
 

  
Abstract — In many applications, such as way finding and 
navigation, the quality of image sequences are generally poor, 
as motion blur caused from body movement degrades image 
quality. It is difficult to remove the blurs without prior 
information about the camera motion. In this paper, we 
utilize inertial sensors, including accelerometers and 
gyroscopes, installed in smartphones, in order to determine 
geometric data of camera motion during exposure. Based on 
the geometric data, we derive a blurring function namely 
point spread function (PSF) which deblur the captured image 
by reversing motion effect. However, determination of the 
optimal PSF with respect to the image quality is 
multioptimum, as deblurred images are not linearly 
correlated to image intelligibility. Therefore, this paper 
proposes a hybrid optimization method, which is, 
incorporated the mechanisms of particle swarm optimization 
(PSO) and gradient search method, in order to optimize PSF 
parameters. It aims to incorporate the advantages of the two 
methods, where the PSO is effective in localizing the global 
region and the gradient search method is effective in 
converging local optimum. Experimental results indicated 
that deblurring can be successfully performed using the 
optimal PSF. Also, the performance of proposed method is 
compared with the commonly used deblurring methods. 
Better results in term of image quality can be achieved. The 
resulting deblurring methodology is an important 
component. It will be used to improve deblurred images to 
perform edge detection, in order to detect paths, stairs ways, 
movable and immovable objects for vision-impaired people. 

 
Index Terms— image deblurring;  inertial  sensors; vision 
impaired navigation; particle swarm optimization; hybrid 
optimization method  

I. INTRODUCTION 
In image acquisition, we aim to capture photos which are 
used to truly represent the underlying scene that we intend 
to observe. However, the observation process is never 
perfect, as image blurriness significantly degrades object 
structures on the captions and causes poor image quality. 
Also, the blur can be caused by atmospheric turbulences, 
incorrect focus settings, camera motion and movement 
within the scene. For smart phones or tablets, considerable 
blurs are likely to be generated by body movement when 
the users are performing navigation. Although fast shutter 
speeds could reduce the blurs, image noise could be 
generated. Also, they are usually not available in smart 
phones or tablets, as camera with these functions are very 
expensive. Potential dangers for the vision-impaired 
people can be caused when poor image captions are used 
for object detection and path identification in the 
navigation system [1]. To improve the image quality, 
deblurring algorithm can be applied by removing the 
 

 

blurred effects. Deblurring methods can be divided into 
two main types, namely Blind deconvolution and 
Non-blind deconvolution. 
When blurring function namely point-spread function 
(PSF), is an unknown, the blind deconvolution can be used 
to improve the quality of blurred images. PSF use the 
statistical sequences of the blurs in order to remove the 
blurred patterns. However, the deblurred images are 
difficult to recover, as camera motions are mostly chaotic 
and random. Non-blind deconvolution can be used when 
the PSF is available. Recent technologies of mobile devices 
enable the estimation of the PSF using the embedded 
inertial sensors, while the 3-axis accelerometer gives the 
linear motion and the 3-axis gyroscope gives the angular 
motion. Geometric data for the camera motion can be used 
for developing the PSF. However, it is imprecise to use 
accelerometer signal to compute camera velocity and 
displacement, as the captured signal is accumulated with 
noise caused by sensor drift [2], [3]. In addition, an 
appropriate PSF is difficult to generate for effective 
deblurring, as the exposure time is relatively short.  

In this paper, a deblurring methodology is proposed by 
using PSF, determined on the geometric information with 
respect to the three-dimensional linear motion of the 
camera. The geometric information is used, as most 
modern smartphones are equipped with three-dimensional 
accelerometers and gyroscopes, geometric information 
may be used to measure the linear and rotary motions of the 
camera. The performance of the PSF is evaluated based on 
quality of the deblurred image of which an image quality 
analyzer [19] is used, as the image quality measure is 
effective to predict the quality of distorted images when a 
little prior knowledge of the images is available. 

