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Abstract—This paper introduces the concept of heuristic
space diversity and investigates various strategies for the
management of heuristic space diversity within the context
of a meta-hyper-heuristic algorithm. Evaluation on a diverse
set of floating-point benchmark problems show that heuristic
space diversity has a significant impact on hyper-heuristic
performance. The increasing heuristic space diversity strategies
performed the best out of all strategies tested. Good perfor-
mance was also demonstrated with respect to another popular
multi-method algorithm and the best performing constituent
algorithm.

I. INTRODUCTION

Over the last decade, research into hyper-heuristics have
made an increasing impact on how optimization problems
are approached. In contrast to traditional single method op-
timization algorithms, which search through a space of deci-
sion variables for solutions, hyper-heuristics search through
a heuristic space of available heuristics or heuristic compo-
nents [1]. The idea is to either find an “optimal” selection of
heuristics, or to construct a heuristic from available heuristic
components, to address a specific problem at hand. A meta-
hyper-heuristic can be defined as a hyper-heuristic where the
constituent or low level algorithms consist of meta-heuristic
algorithms referred to as low level meta-heuristics (LLMs)
in this work.

Diversity management is another important concept that
has received increasing attention recently. Traditionally, the
ability of an optimization algorithm to balance exploration
and exploitation has been shown to have a significant impact
on its performance. If the algorithm converges too quickly,
it is more likely to become stuck in a local optimum. If the
algorithm focuses too much on exploring new areas of the
search space near the end of the optimization run, time is
wasted on exploring the search space which could have been
used to further refine promising solutions.

Based on the importance of effective management of
solution space diversity in traditional optimization algo-
rithms, it is not a major stretch to think that the diversity
of the heuristic space and how it is managed throughout the
optimization run, could have an important impact on hyper-
heuristic performance.

This paper proposes a measurement for quantitatively
defining heuristic space diversity (HSD). A number of
strategies for managing HSD are also proposed. Algorithm
performance was evaluated on a set of varied floating-
point benchmark problems and the most promising results
were obtained by the hyper-heuristics utilizing an increasing
HSD strategy. Good performance was also shown against
the population based algorithm portfolio algorithm [2],
which is a well known multi-method algorithm, and the
covariance matrix adapting evolutionary strategy algorithm
(CMAES) [3], the best performing LLM.

To the best of the authors’ knowledge, this is the first
paper that explicitly introduces the concept of heuristic space
diversity and the control of HSD to influence algorithm
performance in a meta-hyper-heuristic framework.

The rest of the paper is organized as follows: Sec-
tion II provides some background with regards to diversity
management. Section III provides a brief overview of the
HMHH algorithm used as basis for the investigation, while
Section IV describes the HSD control strategies which are
evaluated. The results are documented in Section V before
the paper is concluded in Section VI.

II. DIVERSITY MANAGEMENT IN MULTI-METHOD
ALGORITHMS

Although diversity management is not a new concept and
is actually relatively common in single method literature,
its use in the multi-method algorithm world is relatively
limited. Furthermore, if diversity management is considered
at all, the focus is mostly on managing solution space
diversity (SSD) and not heuristic space diversity. The rest of
this section gives a brief overview of diversity management
in multi-method algorithms and also discusses a number of
related issues.

Examples of controlling SSD to influence hyper-heuristic
performance includes Vrugt et al.’s AMALGAM [4], Grob-
ler et al.’s investigation into the use of local search in a
meta-hyper-heuristic framework [5], and Grobler et al.’s
adaptive local search algorithm [6]. AMALGAM makes use
of a species selection mechanism to maintain SSD. In [6]
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various solution space diversity control strategies based on
both adaptive and constant local search and AMALGAM’s
species selection mechanism were used to evaluate the
impact of different SSD profiles on algorithm performance.
Both papers showed that multi-method algorithm perfor-
mance improvements can be obtained by managing SSD
effectively.

The use of local search in hyper-heuristics is so closely
related to SSD that it is also worth mentioning here. Qu
and Burke’s graph based hyper-heuristic framework [7] uses
a local search algorithm to operate directly on the solution
space in conjunction with a hyper-heuristic strategy which
operates in heuristic space. Local search algorithms can
also be incorporated into the set of available low-level
heuristics [8]. This option can be considered an intervention
in heuristic space diversity, especially when meta-heuristics
are utilized as low-level heuristics, since a more diverse set
of algorithms are made available to the high-level strategy.

