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Abstract—This paper presents a new particle swarm optimizer
(PSO) that called the cooperative particle swarm optimizer with
elimination mechanism (CPSO-EM) in an attempt to address
the issue of getting trapped into local optimum when solving
nonseparable multimodal problems using PSO algorithm. The
proposed CPSO-EM builds on the basis of an early cooperative
PSO (CPSO-H) that employs cooperative behavior. The CPSO-
H and elimination mechanism (EM) memory are incorporated
together to obtain CPSO-EM. Experimental studies on a set of
test functions show that CPSO-EM exhibits better performance
in solving nonseparable multimodal problems than several other
peer algorithms.

I. INTRODUCTION

IN the past decade, particle swarm optimizer (PSO) has been
applied and studied by many researchers with promising

results [1]. However, it may fall into local optimum more
easily as the global optimization benchmark problems become
more complex. Better optimization algorithms are always
needed for solving more and more complex real-world engi-
neering problems. In general, the unconstrained optimization
problems that we are going to solve can be formulated as a
𝐷-dimensional minimization problem as follows:

𝑀𝑖𝑛𝑓(𝑋), 𝑋 = [𝑥1, 𝑥2, ..𝑥𝑑.., 𝑥𝐷] (1)

where 𝑋 = [𝑥1, 𝑥2, ..𝑥𝑑.., 𝑥𝐷] is the vector to be optimized
and 𝐷 is the number of parameters [2].

PSO is notorious for being prone to premature convergence.
Among the PSO variants in the literature, one of the main
methods to prevent premature convergence is to increase the
diversity of particles which represent potential solutions in
PSO [2]-[5]. However, the performance is not always satisfac-
tory due to the large search space on high dimensional multi-
modal problems. Meanwhile, some cooperative coevolutionary
algorithms are presented which adopt the divide-and-conquer
strategy to tackle high dimensional problems [6]-[8]. It is
realized that the performance of cooperative coevolutionary
algorithm deteriorates when there exists interdependencies
among parameters. In order to cope with this problem, the
decomposition strategy called random grouping and adaptive
weighting scheme is implemented in the literature. However,
the probability of optimizing interdependencies parameters is
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very low since the other parameters contained in the same
subcomponent limit the performance. In this paper, we present
a novel algorithm called cooperative particle swarm optimizer
with elimination mechanism (CPSO-EM) to cope with the
nonseparable problems. Based on an early cooperative PSO
(CPSO-H) [6], CPSO-EM overcomes the problem of falling
into local optimum by using elimination mechanism (EM)
memory that increases the diversity of useful particles.

The rest of this paper is organized as follows. In Section II,
basic PSO algorithm and some variants are presented. Section
III describes the CPSO-EM algorithm. Section IV describes
the benchmark test functions and compares the performance
of CPSO-EM with that of some peer algorithms taken from
literature. Final conclusions are given in Section V.

II. PSO AND SOME VARIANTS

A. Basic PSO algorithm

Inspired from social behavior and cognitive behavior,
Kennedy and Eberhart presented PSO algorithm to search
for optimal values through population-based iterative learning
algorithm [9],[10]. A particle which represents a potential so-
lution is a point in the 𝐷-dimensional search space. Let 𝑀 de-
note the size of the swarm, the current state of each particle 𝑖 is
represented by its position vector 𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, ..𝑥𝑖𝑑.., 𝑥𝑖𝐷]
and the movement of particle 𝑖 is represented by velocity
vector 𝑉𝑖 = [𝑣𝑖1, 𝑣𝑖2, ..𝑣𝑖𝑑.., 𝑣𝑖𝐷], where 𝑖 = 1, 2, ...,𝑀
is positive integer indexing particle in the swarm. Using
𝑡 = 1, 2, ..., 𝑇 represents the iteration number, the velocity
𝑣𝑖𝑑(𝑡) and the position 𝑥𝑖𝑑(𝑡) can be updated as follows:

𝑣𝑖𝑑(𝑡+ 1) = 𝜔𝑣𝑖𝑑(𝑡) + 𝑐1𝑟1𝑖𝑑[𝑝𝑖𝑑(𝑡)− 𝑥𝑖𝑑(𝑡)]
+𝑐2𝑟2𝑖𝑑[𝑝𝑛𝑑(𝑡)− 𝑥𝑖𝑑(𝑡)]