However, the relationship between the image quality 
score and the PSF parameters is not linear, as the deblurred 
image may not be correlated to the improvement of image 
intelligibility. The problem on determining the optimal 
PSF parameters with respect to the image quality score is 
multi-optimum. Conventional gradient search methods 
may not be effective to determine the PSF parameters. In 
this paper, we propose a hybrid optimization method 
(HOM) which incorporates mechanisms of both local and 
global search methods. HOM first uses a global 
optimization method [18], to generate a set of solutions 
with good image quality scores, as the PSO is effective in 
performing optimization on mulit-optimal problems. After 
generated the better solution, that result uses a gradient 
search method to locate the optima with respect to the 
image quality. The effectiveness of the proposed HOM is 
evaluated by developing PSF for image deblurring, where 
the geometric information of the camera motion is captured 
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by Sony Xperia TX smartphone. Experimental results 
show that the proposed method can improve the image 
quality of the deblurred images. Significant improvement 
can be achieved when the PSF is compared with the 
commonly used deblurring methods [10] including blind 
deconvolution, Wiener filter, Lucy-Richardson method 
and the regularized filter. Additionally the proposed HOM 
outperforms the other state-of-art heuristic methods 
including particle swarm optimization, genetic algorithm 
and simulated annealing. 

 This paper is organized as follows: Section II 
discusses previous works related to image deblurring with 
and without using inertial sensor data. Section III describes 
the proposed deblurring method in developing the PSF 
engaged with the inertial sensor data. Section IV presents 
the proposed HOM in optimizing the PSF parameters. In 
Section V, experimental results in terms of image quality 
are presented and also comparison with other methods is 
given. The conclusion and future work are given in Section 
VI. 

II. LITERATURE REVIEW AND RESEARCH 
MOTIVATION 

Generally, approaches for image deblurring can be classified 
into two types, blind deconvolution and non-blind 
deconvolution [4]. Blind deconvolution is a difficult task, as 
the PSF is an unknown. Non-blind deconvolution is more 
effective as the PSF is known. Hence, deblurring regimes 
can be developed than those when no prior information 
for the PSF is available. Recent deblurring methods have 
been developed by incorporating the mechanisms of point 
spread function (PSF) and non-blind deconvolution. 

A. Blind deconvolution 
The common approaches of blind deconvolution are based 
on the availability of more than two images of the same 
scene. With a close temporal position, these approaches can 
be particularly implemented in way finding applications.  
Rav-Acha and Peleg [5] developed a blind deconvolution 
using two blurred images with two motion captions of 
which the correlation between the two captions is used for 
determining the deblurring function. Lu et al. [6] used a two 
images of which one is blurry and one is noisy, in order to 
perform deblurring in low light conditions. However, these 
approaches cannot be applied on real-time systems such as 
road navigation or way finding as the required 
computational time is high.    

Fergus et al. [7] developed a method using a single 
image for handling slight blurring such as camera tremble. 
It attempts to determine the camera motion based on the 
initial blur kernel, which is estimated by the heuristic 
information of camera motion. An additional deblurring 
method was proposed by Qi et al. [8] based on a unified 
probabilistic model consisting of both blur kernel 
estimation and de-blurred image restoration. However, 
both these methods have complex computational costs and 
are therefore not suitable for implementing on 
microcontroller, which has limited computational power. 

B. Non-blind deconvolution 
Modern electronic communication devices, such as smart 
phones and tablets commonly have embedded inertial 
sensors such as gyroscopes, accelerometers which can be 

used to capture inertial data in order to determine the 
geometric information for the camera motion.  

Hyeoungho et al. [9] proposed a de-blurring method 
using the IMU data captured by the gyroscope, 
accelerometer and depth sensor installed on the camera. 
The computational cost required for this method is high, as 
it requires a microcontroller with high computational power 
to control the position of the depth sensor making it 
unsuitable for implementation in real-time applications. A 
more effective deblurring method was developed based on 
the geometric information captured by accelerometer, 
gyroscopic sensor data and digital single-lens reflex 
(DSLR) camera [10-12]. However, this approach requires 
the expensive DSLR camera and can only be used for 
offline deblurring.   

A deblurring method based on the IMU sensor data has 
been developed by Sanketi et al. [13]. In this method, both 
the anti-blur feedback and IMU sensor data are used for the 
camera stabilization. It is useful in the area of image 
acquisition but synchronizing the IMU data with the image 
capture is a challenging task as the accelerometer and the 
gyroscopic sensor capture IMU data and the camera 
captures the image within the exposure time. As the 
exposure time is small, the synchronization task, which 
attempts to align the image sensor with IMU data, is 
problematic. 

