benchmark functions.

B. Analysis of Results

The experimental results and analysis of the outputs are

contained in this section. In order to set a reference line for the

comparative experiments analysis, we conducted experiments

on DECC-D with SaNSDE as its subcomponent optimization

algorithm and DECC-D with JADE as its subcomponent

optimization algorithm separately. These two algorithms are

called the two basic algorithms in the following paper. The

better results of the two basic algorithms is highlighted in bold

and italic in Table I. The comparative results of the two basic

Fig. 1. The average best fitness value ranking of function 1 to 9 for
the two basic algorithms and eight HACC-D algorithms with js

ranging from 3000 to 10000 is shown above. The best fitness value

of all the algorithms is the mean of 25 independent runs. The
columns in each histogram has the same order as Table I.

1280

algorithms shows that their performance gaps are significantly

algorithms show that their performance gaps are significantly

large on functions
7632 ,,, ffff and

16f which is a reflection

of the different search preferences of SaNSDE and JADE.

For the seeking of proper setting for the control parameters

of HACC-D, two groups of comparative experiment were

conducted on each of the parameter with the other one kept

fixed. The results of the first group of comparative experiment

are presented in Table I. It is focused on exploring the suitable

value for js. The results which are better than the better results

of the two basic algorithms are highlighted in bold. It can see

that the results on
32 , ff and

6f
are better than the better

results of the two basic algorithms when the value of js is

6000 or 7000. Among the eight comparative algorithms of

Fig. 2. The average best fitness value ranking of function 10 to 20

for the two basic algorithms and eight HACC-D algorithms with js
ranging from 3000 to 10000 is shown above. The best fitness value

of all the algorithms is the mean of 25 independent runs. The

columns in each histogram has the same order as Table I.

Fig. 3. The average best fitness value ranking of function 1 to 20 for
the two basic algorithms and four HACC-D algorithms with denum

ranging from 50 to 100 is shown above. The best fitness value of all

the algorithms is the mean of 25 independent runs. The columns in
each histogram has the same order as Table II.

1281

HACC-D with different value of js, the one with js valuing

6000 obtained the best result on 16f . It is the closest one to

the better result of the two basic algorithms. Furthermore, all

the HACC-D algorithms besides the one with js set to 8000

obtained good results far better than the better result of the

two basic algorithms on 11f . The algorithms with js ranging

from 5000 to 10000 achieved great results on 7f which are

very close to the better result of the two basic algorithms.

Last but not least, all the eight algorithms with different

value of js almost have the same results or a little better than

the better results of the two basic algorithms on the rest of the

benchmark functions. Since HACC-D spends a certain time

budget in the early learning stage to select the suitable DE

candidate for the problem, it has less time budget for the later

evolution process. This may cause its poor performance on

some of the functions comparing with the two basic

algorithms. The average ranking for the two basic algorithms

and those eight HACC-D algorithms with different js value is

shown in Fig. 1 and Fig. 2. The order of these algorithms is

the same as they are in Table I.

Given the results from the first set of comparative

experiment on js, the most suitable value of js is around 6000.

So we conducted another group of comparative experiment on

the setting of denum with all their js fixed to 6000. The results

are revealed in Table II. The best results on all the functions

are highlighted in bold. For the functions where the two basic

algorithms have remarkable difference, all of the four HACC-

D algorithms with different denum values performed well on

them except on 16f . Only the ones with denum set to 50 and

100 have good performance on 16f . Comparing these two

algorithms with denum set to 50 and 100, it indicates that the

one with denum set to 100 have better results on 12 out of 20

functions than the one with denum set to 50. Therefore, we

can conclude that the most appropriate value for denum is

around 100. The average ranking for these four HACC-D

algorithms with different denum value is shown in Fig. 3.

