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Abstract—A Constraint Satisfaction Problem (CSP) is a frame-
work used for modeling and solving constrained problems. Tree-
search algorithms like backtracking try to construct a solution
to a CSP by selecting the variables of the problem one after
another. The order in which these algorithm select the variables
potentially have significant impact on the search performance.
Various heuristics have been proposed for choosing good variable
ordering. Many powerful variable ordering heuristics weigh
the constraints first and then utilize the weights for selecting
good order of the variables. Constraint weighting are basically
employed to identify global bottlenecks in a CSP.

In this paper, we propose a new approach for learning weights
for the constraints using competitive coevolutionary Genetic
Algorithm (GA). Weights learned by the coevolutionary GA later
help to make better choices for the first few variables in a search.
In the competitive coevolutionary GA, constraints and candidate
solutions for a CSP evolve together through an inverse fitness
interaction process. We have conducted experiments on several
random, quasi-random and patterned instances to measure the
efficiency of the proposed approach. The results and analysis
show that the proposed approach is good at learning weights to
distinguish the hard constraints for quasi-random instances and
forced satisfiable random instances generated with the Model
RB. For other type of instances, RNDI (RaNDom Information
gathering) still seems to be the best approach as our experiments
show.

Index Terms—Constraint Satisfaction Problem, Variable Or-
dering, Competitive Coevolution, Genetic Algorithm

I. INTRODUCTION

Representing and solving problems involving constraints
has important applications in artificial intelligence, including
scheduling, planning, image interpretation and satisfiability
testing. The idea of a static Constraint Satisfaction Problem
(CSP) is to represent problem knowledge by defining con-
straints on the allowable values of problem variables. The
basic algorithm to search solutions for a CSP is simple
backtracking [14]. In backtracking search, the basic operation
is to pick one variable at a time, and consider one value for
it at a time. The ordering in which the variables are labeled
can affect the efficiency of the backtracking search [7], [9].
The variable ordering can affect the number of backtracks
required in a search, which is one of the most important factors
affecting the efficiency of an algorithm. When a lookahead
strategy [14] is incorporated with simple backtracking, the
variable ordering can also affect the amount of search space
pruned.

Dynamic or static variable ordering heuristics can be used to
choose variables. In a static variable ordering (SVO) heuristic,
variables are ordered before starting the search, and the search
process always select variables in that order. Dynamic variable
ordering (DVO) heuristics, on the other hand, select the current
variable by extracting information during the search process.
In [7], [26] different SVO approaches have been proposed,
while in [4], [9], [17], [20], [22] different DVO approaches
have been proposed.

In this paper, we introduce a new approach where a com-
petitive coevolutionary Genetic Algorithm (GA) is combined
with the backtracking search to solve CSPs. Competitive co-
evolution is a situation where two different species coevolve
against each other. Typical examples of coevolving species are
Predator-Prey and Host-Parasite. In this model, fitness of any
individual from one species is determined through encounters
with the individuals from the opposite population. In this
paper, the coevolutionary GA is used to identify the hard
constraints for a particular CSP by learning weights of all the
constraints. Once the weights have been learned by the non-
systematic coevolutionary GA, variables in the backtracking
search is selected by a heuristic that uses weights to select a
variable.

In order to evaluate the performance of the proposed ap-
proach, we have conducted a comparative experimental study
with several similar existing variable ordering approaches. The
experimental results based on thirty random, quasi-random and
patterned instances show that the proposed approach is good at
learning weights to distinguish the hard constraints for quasi-
random instances and forced satisfiable random instances
generated with the Model RB [25]. For other type of instances,
RNDI shows the best performance.