(2)

𝑥𝑖𝑑(𝑡+ 1) = 𝑥𝑖𝑑(𝑡) + 𝑣𝑖𝑑(𝑡+ 1) (3)

where the inertia weight variable 𝜔 ∈ (0, 1) determines
how much the previous velocity can be preserved. A large
inertia weight value tends to global exploration and a small
value for local exploitation. Therefore, the inertia weight
𝜔 sometimes decreases linearly from 0.9 to 0.4 during the
operation [11]. 𝑐1 and 𝑐2 denote the acceleration constants
which are usually set 2.0 or adaptively controlled by the evo-
lutionary states [12] [13]. It is shown that sometimes assigning
different values to 𝑐1 and 𝑐2 may lead to better performance
[14]. 𝑟1𝑖𝑑 and 𝑟2𝑖𝑑 are random numbers generated between
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0 and 1 for the 𝑑th dimension of 𝑖th particle. 𝑃𝑖(𝑡) =
[𝑝𝑖1(𝑡), 𝑝𝑖2(𝑡), ..𝑝𝑖𝑑(𝑡).., 𝑝𝑖𝐷(𝑡)] represents the best previous
position of particle 𝑖 which is defined by 𝑝𝑏𝑒𝑠𝑡 from the pre-
vious 𝑡 iterations, 𝑃𝑛(𝑡) = [𝑝𝑛1(𝑡), 𝑝𝑛2(𝑡), ..𝑝𝑛𝑑(𝑡).., 𝑝𝑛𝐷(𝑡)]
represents the best position among particle 𝑖’s neighborhood
which is defined by 𝑔𝑏𝑒𝑠𝑡 (global best) or 𝑙𝑏𝑒𝑠𝑡 (local
best) from the previous 𝑡 iterations. The position vector
𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2, ..𝑥𝑖𝑑.., 𝑥𝑖𝐷] and the velocity vector 𝑉𝑖 =
[𝑣𝑖1, 𝑣𝑖2, ..𝑣𝑖𝑑.., 𝑣𝑖𝐷] are initialized randomly and are updated
by (2) and (3) generation by generation until some criterions
are met.

B. Some PSO Variants

Many PSO variants have been reported with enhanced
searching performance in literature since the PSO method was
first introduced by Kennedy and Eberhart. Adaption is one of
the research trend in PSO variants. In [16], a PSO version
called adaptive PSO (APSO) with adaptive 𝜔, 𝑐1 and 𝑐2 is
proposed where there are four evolutionary states, namely, “ex-
ploitation”, “exploration”,“convergence”, and “jumping out”.
In each evolutionary state, APSO gives one corresponding
equation to adjust the value of 𝑐1 and 𝑐2. Meanwhile, the
inertia weight 𝜔 is tuned using a sigmoid mapping. In [15],
an adaptive learning method called self learning PSO (SLPSO)
is proposed, which allows each particle to have a set of
four strategies implemented by adaptive learning framework
at the individual level to cope with different situations in
the search space. In [17], a population manager method for
PSO is proposed to dynamically adjust the number of particles
according to some heuristic conditions.

Increasing particle diversity is another trend for PSO algo-
rithm. Suganthan suggested a method adjusting the neighbor
model dynamically by utilizing the 𝑙𝑏𝑒𝑠𝑡 model to increase
the particle diversity [18]. In [19], Mendes et al. proposed a
fully informed PSO (FIPS) method to weight the influence
of each particle to its neighbors based on its fitness value
and the neighborhood size. In [5], repulsive, collision avoiding
forces were presented in order to increase particle diversity by
Blackwell. He also presented a method to split the population
of particles into a set of interacting swarms. These swarms
interact locally by an exclusion parameter and globally through
a new anti-convergence operator [3]. In [20], wavelet theory
was applied to enhance the PSO in exploring the search space
more effectively for a better solution. Chen and Li proposed
a method to improve the searching ability by combining PSO
with a controllable random exploration velocity [4]. Fitness-
distance-ratio PSO (FDR-PSO) algorithm updates each veloci-
ty by selecting another particle that has better fitness value and
is closer to the particle being updated [21]. In [2], a learning
algorithm called comprehensive learning PSO (CLPSO) was
proposed where a particle used different particles’ historical
best information to update its velocity.