More closely related to heuristic space diversity is the
issue of selecting complementing LLMs. Peng et al. [2]
proposed a pairwise metric which can be used to determine
the risk associated with an algorithm failing to solve the
problem in question. Engelbrecht [9] selected complemen-
tary swarm behaviours in a heterogeneous PSO by analyzing
the exploration-exploitation finger prints of the different PSO
updates.

It is clear that a number of authors have considered SSD
management and algorithm selection to ensure complemen-
tary diverse algorithms. However, to the best of the authors’
knowledge, this paper is the first to actively try to influence
HSD to improve hyper-heuristic performance.

III. THE HETEROGENEOUS META-HYPER-HEURISTIC
ALGORITHM

Due to its excellent performance against other popular
multi-method algorithms, the tabu-search based HMHH al-
gorithm of [10] was used as basis for investigating the man-
agement of heuristic space diversity. The various algorithmic
elements of the HMHH algorithm, including a common
population of entities each representing a candidate solution
which is evolved over time, a set of LLMs, and a selection
strategy, is indicated in Figure 1.

The HMHH algorithm divides the population of entities
into a number of subpopulations which are evolved in paral-
lel by a set of LLMs. Each entity is able to access the genetic
material of other subpopulations, as if part of a common
population of entities. The allocation of entities to LLMs
is updated on a dynamic basis throughout the optimization
run. The idea is that an intelligent algorithm can be evolved
which selects the appropriate LLM at each kth iteration to
be applied to each entity within the context of the common
parent population, to ensure that the population of entities
converge to a high quality solution. The LLM allocation
is maintained for k iterations, while the common parent
population is continuously updated with new information
and better solutions. Throughout this process, the various
LLMs are ranked based on their previous performance as

Fig. 1. The heterogeneous meta-hyper-heuristic.

defined by Qδm(t) in Algorithm 1. More specifically,

Qδm(t) =

|IIIm(t)|∑
i=1

(f(xxxi(t− k))− f(xxxi(t)))

∀i ∈ IIIm(t) (1)

where f(xxxi(t) denotes the fitness function value of entity i at
time t and IIIm(t) is the set of entities allocated to algorithm
m at time t. A tabu list is used to prevent the algorithm
from repeatedly using the same poorly performing LLMs.
The highest ranking non-tabu operator is then selected for
each entity during re-allocation of entities to algorithms as
described in [11].

This algorithm uses four common meta-heuristic algo-
rithms as the set of LLMs:

• A genetic algorithm (GA) with a floating-
point representation, tournament selection, blend
crossover [12], [13], and self-adaptive Gaussian
mutation [14].

• The guaranteed convergence particle swarm opti-
mization algorithm (GCPSO) [15].

• The self-adaptive (SaNSDE) algorithm of [16].

• The covariance matrix adapting evolutionary strat-
egy algorithm (CMAES) [3].

IV. INVESTIGATING ALTERNATIVE HEURISTIC SPACE
DIVERSITY MANAGEMENT STRATEGIES

The concept of heuristic space diversity is best illustrated
by means of an example. In Figure 2 the entities in the pop-
ulation to the left were divided relatively equally between all
of the available LLMs during entity to algorithm allocation.
This population can be described as having a high HSD. On
the other hand, most of the entities in the population of the
right were allocated to the genetic algorithm with only one
entity each allocated to PSO and ES. This population can
be described as having a low HSD.
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Algorithm 1: The heterogeneous meta-hyper-heuristic.
1 Initialize the parent population XXX
2 Ai(t) denotes the algorithm applied to entity i at

iteration t
3 for All entities i ∈XXX do
4 Randomly select an initial algorithm Ai(1) from

the set of LLMs to apply to entity i
5 end
6 t = 0
7 k = 5
8 while A stopping condition is not met do
9 for All entities i do

10 Apply LLM Ai(t) to entity i for k iterations
11 t = t+ k
12 Calculate Qδm(t), the total improvement in

fitness function value of all entities assigned
to algorithm m from iteration t− k to
iteration t.

13 end
14 for All entities i do
15 Use Qδm(t) as input to select LLM Ai(t)

according to the rank based tabu search
mechanism described in [11]

16 end
17 end

Fig. 2. An example of a population with a high HSD and a population
with a low HSD.

A more quantitative metric for heuristic space diversity,
Dh(t), the heuristic space diversity at time t, can be defined
as follows:

Dh(t) =UBDh(t)

(
1−

∑I
i=1 |T − ni(t)|

1.5ns

)
(2)

with

T =
ns
na
, (3)

where na is the number of algorithms available for selection
by the hyper-heuristics, ns is the number of entities in
the population, ni(t) is the number of entities allocated to
algorithm i at time t, and UBDh(t) is the upper bound of
the HSD measure. For the purposes of this paper, UBDh(t)
was set to 100 so that Dh(t) ∈ [0, 100].