The rest of the paper is organized as follows: Section II
introduces CSP framework and solving methods for CSPs.
Section III provides an overview of GA, while section IV
discusses existing approaches for variable ordering in CSPs.
The proposed approach for learning constraint weights using
coevolutionary GA is detailed in section V, followed by the
report and analysis of the experimental results in section VI.
The paper concludes in section VII with a summary of the
work done and potential future work.
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II. CSPS

A typical CSP consists of a set of variables V , each with
a domain Di of values, and a set of constraints C. Each
constraint x ∈ C is an arbitrary relation over a set of variables
and restricts the possible combinations of values of the asso-
ciated variables. Many real world problems like scheduling
problems, design problems, workforce management, routing
problems etc. can be modeled as CSPs. A solution to a CSP
is an assignment of a value from its domain to every variable,
in such a way that every constraint is satisfied. A CSP can
have only one solution, more than one solution or no solution
at all. A binary CSP (each constraint is either unary or binary)
can be represented by a constraint graph [14]. In a constraint
graph, each node represents a variable, and each arc represents
a constraint (relation) between variables represented by the
end points of the arc. An arc representing unary constraint
originates and terminates at the same node.

A. Methods for Solving CSPs

A CSP can be solved by systematic methods or a non-
systematic methods. A systematic method systematically ex-
plores the search space, while the latter does not. Back-
tracking search is a systematic method for solving a CSP.
A backtracking search works by incrementally extending a
partial solution to a complete solution. At each step of the
backtracking search, the algorithm tries to assign a value to the
the current variable and the attempt becomes successful if the
assignment is consistent with the already assigned variables. If
all the values in the domain of the current variable have been
tried but no consistent assignment is not found, the algorithm
backtracks to the preceding variable and try alternative values
in its domain.

Standard backtracking has few limitations. The backtracking
search can repeatedly fail due to the same reason which could
be identified earlier in the search. This repeated failure is
termed as thrashing. Local consistency techniques [14] have
been proposed to overcome this difficulty. Arc Consistency
(AC) is the most popular form of local consistency tech-
nique [14]. Arc consistency eliminates values from domain of
variables that can never be part of a consistent solution. An arc
(Vi, Vj) is arc consistent if for all x ∈ Di, there exists a y ∈ Dj

such that (x, y) is satisfied by the constraint. Arc consistency
can be applied before the search or it can be integrated with
the backtracking search. In the former case, AC can reduce the
size of the search space before the search starts. In the latter
case, AC helps to detect later failure earlier. Maintaining arc
consistency throughout the search using an AC technique is
called MAC [21]. Each time a value is assigned to a variable,
MAC algorithm enforces full arc consistency.

Non-systematic methods like local search and Evolutionary
Algorithms [10] can also be used for tackling CSPs. These
techniques are not guaranteed to find a solution, even if the
CSP is consistent, as they rely on randomness. To use a non-
systematic method, we have to find a suitable representation of
the problem. We also need to define a problem specific fitness
function to measure the quality of each potential solution.

III. GA FOR SOLVING CSPS

GA is a stochastic population based global search and
optimization method [10]. GA is a part of the group of
Evolutionary Algorithms (EA) [10] and imitates the Darwinian
evolution of the living beings.

Like any EA, GA uses three main principles of the natural
evolution: reproduction, natural selection and diversity of the
species. GA maintains a population of potential solutions
(chromosomes, strings or individuals). Initially binary chro-
mosomes of individuals are created randomly. In a generation,
some of the better individuals (parents) are selected based
on a specific selection operator to generate offspring for the
next generation. Genetic operators (crossover and/or mutation)
are applied on the chromosomes of the selected candidates in
a stochastic manner until a predefined number of offspring
are created. Crossover is applied to two selected candidates
to create one or two new candidate solutions. The purpose
of crossover is to combine the good genetic material of the
parents to create offspring with higher fitness. Mutation, on
the other hand, is applied to one candidate and results in a
new offspring. The newly created offspring compete for a
place in the next generation. Candidates (parents or offspring
) with higher fitness usually survive in the next generation.
This process is iterated until a solution is found or a certain
generation has been passed.

GA can be used to represent CSPs primarily in two ways.
One is standard integer-based representation and the other is
permutation based representation. The integer-based standard
GA uses a string S to represent a chromosome, where the ith

element in S corresponds to a value for variable i. For this type
of representation, the fitness function usually measures the
number of unsatisfied constraints. If constraints have weights,
the sum of the weights of the unsatisfied constraints are used
as fitness. The permutation representation, on the other hand,
is based on a permutation of the variables of the CSP.