Hybridization of PSO with other search techniques and
cooperative coevolving multi-swarm have also been applied to
improve the performance of PSO algorithm. Hybridization of
PSO with genetic algorithm (GA) theory was first introduced

by Angeline who put a selection operator into PSO to improve
the performance of original PSO [22]. A hybrid of GA and
PSO called HGAPSO was proposed by C.F.Juang [23], in
which individuals in new generations were created by the
combination of crossover and mutation operation with PSO.
Meanwhile, there are some cooperative coevolving multi-
swarm like cooperative PSO (CPSO-H𝑘) which uses several
subcomponent swarms to search each subcomponent separate-
ly and is combined with the original PSO to improve the
performance on multimodal problems [6]. In [24], the dynamic
multi-swarm PSO are combined with a sub-regional harmony
search (SHS) to enhance the performance of PSO algorithm.
In order to deal with the nonseparable optimization problems
by cooperative coevolving multi-swarm, the algorithms using
random grouping and adaptive weighting schemes were pre-
sented and analyzed in [7] and [8].

III. COOPERATIVE PARTICLE SWARM OPTIMIZER WITH

ELIMINATION MECHANISM

Although different kinds of adaption methods or increasing
particle diversity methods are presented, it is very difficult
to find the global optimum due to the large search space
on high dimensional multimodal problems and premature
convergence is still the main deficiency of PSO algorithm [25].
The cooperative coevolving method provides a very promising
solution of large search space by dividing the search space into
lower dimensional subspaces and has shown its effectiveness
on separable problems. For nonseparable problems, random
grouping and adaptive weighting schemes are presented to
improve the cooperative coevolving performance [7] and [8].
However, there are other parameters except interdependency
parameters contained in the random divided subspaces limit
the optimization of interdependency parameters. In order to
solve the nonseparable problems, we present a novel algorithm
called cooperative particle swarm optimizer with elimination
mechanism (CPSO-EM) which is based on a cooperative
algorithm shown in [6] and the elimination mechanism (EM)
memory is adopted to overcome the problem of interdepen-
dency. In this section, we first have a brief introduction of
the CPSO-H algorithm in [6], then based on the features of
CPSO-H algorithm, the EM memory is introduced to store
useful local optimal vectors from which useful elements can
be extracted.

A. CPSO-H Algorithm

Van den Bergh and Engelbrecht [6] presented two coop-
erative PSO algorithms: CPSO-S𝑘 and CPSO-H𝑘. CPSO-S𝑘

allows a vector to be split into 𝐾 components and there are
𝐾 swarms to search each component separately. CPSO-H𝑘 is
a hybrid method combining a standard PSO with the CPSO-
S𝑘 to overcome the problem of stagnation. In this paper, we
assume that each component contains only a single dimension,
therefore, a𝐷 dimensional vector is split into𝐷 swarms. Since
one dimensional swarm searches each dimension separately,
we name the CPSO-S𝑘 and CPSO-H𝑘 as CPSO-S and CPSO-
H, respectively.
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Fig. 1. CPSO-H’s convergence characteristics and solution vectors on Rotated
Schwefel’s function. The algorithm repeats three times.