Five strategies for controlling HSD throughout the opti-
mization process are explored in this paper:

• The baseline HMHH algorithm - This algorithm
is the standard HMHH algorithm implemented as
described in Section III. No effort is made to
manipulate the HSD in this algorithm.

• Linearly decreasing HSD hyper-heuristic
(LDHH) - This algorithm is characterized by
a linearly decreasing HSD. At the start of the
optimization run all four LLMs are available
for selection. During the optimization run, the
worst performing LLM is removed from the set
of available algorithms at predefined constant
time intervals. As an example, if the maximum
allowable function evaluations are 100,000, the
worst performing algorithm at that time will be
removed respectively at 25,000, 50,000 and 75,000
function evaluations. The idea is to force the
hyper-heuristic to explore the heuristic space at
the start of the optimization run and exploit the
best performing algorithm towards the end of the
optimization run.

• Exponentially decreasing HSD hyper-heuristic
(EDHH) - This algorithm is characterized by an
exponentially decreasing HSD. All LLMs are again
available for allocation to entities at the start of the
optimization run and algorithms are again removed
according to their performance at predetermined
time intervals. This time, however, the algorithms
are removed at exponential time intervals. The result
is a slower changeover from exploration to exploita-
tion.

• Linearly increasing HSD hyper-heuristic (LIHH)
- This algorithm assumes apriori knowledge of the
LLM performance on the benchmark problem set
being solved. The LLMs are ranked from best per-
forming to worst performing. Only the best perform-
ing algorithm is made available to the HH at the start
of the optimization run. As the optimization process
progresses, additional algorithms are made available
according to their ranking at predetermined constant
time intervals. Here the hyper-heuristic is forced to
move from exploitation to exploration. The idea is
to obtain maximum gain from the highest ranked al-
gorithm and as the performance gains decrease, the
rest of the LLMs become available to diversify the
heuristic space and improve the overall algorithm
performance.

• Exponentially increasing HSD hyper-heuristic
(EIHH) - This algorithm is similar to the LIHH
algorithm, the only difference being that exponential
time intervals are used to add algorithms to the
set of available algorithms. The use of exponential
time intervals increases the rate of change of HSD
leading to a faster changeover from exploitation to
exploration.

V. EMPIRICAL EVALUATION

The various HSD control strategies were evaluated on the
first 14 problems of the 2005 IEEE Congress of Evolutionary
Computation benchmark problem set [17] in both 10 and 30
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dimensions. This benchmark problem set enables algorithm
performance evaluation on both unimodal and multimodal
functions and includes various expanded and hybridized
problems, some with noisy fitness functions. The algorithm
control parameter values listed in Table I were found to work
well for the algorithms under study during previous research
by the authors. m −→ n indicates that the associated
parameter is decreased linearly from m to n over 95% of
the maximum number of iterations, Imax.

TABLE I. HMHH ALGORITHM PARAMETERS.

Parameter Value used
Number of entities in common population (ns) 100

Number of iterations between re-allocation (k) 5

Size of tabu list (na = 4) 2

Size of tabu list (na = 3) 1

Size of tabu list (na ≤ 2) 0

PSO parameters
Acceleration constant (c1) 2.0 −→ 0.7

Acceleration constant (c2) 0.7 −→ 2.0

Inertia weight (w) 0.9 −→ 0.4

SaNSDE parameters As in [16].

GA parameters
Probability of crossover (pc) 0.6 −→ 0.4

Probability of mutation (pm) 0.1

Blend crossover parameter (α) 0.5

GA tournament size (Nt) 13

CMAES parameters As in [3].

The results of the heuristic space diversity management
technique comparison are presented in Table IV, where the
results for each algorithm were recorded over 30 indepen-
dent simulation runs. µ and σ denote the mean and standard
deviation associated with the corresponding performance
measure and #FEs denotes the number of function eval-
uations which were needed to reach the global optimum
within a specified accuracy. If the global optimum was
reached within the specified accuracy, the run was stopped
and the difference between the global optimum and the final
fitness function obtained, denoted by FFV , was recorded.
Where the global optimum could not be found within the
maximum number of iterations, the difference between the
final solution at Imax and the global optimum, also denoted
by FFV , was recorded.