IV. RELATED WORK

Variable ordering heuristics can be classified into two
categories: SVO and DVO. In a SVO heuristic, variables
are ordered before the search starts. After that, variables are
always selected in that order. Smallest Domain First (SDF),
is a SVO method in which variables are sorted in ascending
order of domain size so that variables with smaller domain are
instantiated first. Maximum degree (deg) is another example
of SVO where the variable with the maximum degree in the
constraint graph is chosen first [7].

Mouhoub and Jafari [17] proposed two hybrid methods
for variable ordering, where the variable ordering is decided
before the start of the search. In the proposed approach, first
a non-systematic approach based on Hill Climbing (HC) or
Ant Colony Optimization (ACO) is applied to learn weights
for constraints. After that, variables are sorted in descending
order of weighted degree and the variables are instantiated
in this order. The weighted degree (wdeg) of each variable
equals to the sum of the weights of the constraints that the
variable is involved in. The method based on Hill Climbing
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is referred to as HC/MAC in [17], while the method based
on ACO is referred to as ACO/MAC. The weight learning
phase in HC/MAC is an extension of the method proposed by
Morris [16]. Morris proposed that the weights of the violated
constraints to be incremented when the local search enters into
local minimum. But this method is not suitable for learning
constraint weights to determine a good variable ordering. This
is due to the reason that the search might take a long time
to enter a local minimum. Mouhoub and Jafari extended this
approach by proposing a cut off parameter. This parameter
specifies the maximum number of iterations the local search
should run before the next restart. In this approach, search
terminates each time it reaches the cut off point or enters a
local minimum. Before the next search begins, the weights
of violated constraints are incremented. In this approach, new
search can be initiated upto only a certain number of time.

In contrast to SVO, DVO heuristics select the current
variable using information that is made available during the
search process. dom [13] is a very well known DVO heuristic
which selects the variable that has the least remaining values
in its domain. ddeg chooses the variables that are involved
in the least amount of constraints with unassigned variables.
dom/ddeg [22] is the combination of dom and ddeg. This
heuristic selects a variable that has the minimum ratio of dom
to ddeg. Boussemart et al. proposed a conflict driven variable
ordering heuristics which uses MAC as the basic solving
method [6]. In this method, during the constraint propagation
phase, the weight of each constraint is incremented every time
the constraint causes a domain wipe out. Whenever a variable
needs to be selected, this technique selects the variable that
has the largest weighted degree. This method has a potential
limitation, this method might not have enough information
about weights, when it needs to make most important choices,
the first few variable selections. For this reason, size of the
search space can significantly increase.

Grimes et al [12] proposed two heuristics to improve the
method proposed by Boussemart et al. These two techniques,
known as Weighted Information gathering (WNDI) and RaN-
Dom Information gathering (RNDI), perform number of search
restarts to gather information from different parts of the search
space before starting the main search process. These restarts
are used to learn weights for the constraints which help to
make better choices for the first few variables. Experiments
in [5] show that RNDI is the better among the two heuristics.
In RNDI, in the first R-1 runs, variables are selected randomly
at variable selection points and a constraint weight is incre-
mented when a constraint causes a domain wipeout. On the
final restart, instead of random variable selection, dom/wdeg
heuristic is used to select a variable. dom/wdeg heuristic
prefers a variable that has the least ratio of dom and wdeg,
where the former refers to the current domain size, while the
latter refers to the current weighted degree. The constraints
weights learned upto the R-1 runs are used in the last restart
to make better decisons in the early stages of the main search.

V. VARIABLE ORDERING BASED ON CONSTRAINT
WEIGHTS

In this paper, we follow two steps to come up with a good
variable ordering. In the first step, competitive coevolutionary
GA is used to learn weights for all the constraints in a CSP.
The main goal of this step is to identify the hard constraints in
the CSP. In the next step, constraint weights are used to select
variables in the backtracking search combined with constraint
propagation.

A. Coevolutionary GA for Learning Weights

In the competitive coevolutionary model, two species evolve
together through an inverse fitness interaction process. In
this model, success (failure) of one species is considered as
the failure (success) of the individuals of the other species.
In nature, competitive coevolution represents a predator-prey
complex. For survival, the prey always try to defend itself
better from the predator. In response to that, the predator
always try to improve its attacking strategies.

