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Abstract— This study proposes a novel Visual Data Mining
technique based on Self-Organizing Maps (SOM) to visualize
the population points of metaheuristic algorithms while they
execute their search process. The SOM is used to divide the
search space of the optimization function into bi-dimensional
regions, allowing one to perform a visual analysis by mapping
the points into the 2-dimensional space, in order to compare
various executions of the functions performed with different
parameter configurations. The use of these maps as a Visual
Data Mining tool aims to visually process the resulting data and
identify behavioral patterns of the meta-heuristic instances.

I. INTRODUCTION

THE correlated fields of Information Visualization and
Visual Data Mining consist of a set of techniques that

allow the analysis of a given set of data in an interac-
tive manner. Those techniques aim to include the human
knowledge, flexibility, creativity and perceptual abilities to
the analysis process to improve the results [2] [3]. The
human visual system has the unique capability of detecting
important features and patterns. Therefore data visualization
makes it possible for researchers, analysts, engineers, and the
lay audience to obtain insight in these data in an efficient and
effective way [4]. The advent of interactive data presentation
and query resources tools have allowed domain experts to
examine different scenarios and identify hidden data patterns
more quickly [5].

Visualization techniques have been used in order to obtain
a better understanding of how meta-heuristics perform the
search for the optimal solution. This knowledge is crucial to
choosing the most appropriate meta-heuristic and performing
its subsequent calibration with respect to the problem being
optimized. Visualization tools are very useful in this context
to help analyze multidimensional data collected during the
search process, so one can for instance trace the source
of solutions, the survival of partial solutions, the effects of
tuning the operators of the algorithm or obtain population
statistics and trends [7]. These tools have been applied
to a number of meta-heuristic algorithms serving different
purposes [6]-[16].

Some of the Information Visualization and Visual Data
Mining approaches employ Self-Organizing Maps (SOM) as
a tool for data visualization [25]. SOMs [17] [18] are a
specific class of Artificial Neural Networks in which the
neurons are positioned in a space that is usually uni- or
bi-dimensional, where they are selectively adapted to the

This paper presents and extends part of the study developed at the
Graduate Program in Applied Informatics (PPGIA) of the University of
Fortaleza (UNIFOR) by the author (e-mail: marcelolotif@gmail.com) as part
of his master thesis [1]

patterns received as input (stimuli) during a process of
competitive learning. SOMs have been used successfully in a
variety of fields, including pattern recognition, prediction of
time series, image compression, process monitoring, speech
recognition and fault diagnosis, among others [19] [20]. As
a Visual Data Mining tool, there are applications in cluster-
ing [21] [29] [33], visualization of protein sequences [22],
demographic trajectories [34] and crime trajectories [35],
for example. There are a number of characteristics of SOM
that make it remarkably useful for visualization. As stated
by [24], it implements an ordered dimensionality reduction
mapping of the training data, follows the probability density
function of the original data and is robust to missing data. It
is simple, readily explainable and easy to visualize.

This paper presents a novel technique to visualize high
dimensional data sets produced by collecting information
during the search process of meta-heuristics using Self-
Organizing Maps as the visualization tool. It allows to
compare the data of meta-heuristic executions over time in
a visual manner, aiming to take advantage of the positive
features of SOMs to perform these comparisons. The rest of
this paper is organized as follows: Section II presents relevant
methods to visualize data produced by meta-heuristics and
how SOMs are used as a visualization tool. Section III
introduces the method to divide the search space of the
optimization function into regions and map the data set to
the resultant neuron lattice trained by the SOM. Section IV
shows the application of the technique that compares differ-
ent executions of one meta-heuristic algorithm. Conclusions
are presented at Section V.

II. STATE OF THE ART

A. Visualizing data collected regarding the search process of
meta-heuristics

The simple analysis of the final outcome of an optimiza-
tion algorithm and the comparison with other algorithms
that have the same purpose has become a very common
practice in many tests and proofs of concept in scientific
publications that propose new algorithms and approaches to
problem solving. Thus, the algorithm execution is treated as
a black box, and the internal process of searching for the
best solution to the problem is not being analyzed. What
must also be taken into consideration is how these algorithms
and approaches generate new results and how their operators
work to reach the final result according to the calibration of
its parameters. This information can be really valuable to the
appropriate choice of meta-heuristics.
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A number of studies have been carried in order to bet-
ter understand how meta-heuristics explore and exploit the
search space seeking the best solution. A set of techniques
to visually analyze the optimization process of evolutionary
algorithms is presented by [6]. Those techniques aim to
produce various charts to display different data sets in order
to give a visual impression of the evolutionary algorithm’s
progress and the actual state of the individuals of the pop-
ulation. These data sets are easy to generate and display
using standard visualization tools, providing a base line for
understanding the evolutionary process.