From the analysis results of the two groups of comparative

experiments on js and denum, we can give a conclusion that

TABLE II
COMPARISON OF DIFFERENT VALUE OF DENUM ON CEC’2010 FUNCTIONS

WITH 1000 DIMENSIONS. THE VALUES OF JS ARE SET TO 6000. NUMBERS
SHOW THE MEAN OF THE BEST FITNESS OVER 25 RUNS. BEST RESULTS ARE

IN BOLD.

Function
HACC-D

(denum = 50)

HACC-D

(denum = 100)

HACC-D

(denum = 150)

HACC-D

(denum = 200)

1f 0.00E+00 1.98695E-27 7.22620E-24 1.41435E-24

2f 1.27187E-14 1.42819E-14 1.87583E-14 2.29505E-14

3f 3.51008E-14 3.45324E-14 3.31113E-14 3.70903E-14

4f 1.47153E+12 1.55083E+12 1.55508E+12 1.48589E+12

5f 1.88494E+08 1.96257E+08 1.77787E+08 1.90083E+08

6f 3.55275E-09 3.55275E-09 3.55275E-09 3.55275E-09

7f 5.69671E-07 3.86854E-07 2.65166E-07 4.90587E-07

8f 9.10512E+07 7.43599E+07 8.92652E+07 9.26996E+07

9f 3.37695E+07 3.31677E+07 3.24815E+07 3.37418E+07

10f 1.28347E+04 1.29697E+04 1.29891E+04 1.28848E+04

11f 8.07177E-14 7.81597E-14 8.81073E-14 9.93339E-14

12f 1.40832E+06 1.30627E+06 8.97216E+05 5.40116E+05

13f 3.60962E+03 1.96263E+03 3.02180E+03 3.73116E+03

14f 9.38062E+07 9.21128E+07 9.27589E+07 9.08917E+07

15f 1.54656E+04 1.55630E+04 1.56981E+04 1.56818E+04

16f 1.23066E-13 1.95131E-11 6.24513E-02 5.11992E+01

17f 1.60879E+06 1.41958E+06 3.55930E+05 1.38588E+06

18f 4.03339E+03 4.02378E+03 3.69344E+03 3.89739E+03

19f 1.99009E+07 1.86875E+07 1.96428E+07 2.01051E+07

20f 1.49404E+03 1.50615E+03 1.44411E+03 1.45724E+03

TABLE I
COMPARISON OF DIFFERENT VALUE OF JS ON CEC’2010 FUNCTIONS WITH 1000 DIMENSIONS. THE VALUES OF DENUM ARE SET TO 100. NUMBERS

SHOW THE MEAN OF THE BEST FITNESS OVER 25 RUNS. THE BETTER RESULTS OF THE FIRST TWO COLUMNS ARE IN BOLD AND ITALIC. THE RESULTS OF THE

LATTER EIGHT COLUMNS THAT ARE BETTER THAN THE BETTER ONE OF THE FIRST TWO COLUMNS ARE IN BOLD.

Function

DECC-D

with

SaNSDE

DECC-D

with JADE

HACC-D

(js = 3000)

HACC-D

(js = 4000)

HACC-D

(js = 5000)

HACC-D

(js = 6000)

HACC-D

(js = 7000)

HACC-D

(js = 8000)

HACC-D

(js = 9000)

HACC-D

(js = 10000)

1f 3.57794E-25 0.00E+00 1.76090E-27 1.81406E-24 3.17611E-25 1.98695E-27 6.23376E-25 4.69019E-25 1.34774E-30 3.50832E-29

2f 2.84689E+02 1.14966E-13 9.30811E-15 1.19371E-14 1.15818E-14 1.42819E-14 1.95399E-14 1.83320E-14 2.26663E-14 2.68585E-14

3f 1.22782E-13 1.78704E+00 1.74939E+00 1.71724E+00 1.57388E+00 3.45324E-14 3.48166E-14 3.58114E-14 3.73745E-14 3.63798E-14

4f 3.44753E+12 1.60213E+12 1.79162E+12 1.79188E+12 1.30266E+12 1.55083E+12 1.73135E+12 1.58576E+12 1.75701E+12 1.73148E+12