In competitive coevolutionary computation, one species cor-
responds to the potential solutions for the problem in question,
while the other species corresponds to certain tests a solution
must satisfy [18], [19]. Competition between two individuals
from the two populations is achieved through encounters. In
an encounter, if the solution passes the test, the solution is
rewarded while the test is penalized; if the solution fails,
rewards are assigned in a reverse manner. Each individual
in any population has to maintain a history of the results of
encounters. The fitness of an individual is computed on this
basis of the history of encounters. The fitness of a test or a
solution is the sum of of its rewards or penalties in the history
of its encounters.

Figure 1 shows the competitive coevolutionary GA that we
use for learning weights for constraints in a CSP. This algo-
rithm is a modified verison of the competitive coevolutionary
GA used in [18]. This algorithm uses different reward/penalty
scheme and selection strategies. In [18], coevolution was used
to derive solutions for a CSP. In this paper, we use it for
a different purpose to learn weights for the constraints in a
CSP instance. Next, we describe the various features of the
coevolutionary GA .

1) Population: In the co-evolutionary GA, there are two
populations. The first population, Psol, consists of GA repre-
sentation of the possible solutions for a CSP, while the other
population, Pcons, contains the constraints of the CSP. The
first population evolves with the help of genetic operators.
The constraint population, on the other hand, does not undergo
any changes and is problem specific. We use the integer-based
standard GA representation for the solution population.

2) Initialization and Fitness Evaluation: We need to eval-
uate fitness for each randomly generated solution in the
initial population, as well as the child generated by genetic
operators. As described earlier, the fitness of the solution and
the constraint population is computed by their achieved scores
in the history of encounters. The number of encounters in a
history is a predefined parameter. The fitness of a solution or
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Algorithm CoEvolutionaryGAWeightLearning

1: t← 0;
2: generate the initial population Psol(t) at random
3: evaluate individuals in Psol(t) with the history of encounters
4: evaluate individuals in Pcons(t) with the history of encoun-

ters
5: repeat
6: for all i = 1, 2, .. no of encounters do
7: select a solution from Psol(t);
8: select a constraint from Pcons(t);
9: perform an encounter between the selected solution and

the constraint
10: update history of the selected solution based on the

encounter result
11: update history of the selected constraint based on the

encounter result
12: end for
13: select two parents from Psol(t) based on their current

fitness
14: apply genetic operators on the parents to create one

offspring
15: evaluate the offspring
16: Insert the newly created offspring into Psol(t)

17: t← t+ 1

18: until termination criteria are satisfied

Fig. 1: A competitive coevolutionary GA for learning con-
straint weight

a constraint is equal to the sum of all scores in their history of
encounters. In an encounter, we assign a solution a score of 1
if it satisfies the constraint, while -1 if it does not satisfy the
constraint. For the constraints inverse happens. The selected
constraint is assigned a score of 1 if the solution does not
satisfy the constraint, while -1 if it is satisfied.

3) Update History of Encounters: Unlike the standard GA,
in competitive coevolutionary GA, at the beginning of a gen-
eration, a predefined number of encounters between solutions
and constraints are performed. The solutions and constraints
are selected in such a way that encounter only takes place
between fittest solutions and constraints. A selected constraint
can prove its hardness to one of the best solutions, only if it
is not satisfied by the selected solution.

4) Selection and Variation Operators: We use tournament
selection whenever we need to select a solution from the
solution population. When an encounter takes place, we also
need to select a constraint. In our approach, a constraint is
selected based on linear ranking selection. These selection
schemes are used to emphasize the selection of best solutions
and hard constraints. We employ one point crossover and
binary mutation as primary variation operators for the solution
population. As the constraint population does not go through
evolution, no variation operator is required.

5) Termination: The algorithm stops after a predefined
number of generations. Once the algorithm stops, we discard
the solution population and keep the constraint population. The

fitness of each constraint is considered as the weight for that
constraint.