VIS is an off-line visualization tool developed by [7] to
allow the analysis of Genetic Algorithms (GA) executions.
It was designed with two main goals: (a) allow users to
examine the details of a GA run, providing easy access to
the desired information and easy transition between related
pieces of information; and (b) to develop methods and repre-
sentations for displaying multi-dimensional data in coherent
and informative manner. Some of the functionalities of this
tool include viewing snapshots of the GA population through
time, examination of specific individuals, and navigating
forwards and backwards through an execution.

In [8], another off-line graphical tool called GAVEL is
described to analyze the optimization process of the GA.
Its main feature is to inspect the best solution and trace
its ancestors, performing a backwards analysis in a form
of an ancestry tree. One can not only trace the history of
this individual, but also the history of each of its genes
back to the one who has originated it. The access to such
information enables the understanding whether the GA is
the right algorithm for the problem being treated, as well
as assisting in the calibration of their operators to reach an
optimization process that best fits the situation.

In the work of [9], several studies are cited in the area of
visualization of the GA, which are categorized according to
the granularity of the information produced. Those categories
separate the visualization methods that collect information in
terms of fitness, genes, chromosomes and problem space. Ad-
ditionally, a visualization framework is provided to observe
the evolutionary process from the population’s perspective,
with the information being presented in the chart as a single
visual point. The objective of the framework is to observe the
overall changes in the population, as well as any relationship
between the generations during the executions of the GA.
When combined, the diagrams proposed by the authors allow
the user to observe trends and evolutionary dynamics.

The method explained by [11] aims to produce a visual
display of the chromosomes of the GA so that other infor-
mation not available on the chart of fitness value over time
become apparent. Using Sammon mapping as a method of
dimensionality reduction and presenting it in an interesting
way, the method allows one to get important information
about what happens during the execution of the algorithm.
In this study, a Genetic Algorithm is used to optimize 5-
bit binary strings, projected to two dimensions with the aid
of Sammon mapping. The circles represent the individuals in

the search space: the larger the circle, the more people are in
this area of the chart. The fill color of each circle indicates the
value of the objective function of the individuals represented
by it, while lighter colors in grayscale represent values closer
to the global optimum, thus being the most promising regions
of the search space.

A visualization tool called VIZ that displays ways to
analyze trajectory meta-heuristics when subjected to the
traveling salesman problem is presented in the work of [12].
The purpose of this tool is to find a meta-heuristic that best
fits the instance of the problem being optimized, as well as
the most suitable group of parameter values. It is observed
that the study of the parameter calibration takes the majority
of the efforts, when 90% of design and test time can be spent
on the fine calibration of the algorithm. The purpose of the
study as a whole, therefore, is to reduce this effort through a
tool that assists decision making by analyzing the behavior
of the internal mechanisms of meta-heuristics.

Another visual tool is proposed by [13] to help tuning
the Tabu Search algorithm, which is called Visualizer for
Metaheuristics Development Framework (V-MDF). Within it,
there is a functionality called Distance Radar that measures
the distance between the solutions that are found by the
optimization algorithm over time, with the objective of
clarifying the search process and aid in the selection of the
best parameter configuration regarding the problem being
optimized.

The studies of [14] are directed towards the display
of the search process conducted by the Particle Swarm
Optimization algorithm, so that it shows the entire search
process, thus allowing for a better understanding of how to
configure the algorithm. The proposed method produces a
simulated particle motion animation over time by drawing
the position of all particles of the swarm in each iteration
into the two-dimensional space. Sammon mapping is used
as the dimensionality reduction method. The purpose of this
visualization algorithm is to map all the points in which the
individuals of the population have been throughout the search
process in order to generate a kind of trail of each individual
through the space. The more the iterations drawn into the
chart are distant in time, the clearer their trail appears.
Therefore, darker trails represent points in the search space
where the individual was most recently.

A method to visualize four variations of the Harmony
Search algorithm, besides the algorithm itself in its canonical
form, was proposed by [15]. The technique selected for
dimensionality reduction and subsequent visualization was
Viz3D. The purpose is to observe how variations of the
Harmony Search algorithm effectively operate and to what
extent the variations mentioned alter the search pattern dis-
played by the original algorithm, since each one introduces
considerable conceptual modifications to it. The charts show
the progress of the search through the iterations, where each
point corresponds to the location of the centroid obtained
from the individuals that form the population of the exe-
cutions in those instants of time. These centroids are then
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transformed from n-dimensional points to three-dimensional
points using Viz3D. The dot size increases as the average
value of the evaluation function of the population approaches
the optimum value of known function being optimized. In
other words, the smaller the average value of the evaluation
function of the population, the greater its associated point
appears in the chart. This gives a measure of how the
population evolves during the iterations with respect to the
optimization function.

