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Abstract—The optimal reactive power dispatch (ORPD) 
problem is formulated as a complex multiobjective optimization 
problem, involving nonlinear functions, continuous and discrete 
variables and various constraints. Recently, multiobjective 
evolutionary algorithms (MOEAs) and multiobjective particle 
swarm optimization (MOPSO) have received a growing interest 
in solving the multiobjective optimization problems. In this 
paper, MOPSO, and two highly competitive algorithms of 
MOEAs, that is, nondominated sorting genetic algorithm II 
(NSGA-II) and strength Pareto evolutionary algorithm (SPEA2) 
are presented for solving the ORPD problem. Moreover, a 
mixed-variable handling method and an effective constraint 
handling approach are employed to deal with various types of 
variables and constraints. The proposed algorithms are 
evaluated on the standard IEEE 30-bus and 118-bus test systems. 
In addition, several multiobjective performance metrics are 
employed to compare these algorithms with respect to 
convergence, diversity, and computational efficiency. The 
results show the effectiveness of MOEAs and MOPSO for 
solving the ORPD problem. Furthermore, the comparison 
results indicate that MOPSO generally outperforms other 
algorithms for ORPD and has a great potential in dealing with 
large-scale optimal power flow problems. 

Keywords—optimal reactive power dispatch; evolutionary 
algorithms; MOPSO; multiobjective optimization 

I. INTRODUCTION 
The optimal reactive power problem (ORPD) has attracted 

great attention in the past decades because it can greatly 
improve economy and security of power system. Generally, 
the goal of the ORPD is to minimize the network real power 
loss and improve voltage profile by regulating generator bus 
voltages, switching on/off static VAR compensator and 
changing transformer tap-settings, while satisfying various 
equality and inequality constraints. Therefore, ORPD is 
formulated as a constrained nonlinear optimization problem.  

A large number of methods has been proposed for solving 
the ORPD problem in the literature. Generally, these reported 
methods can be divided into three categories. 

The first one employs the conventional methods such as 

nonlinear programming (NLP) [1], Quadratic programming 
[2], linear programming (LP) [3], and interior point 
algorithms [4]. However, these techniques are failed in 
handling non-convexities and non-smoothness and 
susceptible to be trapped in local minima. 

The second one utilizes the intelligent search-based 
methods, such as simulated annealing (SA) [5], evolutionary 
algorithms(EAs) [6-7], and tabu search (TS) [8], particle 
Swarm optimization(PSO) [9].These heuristic methods have 
been applied to the ORPD problem with impressive success 
but converge to only a single optimal solution where tradeoffs 
between different objectives must be fixed in advance of 
solution. In order to obtain desired Pareto-optimal solutions, 
these methods require multiple runs and tend to find weakly 
nondominated solutions. 

In the last few years, the use of evolutionary algorithms and 
particle swarm optimization (PSO) for multiobjective 
optimization problems has significantly grown. Since these 
algorithms use a population of solutions in their search, 
multiple Pareto-optimal solutions can be found in one single 
run. Currently, there is a number of multiobjective 
evolutionary algorithms (MOEAs), especially the three 
competitive algorithms: nondominated sorting genetic 
algorithm II (NSGA-II) [10], strength Pareto evolutionary 
algorithm 2 (SPEA 2) [11] and PAES-II [12]. Recently, 
MOEAs [13-16] and MOPSO [17] have been implemented 
and applied individually to the ORPD problem with 
impressive success. However, there is lack of comprehensive 
comparison between MOEAs and MOPSO, since these 
algorithms are supposed to find an optimal Pareto-front to a 
given objective function but employ different strategies and 
computational effort. Moreover, the quality and diversity of 
the obtained nondominated solutions by using these 
algorithms have not been measured and evaluated 
quantitatively. 