B. Variable Ordering

Once we learn weights for all the constraints in a CSP,
we use MAC as the basic solving method for the CSP. MAC
maintains complete arc consistency throughout the search.
We implement the AC-3 [15] for applying arc consistency
in the MAC search. At each variable selection point, we
use wdeg heuristic that we discussed in section IV, which
prefers a variable that has the largest weighted degree (wdeg).
To compute wdeg, the weighted degree of each variable, we
use the weights for the constraints learned earlier through the
coevolutionary GA. Like RNDI, we also increment a constraint
weight when a constraint causes a domain wipeout in the MAC
search.

VI. EXPERIMENTATION

In this section, we report and analyze the results of our
experiments for the proposed variable ordering heuristic. First,
we introduce experimental settings. Then we compare the
performance of the proposed approach with two other existing
variable ordering heuristics: RNDI and HC/MAC. Both of
these existing approaches depend on constraint weighting to
achieve a variable ordering.

A. Experimental Settings

In order to investigate the performance of the proposed
method and compare with other relevant variable ordering
heuristics, we performed experiments on 30 CSP instances
taken from [2]. 12 instances were random instances generated
with the Model D [8] and Model RB [24], 10 instances were
quasi-random instances, while 8 instances were patterned in-
stances. We implemented the HC/MAC and RNDI approaches
to compare with the proposed approach. Our implementation
of HC/MAC and RNDI uses wdeg heuristic in the MAC
search and increments a constraint weight when a constraint
causes a domain wipeout in the MAC search. We executed
all experiments on a machine with AMD Athlon II CPU@2.8
GHz, 2 GB RAM and Ubuntu 12.04.3 operating system.

In the coevolutionary GA that we use for learning weights
for the constraints in a CSP, we set history length to 10 and
number of encounters in a generation to 20. We use 50 as
the solution population size, while the constraint population
size equals the number of constraints in a problem instance.
We use one point crossover with crossover rate 0.7 or 0.9,
while for mutation, we use bit mutation with mutation rate
set to 0.01 or 0.2. For the linear ranking selection, we set
the bias parameter to 2.0, while for the tournament selection,
tournament size is set to 2. We use number of generations
as a termination condition for the co-evolutionary GA. This
termination condition is problem instance specific and we vary
it from 2 to 15 generation. For each approach, a total of 50
runs are conducted for each test instance.

RNDI has two parameters: R and C. The former is the
number of restarts, while the latter is the maximum number
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of nodes that each of these restarts can visit. We test with
different values of R like 5, 25, 50, 100, 150 and 500. The
value of the parameter C is set to ten times the number
of variables in a problem instance. HC/MAC also has two
parameters: the total number of iterations and cut-off. For easy
problem instances, this approach needs less iterations, while
for the harder instances it needs more iterations to explore
the search space. For each instance, we try different values of
iterations: 5, 10, 25, 50, 100 and 500. The cut-off parameter
was set to 50 for all instances. For all approaches and all
problem instances, timeout is set to 1200 seconds.

B. Description of the Instances

The first set of random instances (rand series) that we test
in this paper is generated with Model D [8] and situated at
the phase transition of search [2], [25]. The instances that
we use have different tightness values: 0.1, 0.2, 0. 35. The
tightness t denotes the probability that a pair of values is
allowed by a relation. If t is near 0 then the instance is
likely to be very difficult, while a value near 1 indicates that
it is easy to solve. The second set of random problems (frb
series) that we test are random binary satisfiable CSP instances
generated by the Model RB [1], [24], [25]. These instances
are forced satisfiable instances. Each of these instances has a
large number of variables and has tightness 0.25, which is also
the exact phase transition point. Thus these instances are also
hard to solve [1].

The geometric instances (geo series) are a kind of random
instances (quasi-random). In these type of instances, a distance
parameter is used such that distance ≤ sqrt(2). Two coordi-
nates are then chosen in such a way that the associated point
lies in the unit square and the selection process is random for
each variable. If the distance between any variable pair (x,y)
is less than or equal to the distance parameter, then (x, y) is
added to the constraint graph as an arc. Another set of quasi-
random instances that we test are the instances belonging to the
ehi series. ehi instances are CSP instances which are converted
from 3-SAT unsatisfiable instances using the dual method [3].
A 3-SAT instance is a SAT instance where each clause contains
exactly 3 literals.