This paper proposes a deblurring methodology, which 
uses the IMU data, captured by accelerometer and 
gyroscopic sensor data. A hybrid optimization method has 
been developed to synchronize the IMU data and the 
captured image in order to improve the image quality of the 
blurred images. The resulting deblurring methodology will 
benefit our research project, which aims to develop an 
embedded system for way finding purposes for 
vision-impair people. 

III. METHODOLOGY 

A. Capturing geometric data for camera motions 
Although users attempt to stabilize the camera for general 
photography, blurred images are occurring. To improve 
the image quality, debluring techniques are generally 
developed to target this kind of motion blur. In the case of 
way finding applications, body movements of users blur 
the images and thus controlling the movements of cameras 
is not a realistic proposition. Hence, identifying the 
geometrical information of the camera motions is a key in 
order to develop computational algorithms for deblurring 
purposes. The accelerometers and the gyroscopes are 
generally used to estimate the geometric information of 
camera motions, as most of high-end smartphones are 
equipped with a three-dimensional accelerometer and a 
three-dimensional gyroscope that can be used to measure 
the linear and rotary motions of the camera installed on 
the smartphone. 

However, the issues in using the accelerometer to 
compute the linear displacement are the gravity component 
present in accelerometer data [2], the drift caused by the 
double integral [3] and the fact that the initial velocity is 
unknown. Further drift is occurred when the angular 
displacement is computed [3].  
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As the blurriness of an image is usually caused by linear 
and angular movements of the camera, the scene captured 
by the camera can be considered as moving with respect to 
the camera if we assume that the camera is stationary. 
Hence, the PSF, which illustrates the relative motion of the 
scene, are caused by the linear and rotary movements of the 
camera. As the zooming effect is caused by the 
perpendicular component, a linear blur is generated by the 
component on the scene plane.  

Figure 1 shows the scene plane with respect to the 
camera, where the distance between the scene plane and 
the camera is defined as l. At time t, the velocity 
components of the point ሺܽ, ܾሻ are shown in the figure, 
where Ax(t), Ay(t) and Az(t) represent the linear acceleration 
of camera along ݔ, ݕ  and ݖ axis respectively; Vx(t), Vy(t) 
and Vz(t) represent the linear velocity of camera along x, y 
and z axis respectively; ωx(t), ωy(t) and ωz(t) represent the 
angular velocity of camera along x, y and z axis; and vx(t), 
vy(t) and vz(t) represents linear velocity of frame with 
respect to camera along x, y and z axis. 

 

 
Figure 1 Illustration of the scene with respect to the camera 

  
vx(t), vy(t) and vz(t) can be computed based on equations 

(1), (2) and (3) respectively. 
 

( ) ( ) ( ) ( )x x y zv V lt t t taω ω= − + + ,        (1) 
( ) ( ) ( ) ( )y y x zv V lt t t tbω ω= − − − ,        (2) 

( ) ( ) ( ) ( )z z x zt t tV tv a bω ω= − − ⋅ + ⋅ .      (3) 
The contribution of linear velocity components, Vx(t), 

Vy(t) and Vz(t), to the velocity of the point on the scene is 
very small compared to the contribution from angular 
velocity, ωx, ωy and ωz. Hence, Vx(t), Vy(t) and Vz(t), can be 
omitted from (1), (2) and (3) and the following 
formulations can be used  to compute the velocity of the 
point on the scene. 

 
( ) ( ) ( )x y zv t l t a tω ω= ⋅ + ⋅ ,          (4) 
( ) ( ) ( )y x zv t l t b tω ω= − ⋅ − ⋅ ,                    (5) 

( ) ( ) ( )z x zv t a t b tω ω= − ⋅ + ⋅ .         (6) 
 
After vx(t), vy(t) and vz(t) are computed, the linear 

displacements, Dx(t), Dy(t) and Dz(t), with respect to x, y 
and z can be computed respectively by iterating each linear 
velocity component using trapezoid rule as 
 

( ) ( ) ( ) ( )( )1x x x xD t D t T v t v t T= − + − − ⋅ ,    (7) 

( ) ( ) ( ) ( )( )1y y y yD t D t T v t v t T= − + − − ⋅ ,    (8) 

( ) ( ) ( ) ( )( )1z z z zD t D t T v t v t T= − + − − ⋅ ,    (9) 
where T is the sampling period. 