Algorithm 1 shows the pseudocode of CPSO-H algorithm.
In order to evaluate the fitness of a particle in swarm 𝑆𝑑,
a context vector 𝑝𝑛 is required, which is the concatenation
of all global best particles from 𝐷 one-dimensional swarms.
The 𝑖th particle in the 𝑑th swarm is evaluated by using the
function 𝑏(𝑑, 𝑆𝑑.𝑥𝑖) (shown in Algorithm 1) which has a
𝐷 dimensional vector consisting of context vector 𝑝𝑛 with
its 𝑑th component replaced by 𝑆𝑑.𝑥𝑖. After one iteration
of one-dimensional swarms, the original PSO algorithm is
followed. First, the context vector expressed as 𝑏(1, 𝑆1.𝑝𝑛)
in Algorithm 1 is used to overwrite a randomly chosen
particle from 𝑄 swarm; then a new global best vector 𝑄.𝑝𝑛
is obtained with one iteration of the 𝑄 swarm. If the func-
tion value of 𝑄.𝑝𝑛 is better than that of context vector
𝑏(1, 𝑆1.𝑝𝑛), 𝑄.𝑝𝑛 will be used to overwrite the position of
context vector (shown as 𝑆𝑑.𝑝𝑛 in Algorithm 1). In prac-
tical problems, there are bounds on the variables’ ranges.
Assuming the search range for a problem is [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥]
where 𝑋𝑚𝑖𝑛 = [𝑥1𝑚𝑖𝑛, 𝑥2𝑚𝑖𝑛, ..𝑥𝑑𝑚𝑖𝑛.., 𝑥𝐷𝑚𝑖𝑛] and
𝑋𝑚𝑎𝑥 = [𝑥1𝑚𝑎𝑥, 𝑥2𝑚𝑎𝑥, ..𝑥𝑑𝑚𝑎𝑥.., 𝑥𝐷𝑚𝑎𝑥], the equation
𝑥𝑖𝑑 = 𝑚𝑖𝑛(𝑥𝑑𝑚𝑎𝑥,𝑚𝑎𝑥(𝑥𝑑𝑚𝑖𝑛, 𝑥𝑖𝑑)) is used to restrain a
particle on the border once it moves out of the search range
in Algorithm 1.

Since CPSO-H algorithm uses one dimensional swarm for
each dimension and interdependency elements of the solu-
tion vector can not be changed simultaneously, it is easier
to fall into local optimum. Therefore, the performance of
CPSO-H depends on numerical distribution when particles
𝑋 = [𝑥1, 𝑥2, ..𝑥𝑑.., 𝑥𝐷] are initialized by random values.
Among the particles, the one assigned as context vector almost
determines the performance of CPSO-H. However, it has
fast convergence speed because the search space is reduced
significantly and is very effective on separable problems and
it can still obtain global elements if the initialization of
particles fall into the local search zones where global elements

Algorithm 1: Pseudocode for the generic CPSO-H algorithm.

Create and initialize 𝐷 one-dimensional PSOs: 𝑆𝑑 𝑑 ∈ [1..𝐷]
Create and initialize an 𝐷-dimensional PSO: 𝑄
repeat:
for each swarm 𝑑 ∈ [1..𝐷] :
for each particle 𝑖 ∈ [1..𝑀 ] :
if 𝑓(b(𝑑, 𝑆𝑑.𝑥𝑖)) < 𝑓(b(𝑑, 𝑆𝑑.𝑝𝑖))
𝑆𝑑.𝑝𝑖 = 𝑆𝑑.𝑥𝑖

endif
if 𝑓(b(𝑑, 𝑆𝑑.𝑦𝑖)) < 𝑓(b(𝑑, 𝑆𝑑.𝑝𝑛))
𝑆𝑑.𝑝𝑛 = 𝑆𝑑.𝑝𝑖

endif
endfor
Perform velocity and position updates using equations (2) and (3) for

each particle in 𝑆𝑑

if 𝑆𝑑.𝑝𝑛 > 𝑥𝑑𝑚𝑎𝑥∣𝑆𝑑.𝑝𝑛 < 𝑥𝑑𝑚𝑖𝑛

𝑆𝑑.𝑝𝑛 = 𝑚𝑖𝑛(𝑥𝑑𝑚𝑎𝑥,𝑚𝑎𝑥(𝑥𝑑𝑚𝑖𝑛, 𝑆𝑑.𝑝𝑛))
endif

endfor
Select random 𝑘 ∼ 𝑈(1,𝑀/2)∣𝑄.𝑝𝑘 ∕= 𝑄.𝑝𝑛
𝑄.𝑥𝑘 = b(1, 𝑆1.𝑝𝑛)
for each particle 𝑖 ∈ [1..𝑀 ] :
if 𝑓(𝑄.𝑥𝑖) < 𝑓(𝑄.𝑝𝑖)
𝑄.𝑝𝑖 = 𝑄.𝑥𝑖