5f 2.72363E+08 2.36021E+08 2.04688E+08 1.95657E+08 2.05167E+08 1.96257E+08 2.16391E+08 2.00395E+08 2.09385E+08 1.92507E+08

6f 4.68970E-09 5.09187E+06 3.55274E-09 3.55275E-09 3.55275E-09 3.55275E-09 3.41064E-09 3.41064E-09 3.55275E-09 3.55275E-09

7f 3.52767E+08 8.45151E-09 8.64966E+07 1.25250E+07 3.04321E-07 3.86854E-07 8.28283E-07 2.03944E-06 3.03527E-06 8.89508E-06

8f 1.19507E+08 5.52296E+08 6.30138E+07 4.83415E+07 6.55209E+07 7.43599E+07 9.53725E+07 6.16187E+07 6.99627E+07 5.73891E+07

9f 6.21254E+07 3.06609E+07 3.23031E+07 3.45962E+07 3.35917E+07 3.31677E+07 3.42528E+07 3.40635E+07 3.42916E+07 3.62148E+07

10f 1.29672E+04 1.34031E+04 1.29189E+04 1.30495E+04 1.29915E+04 1.29697E+04 1.30879E+04 1.28996E+04 1.29945E+04 1.29164E+04

11f 9.36254E+00 2.34567E+02 7.97229E-14 8.18545E-14 8.08598E-14 7.81597E-14 7.98650E-14 9.30189E+00 9.22284E-14 9.06653E-14

12f 4.36961E+06 1.57476E+06 6.79974E+05 7.42874E+05 1.06460E+06 1.30627E+06 1.18706E+06 1.23500E+06 1.36350E+06 1.09518E+06

13f 1.30132E+03 1.91958E+04 2.78523E+04 3.30757E+04 7.74810E+03 1.96263E+03 1.61381E+03 2.15509E+03 1.23001E+03 1.38381E+03

14f 1.99022E+08 8.30360E+07 8.48703E+07 8.97985E+07 8.95303E+07 9.21128E+07 9.53143E+07 9.23374E+07 9.82225E+07 1.00453E+08

15f 1.58924E+04 1.60453E+04 1.55809E+04 1.55239E+04 1.55848E+04 1.55630E+04 1.55078E+04 1.56680E+04 1.57054E+04 1.56496E+04

16f 2.22826E-13 4.28221E+02 1.10148E-01 4.10833E-02 4.10833E-02 1.95131E-11 3.41654E+01 1.69685E+01 1.32775E-01 1.70647E+01

17f 7.38221E+06 1.20642E+06 1.35663E+06 6.91856E+05 3.93122E+05 1.41958E+06 7.45514E+05 3.70285E+05 4.11024E+05 9.80619E+05

18f 1.83549E+03 3.47312E+03 3.29985E+03 4.68288E+03 4.43172E+03 4.02378E+03 3.85539E+03 2.74920E+03 2.30892E+03 2.19868E+03

19f 1.96141E+07 4.98982E+07 1.96217E+07 1.98800E+07 1.95914E+07 1.86875E+07 1.95151E+07 1.94544E+07 1.96884E+07 1.94744E+07

20f 1.14341E+03 1.48097E+03 1.47984E+03 1.47136E+03 1.41765E+03 1.50615E+03 1.46568E+03 1.47348E+03 1.50058E+03 1.47194E+03

1282

the most appropriate parameter setting for HACC-D is that js

is around 6000 and denum is around 100.

In Table III, the best, worst and median mean and standard

deviation are recorded. The HACC-D algorithm in Table III

has the setting of js = 6000 and denum = 100. The information

is recorded at different stages of evolution to present the

convergence behavior of the new proposed algorithm. For the

reason that the value of maximum generation (Max_Gen =

FEs/NP) is smaller than js (js = 6000) when the FEs is 1.2+e5,

Table III only contains the data of HACC-D when FEs is 6e+5

and 3e+6.