 

B. Determination of the PSF matrix 
Although linear displacements can be captured for the 
camera motions, the PSF against camera motions cannot be 
determined precisely as both the parameters of camera size 
and the focal length are usually an unknown. Both 
parameters are not usually provided by the vendors. In 
order to improve the precision, an empirical measurement 
was taken to find the ratio ܤ/݈, and ܣ/ܤ  ൌ  3/4 was used 
during this measurement. The dimensions of the frame 
with respect to ܣ and ܤ were computed using the ratio of 
B/l measured. If the resolution of the image is given as ݉ ൈ  ݊  with the ratio of ݉: ݊ ൌ  4: 3 , the number of 
pixels at the scene can be computed as ܣ/݉ or ܤ/݊. Based 
on this resolution information, the total pixel displacements 
with respect to x and y axis can be computed and they are 
the dimensions of PSF matrix. 
The next task was to compute the parameters of the PSF 
matrix based on the computed displacements. As some of 
the pixel points between the two consecutive sample points 
(i.e. ( ) ( )( ),x yD t D t  and ( ) ( )( ),x yD t T D t T+ + ) are 
empty in the image, linear interpolation was used to fill the 
gap between those empty samples. Figure 2 shows the 
algorithm which is used to derive the PSF from computed 
displacements on the plane of the scene. The movement 
along z-axis was not incorporated in this computation so 
that the zooming function of the camera can be considered 
separately. 
Set (Total number of sampling points) → N  

Set ( ) ( )( )0 x_spanx xD N T D⋅ − →  ; 

Set ( ) ( )( )0 _spany yD N T D y⋅ − → ; Set 0 c→  

for i =  1 to N   do 
if (x_span >  y_span) 

Set Nf be the number of fill up pixels between 

( )xD i T⋅  and ( )( )1xD i T+ ⋅ . 
else 

Set Nf be the number of fill up pixels between 

( )yD i T⋅  and ( )( )1yD i T+ ⋅ . endif 

Create the coordinates, ( )( ), ( )X j Y j , based on the 

interpolation between ( )( ), ( )x yD i T D i T⋅ ⋅  and 

( ) ( )( )( 1 ), ( 1 )x yD i T D i T+ ⋅ + ⋅ , where 

( ) ( ) ( )1 , 2 ,...., fj c c N c= + + + . 

Set ( )1 fc N c+ + →  

       for j = 0 to c do  
col=Round( ( )Y j ) 
row=Round( ( )X j ) 
PSF(col,row) =  PSF(col,row) +  1; endfor 

endfor 
 

Figure 2 Algorithm for determining the PSF matrix 
As the parameters of the PSF matrix are dependent on the 

relative motion, ( )xD t  and ( )yD t , which can be adjusted 
by the alignment parameters, a, b and l, formulated in 
equations (7), (8) and (9). An effective PSF can only be 
developed when the optimal alignment parameters are 
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used. In the following section, a hybrid optimization 
method (HOM) incorporated with particle swarm 
optimization algorithm (PSO) [18] and gradient search 
method is proposed in order to determine the optimal 
alignment parameters. Deblurred image with optimal 
image quality can generated, when the PSF engaged with 
the optimal alignment parameters are used. 

IV. HOM FOR OPTIMIZING PSF MATRIX 
Although the gradient search method can be used to 
determine the optima of the PSF by systematically moving 
the solution space, there is no guarantee that the global 
optimum of the PSF can be searched due to the nonlinearity 
of the camera motion and the image quality measure [19]. 
Another commonly used heuristic method, PSO, has been 
demonstrated on solving many hard optimization 
problems, but PSO would take relatively longer 
convergence time to converge than the gradient search 
method. 

In this research, the HOM which is incorporated with 
PSO and gradient search method is proposed in order to 
seek the optimal PSF. The best particle obtained by the 
PSO is used as the initial solution of the gradient search 
method. Hence, the global optimum of the PSF can be seek 
more effectively by the gradient search method than solely 
using the PSO. 