Mann-Whitney U tests were used to evaluate the various
strategies according to the number of iterations required to
obtain the final fitness function value, as well as the quality
of the actual fitness function value. Statistical tests were also
used to evaluate the significance of the results. The results
in Table II were obtained by comparing each dimension-
problem-combination of the strategy under evaluation, to
all of the dimension-problem-combinations of the other
strategies. For every comparison, a Mann-Whitney U test
at 95% significance was performed (using the two sets of
30 data points of the two strategies under comparison) and
if the first strategy statistically significantly outperformed
the second strategy, a win was recorded. If no statistical
difference could be observed a draw was recorded. If the
second strategy outperformed the first strategy, a loss was
recorded for the first strategy. The total number of wins,
draws and losses were then recorded for all combinations of
the strategy under evaluation. To illustrate, (11-15-2) in row

1 column 2, indicates that the LDHH strategy outperformed
the baseline HMHH algorithm 11 times over the benchmark
problem set. Fifteen draws and two losses were recorded.

TABLE II. HYPOTHESES ANALYSIS OF ALTERNATIVE HEURISTIC
SPACE DIVERSITY CONTROL MECHANISMS.

Algorithm HMHH
LDHH 11− 15− 2

EDHH 11− 13− 4

LIHH 19− 5− 4

EIHH 19− 8− 1

TOTAL 60− 41− 11

From the results it is clear that managing the HSD leads
to statistically significantly improved hyper-heuristic perfor-
mance. Table II shows that for 101 cases out of 112, the
strategies where the HSD was controlled performed statisti-
cally similar or better than the baseline HMHH algorithm.
Interestingly the hyper-heuristic’s performance was rela-
tively insensitive to the rate of change of diversity. Finally,
the increasing HSD strategies outperformed the decreasing
HSD strategies quite significantly. It is suspected that the
apriori LLM performance knowledge is largely responsible
for these good results. Unfortunately, this knowledge is not
always readily available and then an alternative strategy, for
example, randomly selecting the sequence of algorithms to
be made available, needs to be used.

In an attempt to further verify the performance of
the HSD management strategies, the two best performing
solution diversity management strategy from the previous
analysis, LDHH and EIHH, were also compared under
similar conditions to PAP [2], which was found in a pre-
vious study [18] to be the best performing multi-method
algorithm currently available (after the HMHH algorithm).
Finally, the best performing LLM (CMAES) [3], was also
added for comparison purposes. The results are recorded in
Table V. In Table III Mann-Whitney U tests were used to
compare the performance of PAP and CMAES to the HSD
management strategies. This time each HSD control strategy
was compared to both CMAES and PAP and the “number
of wins-draws-losses” were obtained.

TABLE III. FURTHER HYPOTHESES ANALYSIS OF THE BEST
PERFORMING HSD CONTROL MECHANISMS.

PAP CMAES
LDHH 10− 11− 7 7− 4− 17

EIHH 21− 7− 0 9− 17− 2

From Table III it can be seen that the HMHH algorithms
outperforms PAP in a large number of cases. LDHH per-
forms similar or better to PAP 75% of the time and EIHH
performs similar or better 100% of the time. LDHH does not
perform quite as well when compared to CMAES. This can,
however, be expected since a portion of the function eval-
uation budget needs to be allocated to solve the algorithm
selection problem. This is in contrast to CMAES which can
use the whole function evaluation budget on optimization
of the actual problem. It is encouraging to note that IEHH
significantly outperforms CMAES. Allocating part of the
function evaluation budget to other algorithms later during
the optimization run clearly has a positive impact on hyper-
heuristic performance.
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VI. CONCLUSION

This paper defined the concept of heuristic space di-
versity and investigated the impact of different heuristic
space diversity management strategies on multi-method op-
timization algorithm performance. The results indicated that
a significant performance improvement can be obtained by
controlling the HSD of the HMHH algorithm. The control
strategies were found to be relatively insensitive to the
rate of change of HSD and the increasing HSD strategies
were shown to outperform the decreasing and uncontrolled
HSD strategies. Finally, the best performing HSD control
strategies were shown to perform well against a popular
multi-method algorithm and the best performing LLM.

Future research opportunities exist in expanding the anal-
ysis to a larger set of benchmark problems and investigating
the resulting HSD profiles of popular existing multi-method
algorithms such as AMALGAM, PAP and other bandit-
based approaches [19] and the subsequent impact these
profiles have on algorithm performance. Furthermore, EIHH
and LIHH can be modified to avoid the necessity of apriori
knowledge about LLM performance on the problem being
solved.
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