Fig. 4 shows the convergence plots of the two basic

algorithms (DECC-D with SaNSDE, DECC-D with JADE)

and HACC-D algorithm with js = 6000 and denum = 100 on

117632 ,,,, fffff and
16f . These functions are the ones on

which there is a large gap between the two basic algorithms or

the one on which HACC-D have a significantly better

performance than the two basic algorithms. In Fig. 4, HACC-

D converges faster than the two basic algorithms on 32 , ff
and

11f when the evaluation number is over
4104� . However, the

convergence speed of the two basic algorithms is almost zero.

In particular, HACC-D converges faster than the two basic

algorithms on 16f when the evaluation number is over
4105.4 � .

On all these six functions, HACC-D almost keeps the same

speed as the faster one of the two basic algorithm and still has

a speed at the end stage of evolution. It proves the success of

the hybrid adaptive optimization strategy in synthesizing the

preponderance of the DE variants and its extra searching

ability to some extent. Consequently, the hybrid adaptive

optimization strategy succeeds to composite the superiority of

JADE and SaNSDE and is efficient for large scale

optimization problems.

V. CONCLUSION

In this paper, we proposed a novel technique named hybrid

adaptive optimization strategy for large scale optimization

problems. It integrates the preponderance of two most

successful differential evolution algorithms, JADE and

SaNSDE, as the subcomponent optimization algorithm of CC.

For the class of problems on which the two algorithms with

only one single subcomponent optimization algorithm

(DECC-D with SaNSDE, DECC-D with JADE) have large

performance gap, the hybrid adaptive optimization strategy

showed significant success and managed to obtain the better

results of the two basic algorithms. For the reason that the

novel strategy allocates a certain time budget in the early

learning stage, it has less time budget for the following

evolution process. This make HACC-D has poorer

performance than the two basic algorithms on some of the

functions. Experimental results confirmed that HACC-D

algorithm is capable of coalescing the advantages of JADE

and SaNSDE as the subcomponent optimization algorithm of

CC for large scale optimization problems.

Hybrid adaptive optimization method seems to be a

promising approach for large scale optimization problems. But

it is still in its infancy and the setting of the two control

parameters, js and denum, is rough. Further research is desired

in order to improve the hybrid adaptive mechanism and make

it more suitable and robuster to more kinds of problems. In the

meanwhile, there are still other kinds of EAs. It is promising

to explore a new algorithm selection method in the

subcomponent optimization process of CC to conquer large

scale optimization problems

ACKNOWLEDGMENT

The authors would like to thank Mr. Omidvar for providing

us with the source code of DECC-D and the anonymous

reviewers.

TABLE III

EXPERIMENT RESULT OF CEC”2010 FUNCTIONS FOR 25 INDEPENDENT RUNS WITH 1000 DIMENSIONS.

1000D 1f 2f 3f 4f 5f 6f 7f 8f 9f 10f

6.0E+

05

Best 2.88E+02 2.99E+03 7.14E-01 7.45E+12 7.66E+07 6.59E+03 9.98E+07 4.61E+07 2.45E+08 1.27E+04

Median 2.32E+03 3.11E+03 7.59E-01 1.46E+13 1.87E+08 8.84E+03 3.59E+08 1.24E+08 3.44E+08 1.34E+04

Worst 1.60E+04 3.23E+03 8.15E-01 2.56E+13 2.68E+08 1.17E+04 9.19E+08 2.65E+08 3.99E+08 1.36E+04

Mean 2.98E+03 3.11E+03 7.67E-01 1.50E+13 1.77E+08 8.99E+03 3.96E+08 1.40E+08 3.39E+08 1.33E+04

StDev 3.12E+03 6.11E+01 2.86E-02 4.66E+12 5.36E+07 1.39E+03 1.92E+08 5.71E+07 3.56E+07 3.00E+02