First, the HOM generate Ns particles randomly, where 
the position of the j-th particle at the g-th generation is 
represented by: 

( ),1 ,2 ,3, ,g g g g
j j j jP κ κ κ= ;                       (10) 

g=1; ,1
g
jκ , ,2

g
jκ , ,3

g
jκ  are represented by three alignment 

parameters namely a, b and l respectively; all ,
g
j kκ , with 

k=1, 2, 3, are generated randomly within their operational 
ranges, given as [ ],1 min max..g

j a aκ ∈ , [ ],2 min max..g
j b bκ ∈ and

[ ],3 min max..g
j l lκ ∈ . 

 
All ,

g
j kκ , with k=1, 2, 3, are evaluated based on quality 

of the deblurring image which are determined using the 
image quality analyzer [19].When g>1, each g

jP
 
are 

updated by the following formulation: 
1

, , ,
g g g
j k j k j kvelκ κ −= + ,           (11) 

where ,
g
j kvel  is the velocity of ,

g
j kκ  which is given by, 

      ( )( ( ))1 1 1
, , 1 , , 2 ,

g g g g
j k j k j k j k k j kvel C v pbest gbestϕ γ κ ϕ γ κ− − −= + ⋅ ⋅ − + ⋅ ⋅ −

                     

(12)

 

,1 ,2 ,3, ,j j j jpbest pbest pbest pbest⎡ ⎤= ⎣ ⎦ , and

[ ]1 2 3, ,gbest gbest gbest gbest= ; 

jpbest  denotes the best previous position of a particle 
recorded from the previous generation; gbest denotes the 
position of the best particle among all particles; γ  denotes 
a random number in the range of [0,1]; w is an inertia 
weight factor; φ1  and φ2  are the acceleration constants 

[1]; and C denotes the constriction factor, that ensures the 
PSO converges [2], which is given by: 

         C = 2

2 −φ − φ 2 − 4φ
, with φ = φ1 +φ2 and φ > 4 .     

(13) 

The PSO utilizes jpbest  and gbest  to modify the 

current location of all ,
g
j kκ  in order to prevent them from 

moving in the same direction, but to converge gradually 
towards pbesti and gbest [3]. To further refine the dynamic 
of ,

g
j kκ , ,

g
j kvel  is limited by a value which was set as 

10%–20% of its range. This limit is employed to avoid 
κ j ,k

g σ i( )  from flying past good solutions or exploring 

insufficient local solutions.  

In the beginning of the search, the HOM attempts to 
spread the particles to obtain the appropriate PSF 
parameters. After several iterations, the searching progress 
becomes slow. The particle search is terminated when the 
searching progress converges, then  the gradient search 
method is used to search the optimal PSF parameters as it is 
more effective to locate the local optimum than the PSO. 
The best particle generated by the PSO given by equation 
(14) is used as the initial solution of the gradient search 
method. It speeds up the process on obtaining the optimal 
PSF parameters. 

,1 ,2 ,3, ,best best best best
j j jκ κ κ κ⎡ ⎤= ⎣ ⎦            (14) 

The pseudo code of the HOM is given as following: 
Step 1: Generate g

jP  randomly with j = 1,2,…, Ns and g = 0. 

Step 2: Evaluate g
jP  based on the image quality analyzer 

discussed in [19]. 
Step 3: Set t=t+1. 
Step 4: Update the velocities  ,

g
j kvel  with j=1,2,…Ns and k=1, 2, 

3 based on equation (12). 
Step 5: Generate the particles ,

g
j kκ  based on (11).  

Step 6: Evaluate the image quality of the PSF represented by each 
particle ,

g
j kκ  based on the image quality analyzer 

discussed in [19]. 
Step 7: Goto Step 3, if the termination condition is not reached. 

Otherwise Goto Step 8. 
Step 8: Select the best particle, bestκ  in equation (14), among all 

particle. 
Step 9: Use gradient search method to determine the optimal PSF 

parameters using bestκ  as the initial solution. 
 