B. The use of Self-Organizing Maps as an Information
Visualization and Visual Data Mining tool

Self-organizing Maps [17] [18] have been proved to be
effective techniques for clustering and visualization [21],
being directly compared to other well-known dimensionality
reduction techniques. Among the possible techniques of
visualization with Self-Organizing Maps, the most interesting
in regard to the scope of this work were addressed by [22]-
[24].

The Self-Organizing Map has many beneficial features that
makes it an useful method for Data Mining. It implements a
sort of dimensionality reduction of the data that is submitted
to it as an input for the training process. The map follows the
probability density function of the data and is robust when
it comes to missing data. It is easy to explain, simple and –
perhaps most importantly – easy viewing. The visualization
of complex multidimensional data is indeed one of the main
areas of application of Self-Organizing Maps [24] [25].

Other visualization techniques with Self-Organizing Maps
have been proposed using distance matrices, being the U-
Matrix [26] [27] the most widely implemented method,
where distances between points are usually represented by
color codes [25]. Other ways of representing the distances,
such as the size of the cells of the map, are also used [24].
In this method, the wider the cell that separates two points,
the farther the points are in the multidimensional space.

One of the variations of SOMs, called Emerging Self-
Organized Maps (ESOMs) [28] is also very useful in data
visualization. We can notice in works such as [29], [30] and
[31] that the use of ESOMs greatly increase the quality of the
diagrams, as it generates more accurate results and mappings
[32], and thus facilitate the visualization of data.

As stated in Section I, there are many uses of the Self
Organizing Maps as a Visual Data Mining tool. The appli-
cations range from clustering [21] [29] [33], to visualization
of protein sequences [22], demographic trajectories [34] and
crime trajectories [35], for example.

III. DIVIDING THE SEARCH SPACE INTO REGIONS

Among the various useful information that may be col-
lected regarding the execution of meta-heuristics is to know
what areas of the search space are being visited during the
optimization process, and when they are visited. Thus, it
can be determined which regions of the search space are
being explored, how frequent this exploration is, how long
the algorithm takes to find the most promising region, and so
on. Furthermore, one can compare the executions of various

instances of meta-heuristics to determine which one is the
most appropriate for the optimization problem in question.
Information about the exploration of the search space has
been assessed by other studies with the objective of gaining
insight into the behavior of meta-heuristic algorithms [8]-
[14].

The technique proposed here consists in dividing the
search space into regions by mapping it into a SOM. The
idea is, given a specific search space associated with an
objective function, to obtain a population made of samples
of that space generated via uniform distribution, so that a
homogeneous area is covered by the population. A neural
network is then created and trained based on these points, so
that to a certain extent this layer reflects the topology of the
search space at the end of the training process. An illustration
of this procedure is shown in Fig. 1.

Fig. 1. Mapping a three dimensional search space S into a two-dimensional
10× 10 neuron lattice of a Self-Organizing Map

Each neuron of the resultant network can be understood
as corresponding to a certain region of the n-dimensional
space, since the sample individuals of the population that
was used as the input are uniformly scattered throughout the
search space. Therefore, one can determine which region of
the search space a particular individual of the population is in
by using this individual as an input for the layer of neurons,
and verifying which one neuron is activated by it.

Consider a population P = {p1, p2, . . . pN}, where N is
the number of individuals of the population, and a map M
consisting of a set of neurons K = {k1, k2, . . . kw}, where
w is the number of neurons, trained according to a random
population generated in normal distribution for the function
f being optimized. In order to define which regions of the
search space of f are being covered by the population P ,
its N points are subjected to the map M . When determining
which and how often the kw neurons of the map are being
activated when subjected to these stimuli, one can visualize
what regions of the search space are actually being visited
by the points in N .

Fig. 2 depicts a sample of how these regions are being
revealed for a three dimensional search space into a two
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dimensional neuron lattice. Given the population P of indi-
viduals throughout the search space S, one can easily identify
the areas visited by them in the search space by verifying
which of the kw neurons of the lattice are being activated
by those individuals, which are marked in red. One may
notice that a neuron can be activated by multiple points of
the population and, because of that, these points must be
categorized as being exploring the same region of the space.
At the same time, one can state that, for any point p that can
be generated in the search space S, there is a corresponding
neuron kw in the map M . Extrapolating this model to the n-
dimensional search space, it can be determined that actually
a n-to-2-dimensional mapping is being performed, in a way
that any n dimensional point that can be generated for the
optimization function f has a corresponding neuron in the
network.