endif
if 𝑓(𝑄.𝑝𝑖) < 𝑓(𝑄.𝑝𝑛)
𝑄.𝑝𝑛 = 𝑄.𝑝𝑖

endif
endfor
Perform velocity and position updates using equations (2) and (3) for
each particle in 𝑄
if 𝑓(b(1, 𝑆1.𝑝𝑛)) < 𝑓(𝑄.𝑝𝑛)
for swarm 𝑑 ∈ [1..𝐷] :
𝑆𝑑.𝑝𝑛 = 𝑄.𝑝𝑛𝑑

if 𝑆𝑑.𝑝𝑛 > 𝑥𝑑𝑚𝑎𝑥∣𝑆𝑑.𝑝𝑛 < 𝑥𝑑𝑚𝑖𝑛

𝑆𝑑.𝑝𝑛 = 𝑚𝑖𝑛(𝑥𝑑𝑚𝑎𝑥,𝑚𝑎𝑥(𝑥𝑑𝑚𝑖𝑛, 𝑆𝑑.𝑝𝑛))
endif

endfor
endif
until stopping condition is met
The 𝑑th swarm is denoted as 𝑆𝑑, 𝑆𝑑.𝑥𝑖 denotes the cur-
rent position of the 𝑖th particle in the 𝑑th swarm, 𝑆𝑑.𝑝𝑛
and 𝑄.𝑝𝑛 represent the best position in 𝑑th swarm and 𝐷-
dimensional swarm, respectively. Similarly, 𝑆𝑑.𝑝𝑖 and 𝑄.𝑝𝑖 repre-
sent the best previous position of particle 𝑖 in 𝑑th swarm and 𝐷-
dimensional swarm, respectively. The function 𝑏(𝑑, 𝑧) returns a vec-
tor 𝑏(𝑑, 𝑧) ≡ (𝑆1.𝑝𝑛, 𝑆2.𝑝𝑛, ..., 𝑆𝑑−1.𝑝𝑛, 𝑧, 𝑆𝑑+1.𝑝𝑛, ...𝑆𝐷.𝑝𝑛)
and the context vector 𝑃𝑛 or 𝑏(1, 𝑆1.𝑝𝑛) is the concatenation of
𝑆1.𝑝𝑛, 𝑆2.𝑝𝑛, ...𝑆𝐷 .𝑝𝑛.

reside. To sum up, there are two advantages about CPSO-
H algorithm, fast convergence and obtaining global elements.
Here we take an example to illustrate. Fig.1 shows CPSO-H’s
convergence characteristics and corresponding search vectors,
which are repeated three times on the Rotated Schwefel’s
function. The Rotated Schwefel’s function is defined as 𝑓(6)
in Table I. The other parameters for CPSO-H are: 𝐷 = 30,
𝜔 decreases linearly from 0.9 to 0.5, 𝑐1 = 𝑐2 = 1.49. There
are 𝐷 = 30 swarms in total and each swarm contains 40
particles. The global optimal vector for Rotated Schwefel’s
function is 𝑋𝑜𝑝𝑡 = [420.96, 420.96, .., 420.96]. From Fig.1
we can see that there are three main features about CPSO-H
algorithm: first, the three fitness values have a great difference,
ranging from 3500 to 5000; second, the fitness values drop
very quickly at first 20 iterations but have not very significant
improvement after 20 iterations; third, the solution vectors are
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diverse, even the worst search in Fig.1 can still obtain some
elements on the 17th and 21th dimension which are closer to
the global optimal vector.

From Fig.1, we know that CPSO-H algorithm easily gets
trapped in local optimum when facing rotated functions which
are used to express the nonseparable problems since the
interdependency elements on the nonseparable problems can
not be changed simultaneously. These interdependency ele-
ments falling into different areas depend on different context
vectors which are initialized randomly at initialization stage.
Therefore, some of the worst search in Fig.1 still have some
elements which are closer to the global optimal vector. If the
solution vectors are fully utilized, the performance of CPSO-H
algorithm can be improved significantly.