3.0E+

06

Best 0.00E+00 5.33E-15 2.84E-14 6.01E+11 9.05E+07 3.55E-09 8.26E-09 2.63E+02 2.47E+07 1.25E+04

Median 0.00E+00 1.42E-14 3.20E-14 1.60E+12 2.17E+08 3.55E-09 2.22E-07 3.11E+07 3.30E+07 1.30E+04

Worst 4.97E-26 2.49E-14 5.68E-14 2.70E+12 2.89E+08 3.55E-09 1.66E-06 3.72E+08 4.08E+07 1.36E+04

Mean 1.99E-27 1.43E-14 3.45E-14 1.55E+12 1.96E+08 3.55E-09 3.87E-07 7.44E+07 3.32E+07 1.30E+04

StDev 9.93E-27 5.77E-15 7.78E-15 4.80E+11 6.04E+07 5.59E-15 4.41E-07 8.86E+07 3.88E+06 2.39E+02

1000D 11f 12f 13f 14f 15f 16f 17f 18f 19f 20f

6.0E+

05

Best 1.48E+01 6.08E+05 3.40E+03 8.10E+08 1.47E+04 8.83E+01 2.18E+06 2.56E+04 1.84E+07 4.30E+03

Median 1.83E+01 8.39E+05 1.90E+04 9.34E+08 1.58E+04 1.03E+02 2.86E+06 4.81E+04 2.32E+07 4.72E+03

Worst 5.20E+01 5.20E+06 5.63E+04 1.11E+09 1.65E+04 4.27E+02 9.18E+06 6.95E+04 2.84E+07 7.77E+03

Mean 2.13E+01 1.33E+06 2.25E+04 9.30E+08 1.57E+04 1.29E+02 3.48E+06 4.72E+04 2.35E+07 4.90E+03

StDev 8.06E+00 1.32E+06 1.33E+04 8.10E+07 4.41E+02 7.51E+01 1.80E+06 1.18E+04 2.19E+06 6.75E+02

3.0E+

06

Best 6.39E-14 3.82E+03 7.58E+02 7.91E+07 1.43E+04 1.07E-13 4.23E+04 1.40E+03 1.60E+07 1.28E+03

Median 7.82E-14 5.22E+03 1.10E+03 9.11E+07 1.57E+04 1.24E-13 5.92E+04 3.70E+03 1.83E+07 1.51E+03

Worst 9.59E-14 4.61E+06 6.77E+03 1.06E+08 1.64E+04 4.85E-10 9.05E+06 1.16E+04 2.15E+07 1.80E+03

Mean 7.82E-14 1.31E+06 1.96E+03 9.21E+07 1.56E+04 1.95E-11 1.42E+06 4.02E+03 1.87E+07 1.51E+03

StDev 9.00E-15 1.98E+06 1.67E+03 8.55E+06 5.11E+02 9.69E-11 3.19E+06 2.17E+03 1.44E+06 1.29E+02

1283

REFERENCES

[1] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary

approach to function optimization,” in Proc. of the Third Conference on

Parallel Problem Solving from Nature, vol. 2, 1994, pp. 249-257.
[2] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization

using cooperative coevolution,” Information Sciences, vol. 178, pp.

2986-2999, August 2008.
[3] T. Ray and X. Yao, “A cooperative coevolutionary algorithm with

correlation based adaptive variable partitioning,” in Proc. of IEEE

Congress on Evolutionary Computation, May 2009, pp. 983–989.

[4] M. N. Omidvar, X. Li, and X. Yao. “Cooperative co-evolution with

delta grouping for large scale non-separable function optimization,” in

Proc. of the 2010 IEEE Congress on Evolutionary Computation, 2010,
pp. 1762-1769.

[5] W. Cheng, T. Weise, Z. Yang, K. Tang, “Large-Scale Global

Optimization Using Cooperative Coevolution with Variable Interaction

Learning,” in Parallel Problem Solving from Nature – PPSN XI. vol.