V. RESULTS AND ANALYSIS 
This experiment was carried out using a Sony Xperia TX 
smartphone. The images and geometrical data were 
captured by the camera and the synchronized inertial 
sensor respectively, while the camera motions simulate 
the movement when people are doing navigation. It has 
been indicated by the captures that, for a time period of 
200 ms, the drift caused by the accelerometer integration 
is in the range of 0.1 mm. This time period was used, as 
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the exposure time of capturing an image is generally under 
100 ms [15]. 

Figure 2 shows the linear and angular displacements 
captured by the accelerometer and gyroscope sensor, 
during image capture. Figure 3 depicts the original image 
captured by the camera, where the blurring effect can 
clearly be observed. 

 
Figure 2:  Linear and angular displacements caused by the camera 
motions with respect to the scene 

 
Figure 3:  Original image captured by the camera 

 
Figure 4:  Deblurred image generated by the Filter-(HOM) 

The five commonly used deblurring methods [10] 
namely Blind Deconvolution, Wiener filter, 
Lucy-Richardson method, and regularized filter, were used 
to deblur the original image. The computed PSF was used 
in the deblurring methods except the blind deconvolution 
method, as PSF is not required in the blind deconvolution 
method. The alignment parameters (i.e. a=4, b=3 and l=2) 
defaulted by the camera manufacturer were used on the 
PSF. Apart from using the default alignment parameters, 
the proposed method (HOM), genetic algorithm (GA) [20], 
simulated annealing (SA) [21] and particle swarm 
optimization (PSO) algorithm [18] have been used to find 

the optimal alignment parameters for developing the PSF. 
For these four methods, the regularized filter was used as 
the deblurrer and the alignment parameters searched by the 
four methods was used to develop the PSF. Here the PSF 
optimized by the GA, SA, PSO and HOM are denoted as 
Filter-(GA), Filter-(SA), Filter-(PSO) and Filter-(HOM) 
respectively. The number of particles (or chromosomes) 
used on Filter-(GA), Filter-(PSO) and Filter-(HOM) are 
20. The number of iterations used on Filter-(PSO) and 
Filter-(GA) are 50. The number of evaluations performed 
on Filter-(SA) is same as those used in Filter-(PSO) and 
Filter-(GA) which is 1000. The number of evaluations used 
on Filter-(HOM) is variable, as the search  

of the Filter-(HOM) is terminated when it is converged 
to a solution. As Filter-(GA), Filter-(HOM) and 
Filter-(PSO) are heuristic methods, different results can be 
obtained with different runs. Hence, each method was run 
for 30 times, and the average results were recorded. 

Figure 4 shows that the deblurred image which is 
processed by the PSF determined by the proposed method 
(HOM). Although it clearly shows that the deblurred 
image is superior than the original blurred image, it is 
difficult to evaluate the image quality by observing solely 
the deblurred images. To improve the objectivity of the 
image quality measure, a technique developed by Mittal et 
al. [19] is used to evaluate the deblurred image. In this 
method, the image quality measure is effective in 
predicting the quality of distorted images with little prior 
knowledge of the images or their distortions. Table I 
shows that the evaluation scores obtained by different 
methods, where a smaller evaluation score indicates that 
the image has a better perceptual quality. It shows that the 
original image is the poorest, which is also poorer than all 
those deblurring images. The evaluation scores obtained 
by the blind deconvolution method, wiener filter and 
Lucy-Richardson method are poorer than those obtained 
by the Filter-(GA), Filter-(SA), Filter-(PSO) and 
Filter-(HOM). 

 
Table I: Image quality evaluation for the tested methods 
Deblurring 
Methods 

Evaluation 
Score 

Relative 
improvement  
(Percentage) 

Original image 19.87 11.072 
Blind deconvolution 19.20 7.9687 
Wiener filter 19.49 9.3381 
Lucy-Richardson 
method 

19.24 8.1601 

Regularized filter 18.34 3.6532 
Filter-(GA) 17.84 0.95291 
Filter-(SA) 17.95 1.5599 
Filter-(PSO) 17.65 -0.11331 
Filter-(HOM) 17.67 Nil 
 

To further illustrate the performance of the proposed 
Filter-(HOM), Table I identifies the relative 
improvements when each of the tested methods is 
compared with the proposed method, where the 
improvement is relevant to the exact difference between 
the proposed Filter-(HOM) to the other tested method. To 
illustrate more clearly, the relative improvements are 
shown in Figure 5. For the evaluation scores, the proposed 
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Filter-(HOM) obtained improvements with more than 
10% relative to Blind Deconvolution, Wiener filter, and 
Lucy-Richardson method. Similar results can be achieved 
when compared with Filter-(GA), Filter-(SA) and 
Filter-(PSO) for which optimization of PSF was involved. 
Also, the proposed Filter-(HOM) obtained an 
improvement with more than 3.5% relative to the 
regularized filter. 