In this paper, a comparative study of MOPSO, SPEA2 and 
NSGA-II has been carried out to assess their potential to solve 
the real-world multiobjective ORPD problem. The ORPD 
problem is formulated as a nonlinear constrained 
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multiobjective optimization problem where power losses and 
voltage profile are treated as competing objectives. In order to 
deal with various types of variables and constraints, a 
mixed-variable handling method and an effective constraint 
handling approach are incorporated into these basic 
algorithms. The simulations are carried out on the standard 
IEEE 30-bus and 118-bus power test systems. Furthermore, 
several multiobjective performance metrics are employed to 
evaluate and compare these three algorithms with respect to 
convergence, diversity, and computational efficiency. 

II. PROBLEM FORMULATION 

A. Problem Objectives  
1) Real Power Loss ( LP ) 

The objective is to minimize the real power loss in 
transmission lines that can be expressed as  

 ( )2 2
1

min min 2 cosNE
L k i j i j i jk

P G V V VV δ δ
=

⎡ ⎤= + − −⎣ ⎦∑  (1) 

Where NE is the number of transmission lines; kG is the 

conductance of the thk line; Vi iδ∠ and j jV δ∠ are the 

voltages at end bus i  and bus j  of the thk  line. 
2) Voltage Deviation (VD ) 

The objective is to minimize the load buses voltage 
deviation from the nominal value defined as 
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VD V V
=

= −∑   (2) 

Where spec
iV is the pre-specified reference value at load 

bus i , which is usually set as 1.0 p.u., and NL is the number of 
load buses. 

B. Problem Constraints 
1) Power Flow Equations 
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2) System Operating Constraints 
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i i i
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i i i
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 , 1,2,...,
i i
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Where NB NG , NT , NC , NPQ and NG are the numbers 
of buses, generators, transformers, switchable VAR sources, 
and PQ buses, respectively.

iGP and
iGQ are the generator real 

and reactive power; 
iDP and 

iDQ are the load real and reactive 

power;  ijG and ijB  are the transfer conductance and 
susceptance between i  and j ; 

iGV are generator voltage; 

iT is the transformer tap setting; 
iCQ is reactive power 

compensation of the switched VAR source; 
iPQV is the PQ bus 

voltage; 
iLS is the apparent power flow of transmission line. 

The max and min represent the maximum and minimum 
values of the corresponding variables. 

III. MULTIOBJECTIVE OPTIMIZATION APPROACHES  

A. Basic Concepts 
The general multiobjective optimization is formulated as: 

 ( ) ( ) ( )1 2min , , ,
objNf X f X f X⎡ ⎤

⎣ ⎦…  (10) 

Subject to 
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Where T
1 2( , , , )nX x x x= " is a vector of the decision 

variables; objN is the number of objective functions; ( )if X is 

the thi objective function; ( )ih X and ( )jg X are the functions 

of the thi equality constraint and the thj inequality constraint, 
respectively. The constraints define the feasible region and 
any vector X in the feasible region is called a feasible 
solution. 

For a multi-objective optimization problem, a 
solution 1X is said to dominate the other solution 2X  if and 

only if ( ) ( )1 2i if X f X≤  for all  1, , obji N= … and 

( ) ( )1 2j jf X f X< at least one { }1, , objj N∈ … . If 1X  

dominates 2X , 1X  is called as the nondominated solution. 
The solutions that are nondominated within the entire search 
space are denoted as Pareto optimal solutions. The set of all 
the Pareto optimal solutions is called the Pareto optimal set. 
The image of the Pareto optimal set under the objective 
functions is called Pareto front. 

B. Non-dominated Sorting Genetic Algorithm (NSGA-II) 
NSGA-II, originally developed by Deb [10], is a 

commonly used multiobjective optimization technique well 
suited to solve highly constrained optimization problems. The 
characteristic feature of NSGA-II is its fast non-dominated 
sorting procedure for ranking solutions in its selection. The 
population is sorted into several fronts according to the 
dominance ranks of the individuals. NSGA-II has a fitness 
assignment based on the estimation density of a solution. The 
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density estimation of NSGA-II is performed by a truncation 
operator based on crowding distance which for each 
individual of the population computes values relative to 
distance between two points on either side of this point along 
each of the objectives. During selection, NSGA-II uses a 
crowded-comparison operator that takes into consideration 
both the nondomination rank of an individual in the 
population and its crowding distance (i.e., nondominated 
solutions are preferred over dominated solutions, but between 
two solutions with the same nondomination rank, the one that 
resides in the less crowded region is preferred). 