In the Quasigroup Completion Problem (QCP), the goal
is to determine whether there exists any way so that the
remaining entries of the partial Latin square can be filled to
obtain a complete Latin square [11]. The Balanced Quasigroup
with Holes (QWH) problem is a variant of the QCP. In this
problem, instances are generated in such a way that they are
guaranteed to be satisfiable [11]. These problem instances are
harder as the distribution of the holes is balanced. These two
problems are represented by the series bqwh and qcp.

C. Performance Comparison

In this section, we show the results of our experiments
for all problem instances alongside the results of RNDI and
HC/MAC algorithms. In our experiments, for each problem
instance, we note the CPU time (t) for reaching the solution
and the number of visited nodes by MAC algorithm (n). The

CPU time is the sum of the time taken for learning weights
and the time taken for the main MAC search. Even though
we note n, our main goal is to minimize t. To compare
two approaches, we determine the statistical significance of
the differences in t or n using Mann-Whitney U test. If the
p-value of the Mann-Whitney U test is less than 0.05, we
assume that there is a significant difference between the two
approaches compared. Mann-Whitney U test tells us whether
two approaches are different but it cannot tell us how much
one approach outperforms the another. We use Vargha-Delaney
A [23] measure for this purpose. The A measure tells us the
probability that one approach will achieve higher t or n than
another approach. When the A measure is above 0.5, the first
approach outperforms the second one. When the A measure
is 0.5, the two approaches are equal. Otherwise, first approach
performs worse than the second one. In our comparison, when
we say one approach is better than the other on a particular
instance, we mean that the difference observed between those
two approaches in terms of t (or n) is statistically significant
and the value of A measure is above 0.5.

1) Random Instances: Table I and Table II show the
experimental results for the random instances generated with
the Model D. From our results, we notice that RNDI performs
better than CoEvoGA/MAC and HC/MAC both in terms of t
and n. Among the seven tested rand series instances, RNDI
is better than CoEvoGA/MAC for six instances in terms of
the both performance metrics. Compared to HC/MAC, RNDI
is better for two instances in terms of t, while in terms of
the other metric, it is better only for a single instance. If we
compare CoEvoGA/MAC to HC/MAC, we see that HC/MAC
also performs better than CoEvoGA/MAC for two instances,
both in terms of t and n. From the results, we can conclude that
RNDI is more suitable for hard random instances which are
situated at the phase transition and generated with the Model
D, while CoEvoGA/MAC has the worst performance for these
type of instances.

Our experiments with hard forced satisfiable random CSP
instances generated with the Model RB (frb series) show
different behavior of these approaches. Table III and IV show
the results for those instances. Unlike the random instances
generated with the Model D, CoEvoGA/MAC performs better
than RNDI for two instances in terms of t. Only for one out
of these two cases, the proposed approach is better than the
latter approach in terms of the performance metric n. Taking
shorter time for the MAC search but longer time for overall
CPU time (t), indicates that RNDI takes more time to learn
weights for the constraints than the proposed CoEvoGA/MAC
approach. If we compare RNDI with HC/MAC, we see that
they show almost same level of performance.

2) Quasi-Random Instances: Table V and VI show the
experimental results for the quasi-random instances: geo series
instances and ehi series instances. On the geo instances,
CoEvoGA/MAC performs statistically significantly better than
RNDI for three instances in terms of t. RNDI fails to achieve
better performance in terms of the same metric, but for three
instances, it is better with respect to the other metric, n.
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TABLE I: Average CPU time (t) for reaching a solution, as well as the average number of visited nodes (n) in the search tree.
Average is computed over 50 runs. The results are for random instances generated with the Model D

Instance CoEvoGA/MAC RNDI HC/MAC
t n t n t n

rand-2-40-8-753-100-0 512.12 87737.18 377.6 62972.5 480.76 52540.393
rand-2-40-8-753-100-1 1099.3 179314.82 1050.5 173576.04 1104.38 176517.56
rand-2-40-8-753-100-2 596.36 116226.5 591.98 115898.26 597.24 113793.12

rand-2-40-11-414-200-1 1004.3 163788.32 874.86 147547.3 961.18 157598.04
rand-2-40-11-414-200-2 991.26 217676.86 950.7 206582.98 945.3 211702.62
rand-2-40-11-414-200-3 1026.06 176652.3 974.56 170487.68 801.08 171634.86
rand-2-40-16-250-350-4 586.5 39189.9 87.1 5090.4 380.3 27129.2