 
Figure 5: Improvement for evaluation scores achieved by the proposed 

Filter-(HOM) compared with the other tested method 

To further illustrate the effectiveness of the proposed 
Filter-(HOM), the relative improvements in term of the 
computational time are shown in Figure 6. They indicate 
the relative differences between the computational time 
spent on the proposed Filter-(HOM) and the other tested 
methods. The figure shows that the relative improvements 
with 74% can be achieved by the proposed method, 
compared with the other tested optimization methods. 
This improvement regarding computational time further 
indicates the effectiveness of the proposed method, 
Filter-(HOM). 

 
Figure 6: Improvement for computational time achieved by the proposed 

Filter-(HOM) compared with the other tested optimization methods 
 

VI. CONCLUSION AND FUTURE WORK 
In this paper, a hybrid optimization method is proposed to 
determine the optimal PSF using geometric data captured 
from inertial sensors of smartphones, in order to improve 
the image quality of the captured image. This hybrid 
optimization method incorporates the advantages of the 
PSO and the gradient search method, where the PSO is 
effective in localizing the global region and the gradient 
search method is effective in converging local optimum. 
Experimental results show that the proposed method can 
improve the image quality of the deblurred images. 
Significant improvement can be achieved when 
comparing with the commonly used deblurring filters 

including blind deconvolution , Wiener filter, 
Lucy-Richardson method and he regularized filter. Also, 
the PSF obtained by the proposed method outperforms 
those obtained by the state-of-art heuristic methods 
including PSO, GA and SA.  

In the future, the two research directions will be focused. 
a) In this paper, the hybrid optimization method is only 
developed by incorporating with two state-of-art methods 
namely particle swarm optimization and gradient method. 
Incorporation of PSO with other intelligence methods such 
as fuzzy system [22], genetic programming [23,24], and 
neural networks [25] will be studied in order to further 
improve the searching effectiveness. b) One of the 
limitations of the proposed method is the accuracy of the 
accelerometer and the distortion caused by deblurring 
which can generate ringing artifacts. We will reformulate 
the optimization problem in order to maximize the image 
quality and minimize the image distortion. Better PSF is 
expected to be generated.  

REFERENCES 
[1] N. Rajakaruna and I. Murray, “Edge detection for Local Navigation 

System for Vision Impaired People Using Mobile Devices”, 
International Conference on Mathematical Sciences & Computer 
Engineering, Malaysia, pp. 29-30, 2012. 

[2] K. Abhayasinghe and I. Murray, “A novel approach for indoor 
localization using human gait analysis with gyroscopic data,” Third 
International Conference on Indoor Positioning and Indoor 
Navigation, 2012. 

[3] D. Sachs. Google Tech Talk, Topic: “Sensor Fusion on Android 
Devices: A Revolution in Motion Processing.” [On-Line], Aug. 2, 
2010. 

[4] D. Kundur and D. Hatzinakos, “Blind image deconvolution”, IEEE 
Signal Processing Magazine, IEEE , vol.13, no.3, pp.43-64, 1996. 

[5] A. Rav-Acha and S. Peleg, “Two motion blurred images are better 
than one”, Pattern Recognition Letters, vol 26, pp. 311–317, 2005. 

[6] L. Yuan, J. Sun, L. Quan, and H.Y. Shum, “Image deblurring with 
blurred/noisy image pairs”, ACM SIGGRAPH, 2007. 

[7] R. Fergus, B. Singh, A. Hertzmann, T. Sam and T. William, 
“Removing camera shake from a single photograph”, ACM 
SIGGRAPH, 2006. 

[8] Q. Shan, J. Jia and A. Agarwala, “High-quality motion deblurring 
from a single image”, ACM SIGGRAPH, 2008. 