Fig. 2. Activation of the neurons in the lattice by the N individuals of a
population P from a meta-heuristic while optimizing a function represented
by the search space S. The neurons in red are the ones that were activated
by at least one individual of the population

Using the method described above and with the aid of
tools such as the Databionics ESOM Tools [32], one is
able to generate images like the ones shown in Fig. 3. To
create this picture, the Rastrigin multimodal test function
(1) [36], whose global minimum is xi = 0, i = 1 . . . n,
was used for n = 30 as the search space to be mapped.
For the training process, the SOM algorithm was configured
to be as close as the canonical specification as possible,
more precisely as follows. The standard incremental training
algorithm described in [18] was chosen and executed for
20 epochs. The Euclidean distance was defined as the space
distance function. The initial and final learning rate were set
at 0.5 and 0.1 respectively. The initial and final neighborhood
set radius were 24 and 1 respectively. A linear cooling
strategy was chosen for both learning rate and neighborhood
set radius. For the neighborhood function, the Gaussian
Kernel smoother was chosen.

Fig. 3. A two-dimensional Self-Organized Map with 150× 150 neurons
trained with an input of 60,000 points generated in normal distribution for
the Rastrigin function with 30 dimensions. Image (a) shows all the neurons
trained by the SOM, while image (b) shows the neurons that were activated
when a set of 125 random points was used as an input. Image (c) explains
the color of the points in the map, where neurons separated by shades of
pink are closer to each other then the ones separated by shades of yellow
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fRast =10n+ (
n∑

i=1

x2i − 10 cos(2πxi)),

− 5.12 ≤ xi ≤ 5.12

(1)

Firstly, a set of 60,000 random points of the function (1)
was generated in normal distribution, and a Self-Organized
Map of 150× 150 neurons – configured as described earlier
– was trained using this set of points as input. Fig. 3 (a)
depicts the neurons of the map that were activated by the set.
This way, the search space of the 30-dimensional Rastrigin
function is reduced to a bi-dimensional lattice of 22,500
neurons, each one representing a given section of this search
space. Secondly, a trial population of 125 random points were
generated and used as an input on the trained map, to verify
which neurons are being activated by the points of this trial
population and consequently in which sections of the search
space those points are located, as can be seen on Fig. 3 (b).

By repeating the second step of the aforementioned pro-
cess to any given set of points collected during the execution
of a meta-heuristic, one can visually analyze how it explores
the search space of the optimization function during its
search process, as can be seen on Section IV.

The colors of the neurons in the images are detailed on
Fig. 3 (c), which explains that neurons separated by shades
of pink are closer to each other than neurons separated by
shades of yellow. To calculate the distances between them,
the unified distance matrix (U-Matrix) [26][37] was used,
which is a distance matrix between prototype vectors of
neighboring neurons of the network. It defines a value for
each one of the kw neurons of the network based on the
distance between kw and its set of neighbors so that the
farther away the neuron is of its neighbors, the higher is its
corresponding value in the matrix. By projecting this matrix
in the map and assigning colors to each distance value, one
can have a visual insight on how the neurons are organized
in the map.

IV. EXPERIMENTAL APPLICATION

To exemplify the use of the technique explained on Section
III, the following experiment is proposed: the Rastrigin
function (1) with n = 30 was optimized by three instances of
a Genetic Algorithm, and the visualization method proposed
here was used to gain insight on how their populations
explore the search space through six different steps of the
optimization process.

The GA was implemented according to [38], changing
the chromosome codification approach from binary string to
floating point array, in order to adjust it to the optimization
function in question. For the selection operator of the GA,
the Roulette Wheel approach was chosen. It probabilistically
selects individuals based on their fitness values, giving a
higher chance of reproduction for the chromosomes with best
values in the fitness function [39].

The three instances of the GA that were used in this
experiment are configured as described in Table I. They were

initialized with a set of points generated randomly. Snapshots
of the populations were collected during the optimization
process on iterations 0, 5, 15, 25, 35 and 45 of a sample
run of each one of the instances. Those snapshots were
then used as input on the Self-Organized Map trained for a
set of random points of the Rastrigin function, as detailed
in Section III, to identify which regions of the search
space are being visited by the points as the search process
advances. The maps resulting from this process are displayed
in Fig. 4, 5 and 6.