C. Strength Pareto Evolutionary Algorithm (SPEA2) 
SPEA2, presented by Zitzler and Thiele [11], is another 

popular MOEA based on Pareto domination. SPEA2 
maintains an external archive of the nondominated solutions 
found during the search and updates it at each generation. 
Once the archive is full, further solutions are removed based 
on a clustering technique, to make room for new solutions in 
successive iterations. The clustering aims to preserve the 
characteristics of the current Pareto front despite removing 
solutions. In SPEA2, each solution is associated to a strength 
value that defines the strength of dominance of an individual 
in relation to other individuals. The individuals with higher 
strength values are preserved and maintained in the 
population. In case two individuals are of equal strength, 
SPEA-II uses a density measure to distinguish between 
solutions. This measure is an adaptation of the k-th nearest 
neighbor method. 

D. Multiobjective Particle Swarm Optimization (MOPSO) 
PSO is a simple and efficient population based 

optimization method proposed by Kennedy and Eberhart [18]. 
The basic idea of PSO is the mathematical modeling and 
simulation of the food searching activities of a swarm of 
particles. Each particle in a swarm flies around in a 
multidimensional search space. During the iterative process, 
each particle  adjusts its velocity and position according to 
its past experiences (the local best  iPbest ) and its neighbors’ 
experiences (the global best Gbest ).  

Up to now, there have been several proposals to extend 
PSO to handle multiobjectives. Here, we only choose one of 
popular MOPSO algorithms developed by Coello [19]. In 
order to extend PSO to handle multiobjectives, Coello uses 
the concept of Pareto dominance to decide  iPbest  and Gbest . 
The  iPbest of particle i is the position which is nondominated 
by its own past positions. In order to determine Gbest , Coello 
adopts an external archive to store the nondominated vectors 
found along the search process. This archive uses a 
diversity-preserving mechanism to separate the objective 
function space into a number of hypercubes (or adaptive 
grids). If the archive exceeds its membership threshold, the 
hypercubes with the most densely populated hypercubes are 
truncated. The archive also facilitates the selection 
of Gbest for any individual. Each hypercube are given a 
fitness value, which represents the number of the solutions 
contained in the hypercube. Thus, a more densely populated 
hypercube is given a lower score. Selection of Gbest  for a 

particle is then based on roulette wheel selection of a 
hypercube first according to its score, and then uniformly 
choosing a member of that hypercube. 

IV. APPROACH IMPLEMENTATION 

A. Representation of the Decision Variable  
In the decision variables of the ORPD problem, 

iGV is 
continuous variable, which can be running at any real number 
within the limit boundary; iT and

iCQ are discrete variables, 
which can only be given a value from a fixed discrete values 
set. Here, we use the real number to represent continuous 
variables and the integer to represent discrete variables. Thus, 
the vector of new control variables can be written as 

 
1 1

*
1, ,

T

NG NCG G NT C CX v v t t q q⎡ ⎤= ⎣ ⎦… … …  (12) 

Then, the relationship between practical parameters and 
new control variables can be written as: 
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 (13) 

Where
iGv , it and

iCq are the generator bus voltage, the 
position of transformer tap and the step of reactive 
compensation capacitor. itΔ and

iCqΔ express the step size of 
corresponding variables. 

B. Mixed-variable Handling  
In the basic forms of the proposed multiobjective 

optimization algorithms, they can only handle continuous 
variables. Hence, we employ a mixed-variable handling 
method introduced in [20], which can be briefly described as 
follows.  

In the initialization process, all variables are random 
generated within their upper and lower bounds at first. Then, 
the integer part of the variable value is picked to be the value 
of the integer variable, which is denoted as ( )( )int ix t , 

1,2, ,i n= … . 
In the iterative process, there’re some differences between 

MOEAs and MOPSO. For MOEAs, all offspring solutions 
are produced by parent using crossover and mutation, and 
then the integer part of the variable value is picked to be value 
of the current variable. For MOPSO, the new position for the 
integer variables will be selected in the neighbor integer 
values of the former position according to the velocity of the 
particle. If the velocity is more than zero, the new position is 
forward to plus 1. Otherwise, it is back to minus 1. 