B. Motivations for CPSO-EM Algorithm

From above analysis, we know that CPSO-H algorithm con-
verges fast but easily get trapped in local optimum. However,
the solution vectors appear diverse, even if the worst search
can still find some elements that are closer to the global opti-
mal elements. The other algorithms like [7] and [8] may also
obtain useful solution vectors but they converge very slowly,
therefore the computational cost is expensive. Since the CPSO-
H algorithm converges fast, the first 10 iterations of CPSO-H
algorithm is used in order to reduce the computational cost.
Moreover, each swarm contains only 10 particles instead of
40 to have a fast convergence and reduce the computational
cost further. Fig.2 shows ten times of CPSO-H algorithm in
10 iterations on Rotated Schwefel’s function with 𝐷 = 30.
It is obvious from Fig.2 that there always exist elements
that are closer to the global value 420.96. Imagining all the
elements that are closer to the global value 420.96 are chosen
as context vector, the performance of CPSO-H algorithm will
be improved significantly. This is the reason why we propose
the CPSO-EM algorithm where elimination mechanism (EM)
memory is introduced to find the best combination of solution
vectors by using store, selection and replacement processes.

C. CPSO-EM Algorithm

Since the solution vectors as shown in Fig.2 contain many
useful elements that are closer to global ones, EM memory is
created to store all these vectors from which useful elements
should be extracted. Assuming that there are 𝑁 solution vec-
tors stored in EM as shown in (4). The method for extracting
useful elements from EM is to use iterative algorithm called
CPSO-EM. We randomly select elements and form a vector,
then this vector is treated as a context vector for CPSO-H
algorithm to obtain a new vector 𝑋𝑛𝑒𝑤. If the fitness value
of 𝑋𝑛𝑒𝑤 is better than that of the worst vector stored in
EM, the worst vector should be replaced by 𝑋𝑛𝑒𝑤 since a
better vector is supposed to have more elements than global
ones. Here the vector obtained by randomly selection elements
can not be treated as the new vector to compare but as the
context vector for CPSO-H algorithm. The reason is due to
the fact that the test functions are usually very complex, even
if changing one element of the vector may increase the fitness
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Fig. 2. CPSO-H’s convergence characteristics and solution vectors on Rotated
Schwefel’s function in 10 iterations with 𝐷 = 30. The algorithm repeats ten
times.
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Fig. 3. CPSO-EM’s convergence characteristics and solution vector on
Rotated Schwefel’s function with 𝐷 = 30 and the size of EM equals 10.

value significantly. Imaging a vector contains many elements
that are global ones, the fitness value may still be bigger than
that of the worst vector on EM and therefore the context vector
should be optimized by CPSO-H to obtain new vector 𝑋𝑛𝑒𝑤.
The pseudocode of CPSO-EM is shown in Algorithm 2.

𝐸𝑀 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑥11 𝑥12 . . . 𝑥1𝐷 𝑓(𝑋1)
...

...
...

...
𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝐷 𝑓(𝑋𝑛)

...
...

...
...

𝑥𝑁1 𝑥𝑁2 . . . 𝑥𝑁𝐷 𝑓(𝑋𝑁 )

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

Since the CPSO-EM algorithm repeats CPSO-H algorithm
for EM initialization and extracting useful elements from
EM memory which contains all the calculations of FEs, the
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Algorithm 2: Pseudocode for the generic CPSO-EM algorithm.

Step 1. Initializing the elimination mechanism (EM) memory
for 𝑛 ∈ [1..𝑁 ] :
repeat Algorithm 1, the obtained solution vector 𝑋𝑛 is stored in EM

memory.
endfor

Step 2. Extracting useful elements from EM memory
repeat:
for each dimension 𝑑 ∈ [1..𝐷] :
choose any one value from EM memory
endfor

concatenate the values chosen from EM as context vector 𝑃𝑛

replace the context vector of Algorithm 1 as the new vector 𝑃𝑛, then
execute Algorithm 1 and obtain a new solution vector 𝑋𝑛𝑒𝑤 .

if the fitness value of 𝑋𝑛𝑒𝑤 is better than that of the worst in EM
replace the worst vector in EM with 𝑋𝑛𝑒𝑤 .