TABLE II: Statistical test results for random instances generated with the Model D. * indicates that the difference between
the two specified methods as indicated by a column is statistically significant. When there is statistically significant difference,
A measure value is shown. When the A measure is above 0.5, the first approach outperforms the second one, otherwise the
second approach is better. ’-’ indicates that the difference is not statistically significant

Instance CoEvoGA/MAC Vs. RNDI CoEvoGA/MAC Vs. HC/MAC HC/MAC Vs. RNDI
t n t n t n

rand-2-40-8-753-100-0 0.366(*) 0.355(*) - - - -
rand-2-40-8-753-100-1 0.326(*) 0.370(*) - - 0.309(*) -
rand-2-40-8-753-100-2 - - - - - -

rand-2-40-11-414-200-1 0.114(*) 0.182(*) 0.617(*) 0.398(*) 0.149(*) 0.229(*)
rand-2-40-11-414-200-2 0.446(*) 0.289(*) 0.315(*) 0.376(*) - -
rand-2-40-11-414-200-3 0.306(*) 0.352(*) 0.000(*) - 0.999(*) -
rand-2-40-16-250-350-4 0.140(*) 0.180(*) - - - -

TABLE III: Average CPU time (t) for reaching a solution, as well as the average number of visited nodes (n) in the search
tree. Average is computed over 50 runs. The results are for forced satisfiable random instances generated with the Model RB

Instance CoEvoGA/MAC RNDI HC/MAC
t n t n t n

frb56-25-1 221.48 10112.88 230.84 9910.34 374.66 16664.14
frb56-25-2 62.16 3132.6 101.76 3148.6 57.2 2653.4
frb56-25-3 44.1 2249.86 78.12 2015.3 54.36 2564.54
frb56-25-4 441.6 20378.34 290.74 9359.82 290.66 13909.52
frb56-25-5 128.04 5860.42 160.06 5541.32 118.34 5505.54

TABLE IV: Statistical test results for forced satisfiable random instances generated with the Model RB. * indicates that the
difference between the two specified methods as indicated by a column is statistically significant. When there is statistically
significant difference, A measure value is also shown. When the A measure is above 0.5, the first approach outperforms the
second one, otherwise the second approach is better. ’-’ indicates that the difference is not statistically significant

Instance CoEvoGA/MAC Vs. RNDI CoEvoGA/MAC Vs. HC/MAC HC/MAC Vs. RNDI
t n t n t n

frb56-25-1 - - 0.670(*) - 0.417(*) 0.406(*)
frb56-25-2 0.728(*) - - 0.345(*) 0.824(*) -
frb56-25-3 0.842(*) - - - 0.843(*) -
frb56-25-4 - 0.298(*) 0.413(*) 0.4156(*) - -
frb56-25-5 - - - - 0.646(*) -

CoEvoGA/MAC also performs better than HC/MAC for two
instances in terms of t.

If we compare the performance for the unsatisfiable ehi
instances, we notice that CoEvoGA/MAC outperforms the
other two approaches in terms of t. RNDI, on the other hand,
performs better than the other approaches, in terms of n, but
these improved performance comes at the expense of very bad
performance on t. RNDI takes long time to learn the weights
for the constraints, which affects the total CPU time taken
(t). Our main goal here is to minimize the CPU time t. It
seems that RNDI is not suitable for quasi-random instances.
CoEvoGA/MAC shows promising results for the instances

belonging to the tested quasi-random problems.