C. Constraints Handling 
The ORPD problem is subjected to several equality and 

inequality constraints represented by (3)-(9). The equality 
constraints (3) can be used to calculate the state variables and 
objective functions using Newton-Raphson method. The 
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inequality constraints (4)-(6) can be automatically satisfied 
by setting the boundary of the search space. The inequality 
constraints (7)-(9) need to be handled during the optimization 
procedure. This paper adopted an efficient constraint 
handling method, originally proposed by Deb [21]. The main 
idea of this approach is to apply a set of simple rules to decide 
the selection process in MOEAs or MOPSO algorithm, where 
two solutions are compared at a time, the following criteria 
are enforced: 

1） If both are feasible, nondominance is directly applied 
to decide who is the winner. 

2） If one is feasible and the other is infeasible, the 
feasible dominates. 

3） If both are infeasible, then the one with the lowest 
value in its total sum of constraint violations dominate. 

Based on the above criteria, objective and constraint 
violation information are considered separately. Thus, there is 
no need of any penalty factors. Whenever two solutions are 
compared, we firstly check their constraints. If they are all 
infeasible, we need to calculate the total sum of constraint 
violations. In this paper, the sum of all the normalized 
constraint violations of an infeasible solution is calculated as: 

 

lim lim

max max
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i i i i
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where max
iPQVΔ  , max

iGQΔ  and max
iLSΔ  are the largest violation 

of the thi  PQ bus voltage constraint, the thi  generator 
reactive power output constraint, and the thi  line apparent 
power flow constraint achieved by any individual in the 
current population. 

V. RESULTS AND DISCUSSION 
The effectiveness and efficiency of the different 

multiobjective optimization algorithms for solving the ORPD 
problem are tested on the standard IEEE 30-bus and 118-bus 
power systems. Owing to the randomness of the proposed 
MOEAs and MOPSO, 10 independent trials are conducted 
when applied to the test systems. All the techniques and 
simulations developed in this study are implemented on 1.83 
GHz PC using MATLAB language. The load flow is run 
using MATPOWER 4.1 software [22] with necessary 
alterations in the coding. 

A.  Parameter Settings 
For successful implementation of the proposed algorithms, 

the optimum settings of different input parameters are 
required to be determined. Different trials have been made for 
solving the ORPD problem of both test systems. Based on the 
trials, the optimal parameters are selected as follows. The 
maximum size of the Pareto-optimal set is selected as 50 
solutions for both two test systems. The values of the 
common parameters used in each algorithm such as 
population size popN and the maximum number of 

TABLE  I  BEST EXTREME SOLUTIONS OUT OF TEN RUNS BY THE THREE ALGORITHMS FOR IEEE 30-BUS SYSTEM 

Variable Initial 
MOPSO NSGA-II SPEA2 

Best LP  Best VD  Best LP  Best VD  Best LP  Best VD  

1GV  1.05 1.0708 1.0183 1.0658 1.0294 1.0687 1.0369 

2GV  1.04 1.0630 1.0084 1.0561 1.0086 1.0586 1.0125 

5GV  1.01 1.0415 1.0031 1.0346 1.0001 1.0333 0.9986 

8GV  1.01 1.0405 1.0 1.0351 1.0048 1.0368 0.9994 

13GV  1.05 1.0744 1.0300 1.0417 1.0988 1.0168 1.0270 

1GV  1.05 1.0620 1.0418 1.0694 0.9974 1.0543 1.0177 

6 9T −  1.078 1.078 1.0 1.025 1.0 1.0125 0.975 

6 10T −  1.069 0.9 0.9125 0.9 0.9625 0.9125 0.975 

4 12T −  1.032 1.0 1.0 0.9875 0.9875 0.9875 1.0 

27 28T −  1.068 0.9625 0.925 0.95 0.9375 0.95 0.9625 

10Q  0.0 0.05 0.01 0.01 0.04 0.01 0.02 

24Q  0.0 0 0.05 0.02 0.0 0.03 0.01 

( )LP MW  5.8327 4.9849 5.5968 5.0465 5.7431 5.1067 5.6821 

( )VD pu  0.9520 0.7096 0.1222 0.7248 0.1274 0.6581 0.1315 
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iterations maxIter for each test system are chosen to be the same. 
For the IEEE 30 bus system, popN and maxIter  are set at 50 
and 100. For the IEEE 118 bus system, 100popN = , 