TABLE I
CONFIGURATIONS OF THE THREE GENETIC ALGORITHM INSTANCES

USED TO OPTIMIZE THE RASTRIGIN FUNCTION

Instance
Name

Mutation
Probability

Crossover
Probability

Population
Size

GA1 10% 75% 125
GA2 5% 95% 125
GA3 10% 85% 85

The white dots in each image of those figures represent the
neurons that were activated on the map when the populations
are used as input. Since a single neuron can be activated by
more than one point at the same time, one white dot on the
image may represent several points of the input population. If
two or more points activate the same neuron, it indicates that
they are sufficiently close in the n-dimensional space to be
interpreted by the map as being part of the same region, thus
they are represented by the same point in the 2-dimensional
space.

Analyzing the images at iteration 0 in Fig. 4, 5 and 6, one
can observe that the initial population starts with random
points dispersed on the search space for all three instances.
As the optimization process advances, the points of the GA3
instance (Fig. 6) rapidly converge to a single region of the
map between iterations 15 and 25. There is a subset of points
that migrate to a different region between iterations 25 and
35, in an attempt of escaping from local minima by the
algorithm. The combination of high mutation and crossover
probabilities for this instance (85% and 10% respectively)
may have played an active role on this behavior. However,
those points return to the region they first converged between
the 35th and 45th iterations, and the search continues with the
exploitation of this one region.

For the GA1 instance (Fig. 4), it can be observed that 7
different regions are being explored at iteration 35, still an
elevated number at this point of the search when compared
to GA2 and GA3 instances. It may be a consequence of
the combination of a high mutation probability (10%) with
a fairly low crossover probability (75%). Soon after, this
number decreases significantly to a single region on the 45th

iteration. It indicates that a point with a very good fitness
value as compared to the rest of the population was found
on that time frame, which makes it recombine with others
more frequently than the less fitted points, leading to this
steep convergence.

The GA2 instance (Fig. 5) had a smoother convergence
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Fig. 4. The Genetic Algorithm instance GA1 optimizing the Rastrigin function with 30 dimensions at iterations 0, 5, 15, 25, 35 and 45. This instance is
configured with 125 individuals, 75% of crossover probability and 10% of mutation probability.

Fig. 5. The Genetic Algorithm instance GA2 optimizing the Rastrigin function with 30 dimensions at iterations 0, 5, 15, 25, 35 and 45. This instance is
configured with 125 individuals, 95% of crossover probability and 5% of mutation probability.

Fig. 6. The Genetic Algorithm instance GA3 optimizing the Rastrigin function with 30 dimensions at iterations 0, 5, 15, 25, 35 and 45. This instance is
configured with 85 individuals, 85% of crossover probability and 10% of mutation probability.

than the others, going from 12 regions explored at the 5th

iteration, to 8 at the 15th, 2 at the 25th and 35th, and
finally concentrating all points in one single region at the
45th iteration. Combining the highest crossover probability
(95%) with the lowest mutation probability (10%) may have
caused this distinct behavior in comparison to the other two
instances.

V. FINAL REMARKS

This paper presented a novel technique to visualize n-
dimensional points produced during the optimization process
of meta-heuristics. By resorting to Self-Organizing Maps
[17][18] and their well-known characteristics when used
for dimensionality reduction [24], it was possible to design
a method to visualize high dimensional points into a bi-
dimensional space, in a way that one can verify which
regions of the search space are being visited by the points
of a meta-heuristic population through various moments of
the optimization process. Furthermore, one can also compare
executions of different instances of a meta-heuristic, to
assess how distinct parameter calibrations affect the search
process, or even compare different optimization algorithms
to determine which is the most appropriate one to be used
for a given optimization problem. This technique is flexible
enough to support both trajectory and population-based meta-
heuristics, as well as a large range of numeric functions.

The study performed in Section IV aims to present an
application of this technique and to have an insight on the
possible analyses one can conduct with it. Some more inter-
esting and conclusive information regarding meta-heuristic
behavior can be assessed by this visualization method if
a deeper and more detailed study is performed. The steps
to generate the images analyzed here can be extended to
any optimization function or meta-heuristic with little or no
adjustment, making it a flexible technique to visually gain
information about the points into the n-dimensional space.
It was demonstrated in this paper that it can be very useful
to investigate the execution of meta-heuristics, as well as its
optimization process in general, in order to make it more
suitable to the problem being optimized.

Although useful as it is, the method described here can be
improved in a variety of ways. For instance, the value of the
fitness function of each point may be added to the charts, as
well as a visual indication of the number of points that are
currently activating a single neuron, similarly to what was
presented by [11] and [15]. Additionally, it can be extended
to work with other classes of optimization problems that are
different from the multimodal numeric function used here as
example, or be used as an on-line visualization tool.
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