[9] B. Hyeoungho, C.C. Fowlkes, and P.H. Chou, “Accurate motion 
deblurring using camera motion tracking and scene depth”, IEEE 
Workshop on Applications of Computer Vision, pp. 15-17, 2013 

[10] R. Horstmeyer, “Camera Motion Tracking for De-blurring and 
Identification”, MIT Mdia Lab MAS 863 Final Project 2010. 

[11] J. Feng , L. Tian, “Digital image stabilization system based on inertial 
measurement module”, School of Automation, Beijing Institute of 
Technology, China, 2013. 

[12] N. Joshi, S.B. Kang, and C.L. Zitnick, and R. “Szeliski, Image 
deblurring using inertial measurement sensors”, ACM SIGGRAPH, 
2010. 

[13] P.R. Sanketi and J.M. Coughlan, “Anti-blur feedback for visually 
impaired users of smartphone cameras”, ACM SIGACCESS, 2010. 

[14] O. Šindeláˇr and F. Šroubek F, “Image deblurring in smartphone 
devices using built-in inertial measurement sensors”, Journal of  
Electronic Imaging, 2013. 

 [15] A. Davis, “What are the shutter speed and ISO ranges for the iPhone 
4S camera?” [Weblog entry]. Ask Different, 2012. 
Available:http://apple.stackexchange.com/questions/49556/what-a
re-theshutter-speed-and-iso-ranges-for-the-iphone-4s-camera 

[16] R.C. Eberhart and Y. Shi, “Comparison between genetic algorithms 
and particle swarm optimization”, in Evolutionary Programming 
VII. New York: Springer-Verlag, LNCS, vol. 1447, pp. 611-616, 
1998. 

[17] F. Bergh and A.P. Engelbrecht, “A study of particle swarm 
optimization particle trajectories”, Information Sciences, vol. 176, 
no. 8, pp.937-971, 2006.  

[18] K.E. Parsopoulos and M.N. Vrahatis, “On the computation of all 
global minimizers through particle swarm optimization”, IEEE 
Transactions on Evolutionary Computation, vol. 8, no. 3, pp. 
211-224, 2004. 

-2 0 2 4 6 8 10 12

Original

Blind deconvolution

Wiener filter

Lucy-Richardson method

Regularized filter

Filter-(GA)

Filter-(SA)

Filter-(PSO)

Improvements for Evaluation Score

Relatively improvement (%)

71 71.5 72 72.5 73 73.5 74 74.5 75 75.5 76

Filter-(GA)

Filter-(SA)

Filter-(PSO)

Improvements for Computational Time

Relatively improvement (%)

1248



 
[19] A. Mittal, R. Soundararajan, and A.C. Bovik, “Making a 

Completely Blind Image Quality Analyzer”, IEEE Signal 
Processing Letter, vol. 20, pp. 209-212, 2013. 

[20] D.E. Goldberg, Genetic Algorithms in Search, “Optimization and 
Machine Learning”, Addision Wesley Longman Publishing Co., 
Inc. Boston, MA, USA, 1989. 

[21] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by 
Simulated Annealing”, Science, vol. 220, pp. 671–680, 1983. 

[22] C.K. Kwong, K.Y. Chan, H. Wong, Takagi–Sugeno neural fuzzy 
modeling approach to fluid dispensing for electronic packaging, 
Expert Systems with Applications, vol. 34, no. 3, pp. 2111-2119, 
2008. 

[23] K.Y. Chan, C.K. Kwong, T.S. Dillon, Y.C. Tsim, Reducing 
overfitting in manufacturing process modeling using a backward 
elimination based genetic programming, Applied Soft Computing, 
vol. 11, no. 2, pp. 1648-1656, 2011. 

[24] K.Y. Chan, C.K. Kwong, T.C. Wong, Modelling customer 
satisfaction for product development using genetic programming, 
Journal of Engineering Design, vol. 22, no. 1, pp. 55-68, 2011. 

[25] K.Y. Chan, T.S. Dillon, J. Singh, E. Chang, Neural-network-based 
models for short-term traffic flow forecasting using a hybrid 
exponential smoothing and Levenberg–Marquardt algorithm, IEEE 
Transactions on, vol. 13, no. 2, pp. 644-654, pp. 2012. 

1249