500maxIter = . The other parameters are given below: 
1) MOPSO settings: inertia weight factor 0.729w = ; 

acceleration constants 1 2 2.05c c= = , the number of grids per 
each dimension 50 gridN = .  

2) NSGA-II settings: crossover probability 0.9cp = ; 
mutation probability 1/mp n= ( n is the number of decision 
variables);the distribution indices for crossover and mutation 
operators are set as 20cη = and,   20mη = respectively. 

3) SPEA2 settings: the external archive size  50AN = ; 
crossover probability 0.9cp = ; mutation probability 

1/mp n=  ( n is the number of decision variables); the 

distribution indices for crossover and mutation operators are 
set as 20cη = and   20mη = , respectively. 

B. IEEE 30-bus Power System 
This system consists of 6 generators (located at bus 1, 2, 5, 

8, 11 and 13), 4 transformers, and 2 VAR compensators. Thus 
the number of decision variables is 12 in this problem. Four 
branches (6, 9), (6, 10), (4, 12) and (27, 28), are under load tap 
setting transformer branches. The VAR compensators are 
installed at buses 10 and 24. The detailed data is given in 
[23-24].The lower voltage magnitude limits at all buses are 
0.95 p.u. and the upper limits are 1.1 p.u. for generator buses 
2, 5, 8, 11, and 13, and 1.05 p.u. for the remaining buses 
including the slack bus 1. The transformer tapping is in the 
range of [0.9, 1.1] with the step size of 0.0125 and the shunt 
capacitors have the rating between 0 and 5 MVAR with the 
step size of 1 MVAR. The initial settings of the control 
variables and initial objective values are given in Table I. 

Tables I represents the best LP  and bestVD solutions which 
are the extreme solutions of Pareto-front, obtained out of ten 
runs by three different techniques for IEEE 30-bus system. It 
is clear that the results are almost identical. In addition, 
MOPSO can find slightly better extreme solutions. The best 
obtained Pareto-fronts of all techniques are shown in Fig. 1. It 
can be seen that all the three algorithms are able to locate the 
Pareto-optimal solutions with excellent diversity. Moreover, 
MOPSO can find better non-dominated solutions. 

It is well known that in particle, there’re usually different 
scenarios (such as peak, off-peak and low load) for a practical 
reactive power dispatch in a real power system. Thus, four 
different scenarios are considered, that is, 90%, 95%, 105% 
and 110% of the original load level. The best obtained 
Pareto-fronts obtained out of ten runs using different 
techniques are shown in Fig. 2. It is clear that these algorithms 
can maintain good diversity among the solutions for all the 

 
Fig. 2. The best obtained Pareto-fronts of MOPSO, NSGA-Ⅱ, and SPEA2 for different loading levels of the IEEE30-bus system 

 
Fig. 1. The best obtained Pareto-fronts of MOPSO, NSGA-Ⅱ and SPEA2

for the base load of the IEEE30-bus system 
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loading levels. Further, it can be seen that if we gradually add 
the system load, the range of the Pareto front for the ORPD 
problem increases in the real power-loss objective and 
decreases in the voltage-deviation objective. This observation 
implies that at a heavier load level, more system loss has to be 
consumed for the same promotion of the voltage profile. This 
means that the same amount of voltage changes in the heavier 
load system may bring much more system loss. 

C. IEEE 118-Bus Power System 
In this section, the comparison between the three 

algorithms is moved to a larger scale power system such as 
IEEE 118 bus system. The power system consists of 54 
generators, 9 transformers and 12 capacitor banks. Thus, the 
dimension of control variables in this case is 75. For more 
information about the system, one can refer to [25]. The 
operating limits of all the control variables are the same as in 
IEEE 30 bus system. 