6239, R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph, Eds., ed:
Springer Berlin / Heidelberg, 2010, pp. 300-309.

[6] E. Sayed, D. Essam, and R. Sarker. “Dependency identification

technique for large scale optimization problems.” Evolutionary
Computation (CEC), 2012 IEEE Congress on. IEEE, 2012.

[7] D. Molina, M. Lozano, and F. Herrera. “MA-SW-Chains: Memetic

algorithm based on local search chains for large scale continuous global
optimization.” Evolutionary Computation (CEC), 2010 IEEE Congress

on. IEEE, 2010.

[8] A. Qin and P. Suganthan, “Self-adaptive differential evolution algorithm
for numerical optimization,” in Proc. of the 2005 IEEE Congress on

Evolutionary Computation, vol. 2, 2005, pp. 1785-1791.

[9] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution
algorithm,” Soft Comput.: Fusion Found., Methodologies Applicat.,

vol.9, no. 6, pp. 448-462, 2005.

[10] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with
neighborhood search,” in Proc. of IEEE World Congress on

Computational Intelligence, June 2008, pp. 1110-1116.

[11] J. Zhang and A. C. Sanderson, “JADE: Adaptive Differential Evolution
with Optional External Archive,” IEEE Transactions on Evolutionary

Computation 13(5), pp. 945-958, 2008.

[12] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,” in

Proc. of the 2010 IEEE Congress on Evolutionary Computation, 2010,
pp.1-8.

[13] Z. Yang, J. Zhang, K. Tang, X. Yao , “An Adaptive Coevolutionary
Differential Evolution Algorithm for Large-scale optimization,” in Proc.

of the 2009 IEEE Congress on Evolutionary Computation, 2009, pp.

102-109.
[14] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary

programming with cooperative coevolution,” in Proc of the 2001

Congress on Evolutionary Computation, 2001, pp. 1101-1108.
[15] D. Sofge, K. D. Jong, and A. Schultz, “A blended population approach

to cooperative coevolution fordecomposition of complex problems,” in

Proc. of IEEE World Congress on Computational Intelligence, 2002, pp.
413-418.

[16] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to

particle swarm optimization,” IEEE Transactions on Evolutionary
Computation 8 (3), pp. 225-239, 2004.

[17] Y. Shi, H. Teng, , and Z. Li, “Cooperative co-evolutionary differential

evolution for function optimization,” in Proc. of the First International
Conference on Natural Computation, 2005, pp. 1080-1088.

[18] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A Racing

Algorithm for Configuring Metaheuristics.” GECCO. Vol. 2. 2002, pp.
11-18 .

[19] B. Yuan, and M. Gallagher. “Statistical racing techniques for improved

empirical evaluation of evolutionary algorithms.” Parallel Problem
Solving from Nature-PPSN VIII. Springer Berlin Heidelberg, 2004.

[20] Z. Yang, X. Yao, J. He, “Making a difference to differential evolution,”

in Advances in metaheuristics for hard optimization, Springer Berlin
Heidelberg, 2008, pp. 397-414.

[21] E. Mezura-Montes, J. Velázquez-Reyes, and C. A. Coello Coello, “A

comparative study of differential evolution variants for global
optimization,” in Proc. Genetic Evol. Comput. Conf., Seattle, WA, Jul.

2006, pp. 485-492.

[22] R. Mendes, I. Rocha, E. C. Ferreira, and M. Rocha, “A comparison of
algorithms for the optimization of fermentation processes,” in Proc.

IEEE Congr. Evol. Comput., Vancouver, BC, Jul. 2006, pp. 2018-2025.

[23] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the cec’2010 special session and competition on large scale

global optimization,” NICAL, USTC, China, Tech. Rep., 2009,

http://nical.ustc.edu.cn/cec10ss.php

Fig. 4. Convergence plots of
16117632 and,,,, ffffff for DECC-D with SaNSDE, DECC-D with JADE and HACC-D with js = 6000 and

denum = 100.

1284