3) Patterned Instances: If we compare the performance for
patterned instances, we notice from Table VII and VIII that
RNDI is best suited to these type of instances. RNDI performs
better than CoEvoGA/MAC for four instances. Its performance
is also superior than HC/MAC for two instances in terms of
t. For the instances, bqwh-18-141-50 , bqwh-18-141-99 and
qcp-15-120-0, RNDI takes almost half the CPU time less than
the time taken by other approaches. It also requires almost
half the number of tree nodes less than the nodes visited
by the other approaches. CoEvoGA/MAC, on the other hand,
performs better than HC/MAC for two instances in terms of the
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TABLE V: Average CPU time (t) for reaching a solution, as well as the average number of visited nodes (n) in the search
tree. Average is computed over 50 runs. The results are for quasi-random instances

Instance CoEvoGA/MAC RNDI HC/MAC
t n t n t n

geo50-20-d4-75-10 84.26 3538.86 169.34 4567.0 89.5 4140.7
geo50-20-d4-75-11 149.52 5948.16 123.84 4088.06 141.5 5661.5
geo50-20-d4-75-60 113.9 4031.7 109.92 2839.12 120.06 4252.48
geo50-20-d4-75-61 1.68 128.54 34.62 5.48 2.5 92.42
geo50-20-d4-75-66 2.54 206.24 19.36 226.38 3.1 146.24
geo50-20-d4-75-67 151.84 6566.14 145.46 3311.88 156.82 7135.76

ehi-85-297-1 (unsat) 7.16 271.4 341.58 9.6 22.32 244.44
ehi-85-297-2 (unsat) 7.38 307.12 303.96 7.64 22.22 264.44

ehi-85-297-50 (unsat) 9.86 313.38 306.62 8.24 23.02 275.66
ehi-85-297-51 (unsat) 11.54 446.24 10.29 381.58 25.52 420.54

both performance criteria. HC/MAC shows some instability in
terms of t. The reason is that, for the instance, qcp-15-120-2,
HC/MAC shows very poor performance and also it tends to
exceed the time limit.

4) Discussion: From our experiments, it seems that RNDI
is the most suitable approach for hard random instances
generated with the Model D, while for the hard forced
satisfiable Model RB instances, CoEvoGA/MAC seems to be
the best choice. Among the other tested problem instances,
CoEvoGA/MAC shows the best results for the quasi-random
problem instances, while for the patterned instances, RNDI
is the best. Our experimental results also show that, for
some type of problems (e.g. quasi-random), RNDI spends
long time to learn weights for the constraints which reduce
the number of tree nodes visited in the MAC search, but
increases the total CPU time taken. HC/MAC, on the other
hand, shows some kind of instability as it tends to exceed
the time limit for some patterned instances. Even though the
proposed CoEvoGA/MAC approach cannot outperform the
other approaches in all types of problems, it shows stability
in terms of t and n.

We also notice that as we increase the value of the parameter
number of iterations, HC/MAC takes more time to learn
weights for the constraints, which affects t. For easy instances,
it should be set to a small value. For RNDI, the parameter
number of restarts should be set to a small number to reduce
the weights learning time, while for CoEvoGA/MAC, the
number of generations should be set to a small value, for the
same reason. It is worth noting that the preprocessing time
taken by the coevolutionary GA can be further improved by
parallelizing fitness evaluation of individuals, but the weight
learning time for RNDI cannot be improved. For learning
weights in RNDI, we need to perform several restarts. The
weights learned by one restart, except the last one, is sub-
sequently used by the next restart. This process cannot be
benefited by parallelization due to inherent dependency.

VII. CONCLUSION

In this paper, we have introduced a new approach using
coevolutionary GA to learn weights for the constraints, which
can identify the global bottlenecks in a CSP. Like RNDI,
weights learned by the coevolutionary GA, later help to

make better choices for the first few variables, which are
the most important choices in the search. Our experimental
results on various problem instances show that the proposed
approach is good at finding hard spots in the search space
and performs better than the existing approaches on certain
types of problems. In this paper, we have done experiments
with a single population size and few values for crossover
and mutation rate. In future, we will perform experiments on
other values of these parameters to understand their effect on
the performance of the proposed approach. Our experiments
are conducted on three types of instances. In future, we will
also look into other type of instances like real world instances.
To reduce the weight learning time, we will also parallelize
the fitness evaluation of individuals in the co-evolutionary GA
using multi-core CPU.
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