The best LP  and bestVD solutions obtained out of ten runs 
using three different algorithms for IEEE 118-bus system are 
given in Table II. Due to the space limitation, the final 
optimal settings of 75 decision variables are not given. The 
best Pareto-fronts out of ten runs are show in Fig. 3. From the 
results, it is clear that all the three algorithms are able to 
generate Pareto-front in a single simulation run. Moreover, 
MOPSO can find better extreme points and nondominated 
solutions. 

D. Multiobjective Performance Metrics Analysis 
In multiobjective optimization processes, two goals are 

normally taken into account: 1) convergence to the true 

Pareto-optimal set; 2) maintenance of diversity in solutions of 
the Pareto-optimal set. In order to obtain an accurate 
quantitative comparison of the performances of the proposed 
approaches, this paper implements three different 
performance metrics: Generational Distance (GD) [26], 
Minimal Spacing (MSP) [27], and Hypervolume (HV) [28]. 
A brief introduction of these metrics is given here: 

Generational Distance (GD): GD is used to evaluate the 
closeness of the nondominated set obtained by an algorithm 
to the reference Pareto-optimal front. 

 
2

1

n
ii

d
GD

n
==

∑  (17) 

Where n is the number of vectors in the reference 
Pareto-optimal front and id is the Euclidean distance 
(measured in objective space) between each of these and the 
nearest member of the Pareto optimal set. 

Minimal Spacing (MS): MS is used to evaluate how 
evenly the nondominated solutions are distributed in the 
objective.  

 ( )2
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1  
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i
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Where
m 1

objN
i k

i k m md min f f
=

= −∑ , objN  the number of 

objectives, i is the index of the solution which is marked as 
the current seed, and k is the index of the solution which is 
stilled unmarked at the current iteration. 

Hypervolume (HV): This metric provides the combined 
qualitative information about closeness and diversity in 
obtained Pareto-optimal fronts. It calculates the volume 
covered by the members of the approximate Pareto-optimal 
Q for problems where all objectives are to be minimized. 
Mathematically, for each solution i Q∈ , a hypercube iv is 
constructed with a reference point W and the solution i is the 
diagonal corners of the hypercube. The reference point can 
simply be found by constructing a vector of worst objective 
function values. Thereafter, a union of all hypervolume (HV) 
is calculated as follows: 

 
|Q|

1

 i
i

HV volume v
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∪  (19) 

 
 

Fig. 3. The best obtained Pareto-fronts of MOPSO, NSGA-II, and SPEA2 
for the IEEE118-bus system 

TABLE II   BEST EXTREME SOLUTIONS OUT OF TEN RUNS BY DIFFERENT APPROACHES FOR IEEE118-BUS SYSTEM 

Object Initial 
MOPSO NSGA-II SPEA2 

Best LP  Best VD  Best LP  Best VD  Best LP  Best VD  

( )LP MW  132.8629 117.8686 127.5240 119.8287 128.3485 122.1903 129.2778 

( )VD pu  2.3316 2.9212 0.7183 2.7116 0.7765 2.1671 0.7482 
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1) Generation of reference Pareto front 
Before implementing these performance metrics, the 

reference Pareto-front should be generated. Here, the 
covariance matrix adapted evolution strategy (CMA-ES) is 
employed to obtain the Pareto-front by using multiple run. 
This can be obtained by treating this problem as a single 
objective optimization with weighted sum of objectives as 
follows. 

 ( )* 1 *LF w P w VD= + −  (20) 

Where w  is the weight factor which varies randomly 
between 0 and 1. To get 50 nondominated solutions, the 
algorithm CMA-ES is applied 50 times with varying  with a 
linear increment of 0.02, each run having 50,000 function 
evaluations. 

2) Implement of performance metrics 
In order to evaluate the performance metrics of these 

algorithms, 100 trials runs are conducted for each system. 
These metrics will be helpful for evaluating closeness to the 
true or reference Pareto-optimal front and also for evaluating 
diversity among non-dominated solutions. 

The statistic comparisons of performance metric are 
showed in Table III. It can be seen that the average and stand 
deviation performance of both metrics for MOPSO are the 
best. It proves that MOPSO gives better convergence and 
diversity solutions than SPEA2 and NSGA-II. 

E. Computational efficiency 

Computational complexity of NSGA-II is ( )2O MN  as in 
each iteration, it calculates set of solutions dominated by 
solution k as well as the set of solutions dominated the 
solution k . Where N  is the number of solutions and M is 
number of objectives. Computational complexity of SPEA2 is 

( )2 logO MN N as in each iteration it calculates near 
neighbors for each solution. Computational complexity of 
MOPSO is also ( )2O MN  as nondominated sorting is 
required. Table IV shows the statistic results of computational 
time of the three algorithms in a single simulation for the 
IEEE 30 and 118 bus systems. Though computational 
complexities of NSGA-II and MOPSO proposed method are 
same, NSGA-II takes more time because PSO based approach 
(MOPSO) converges quickly compared to GA based 
approach (NSGA-II). SPEA 2 takes largest computational 
time because in each iteration, it calculates inter-distance 
between all individuals. 

VI. CONCLUSIONS 
In this paper, we have compared three elitist multiobjective 

optimization methods, namely MOPSO, NSGA-II and 
SPEA2 for solving the ORPD problem. The problem has been 
formulated as a bi-objective problem with minimization of 
the real power loss and the bus voltage deviations. Several 

TABLE IV  COMPUTATIONAL TIME OF DIFFERENT ALGORITHM FOR IEEE 30-BUS AND 118-BUS SYSTEMS 

Time 
IEEE 30-bus system IEEE 118-bus system 

MOPSO NSGA-II SPEA2 MOPSO NSGA-II SPEA2 

Best (s) 40.16 176.86 205.342 137.469 418.891 467.203 

Mean (s) 43.38 181.52 210.733 158.376 448.417 528.813 

Worst (s) 51.37 188.281 215.687 181.687 507.281 563.578 

Std. Dev. 3.176 6.747 5.316 13.8352 21.8039 18.7585 

Table III  STATISTICAL RESULTS OF PERFORMANCE METRIC FOR IEEE 30-BUS IEEE 118-BUS SYSTEMS 

Performance Measures 
IEEE 30-bus system IEEE 118-bus system 

MOPSO NSGA-II SPEA2 MOPSO NSGA-II SPEA2 

GD 

Best 0.012871 0.057375 0.093126 0.011491 0.102942 0.142735 

Mean 0.016473 0.153627 0.165919 0.017236 0.228537 0.344697 

Worst 0.023865 0.243776 0.255901 0.025514 0.478526 0.513841 

Std. Dev. 0.003036 0.057408 0.061057 0.004283 0.074689 0.088215 

MSP 

Best 0.208284 0.316984 0.268075 0.223417 0.265961 0.276804 

Mean 0.238587 0.329747 0.305155 0.298814 0.403119 0.367682 

Worst 0.265783 0.355727 0.348737 0.325622 0.489737 0.398957 

Std. Dev. 0.021495 0.012701 0.02606 0.036145 0.047227 0.029396 

HV 

Best 0.148573 0.141977 0.142138 0.284508 0.264875 0.275931 

Mean 0.142676 0.137651 0.135746 0.265727 0.233248 0.217574 

Worst 0.138175 0.1334836 0.1318645 0.224731 0.209645 0.197866 

Std. Dev. 0.017541 0.041701 0.06513 0.032356 0.053217 0.070472 
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optimization runs of these three algorithms are carried out on 
the standard IEEE 30-bus and 118-bus power test systems. In 
addition, several quality performance measures are employed 
to evaluate and compare the different techniques with respect 
to convergence, diversity, and computational time. The 
results show the effectiveness of MOEAs and MOPSO for 
handling the ORPD problem. In addition, the comparison 
results demonstrate MOPSO generally outperforms NSGA-II 
and SPEA2 on these test instances and implies its potential to 
deal with the complicated power system multiobjective 
optimization problems. 
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