endif
until stopping condition is met

computational cost is mainly focused on CPSO-H algorithm
and therefore the number of FEs in each CPSO-H algorithm is
crucial for the performance of CPSO-EM. The number of FEs
implemented on CPSO-H should make the global elements
found. From Fig.2 we can see that the global elements can be
obtained in 10 iterations. We also tested the other functions
and found that operating 10 iterations for each CPSO-H is
sufficient due to the reduced search space, because there is
only one element optimized each time in CPSO-H. Another
parameter that affects the performance of CPSO-EM is EM
memory size. A smaller one is inclined to make the CPSO-EM
algorithm converge fast and a larger memory size is supposed
to make the CPSO-EM algorithm converge slowly but obtain
better results. Fig.3 shows the CPSO-EM’s convergence char-
acteristics and solution vector on Rotated Schwefel’s function
with 𝐷 = 30 and the size of EM equals 10. Compared with
Fig.2, we can see that the search performance is improved
significantly and there are more elements finding the global
ones.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

A. Test Functions

In order to test CPSO-EM’s performance in different envi-
ronment, we choose six rotated nonseparable functions tested
in 30 and 100 dimensions. The details of these functions
are given in Table I. The correlation elements among the
Rosenbrock function are in sequence and each element has
two correlation elements that are close to it. The correlation
elements of the other five rotated functions are created ran-
domly by an orthogonal matrix 𝑀 . The new rotated vector
𝑌 = 𝑀 ∗ 𝑋 , which is obtained through the original vector
𝑋 left multiplied by orthogonal matrix 𝑀 , performs like the
high correlation vector, because all elements in vector 𝑌 will
be affected once one element in vector 𝑋 changes.

B. Parameter Settings for the Involved PSO Algorithms

In the following part, we briefly describe three algorithms
taken from the literature to compare with CPSO-EM. The
configuration of these three algorithms is given in Table II.

TABLE II
PSO ALGORITHMS FOR COMPARISON

Algorithm Parameter Settings
FIPS [19] 𝜒 = 0.7298,

∑
𝑐𝑖 = 4.1

CPSO-H𝑘 [6] 𝜔 : 0.4 ∼ 0.9, 𝑐1 = 𝑐2 = 1.494, 𝑘 = 6
CLPSO [2] 𝜔 : 0.2 ∼ 0.9, 𝑃 𝑐𝑖 : 0.05 ∼ 0.5

𝑐1 = 𝑐2 = 1.494

The first FIPS uses all neighbor particles to influence the
flying velocity [19]. The second CPSO-H𝑘 uses 𝑘 subcom-
ponent swarms to search each subcomponent separately and
is combined with the original PSO to improve the performance
on multimodal problems [6]. The third CLPSO is proposed for
solving multimodal problems and its learning strategy is to use
all the other particles’ best historical information to update one
particle’s velocity [2].

For the above three algorithms, the initial population is set
40 in 30 and 100 dimensions. The maximal number of FEs is
used as the stop criteria which are set 200,000 and 500,000 for
30 and 100 dimensions, respectively. The parameter settings
for CPSO-EM are 𝜔 : 0.4 ∼ 0.9, 𝑐1 = 𝑐2 = 1.494, initial
population is 10 for each CPSO-H algorithm in order to reduce
the computational cost and the size of EM is set 10.

C. Results for the 30 Dimensional Problems

In order to fairly compare CPSO-EM with other 3 peer
algorithms, all algorithms are implemented and run 30 times
on the six test functions. Table III shows the means and
variances of the four algorithms on the six test functions
with dimensions 𝐷 = 30. The best results for test functions
are shown in bold. Fig.4 shows the median convergence
characteristics of the six test functions in 30 dimensions. From
Table III and Fig.4, we can see that CPSO-H𝑘 performs the
worst on nonseparable problems but converges very fast. FIPS
is a local version of PSO which is very suitable for solving
multimodal problems. It performs well on 𝑓2 but poorly on
𝑓3 and 𝑓4 and therefore the performance of FIPS is highly
dependent on different test functions. CLPSO works well on
all these six functions and obtains the best on 𝑓1 and 𝑓2
but converges slowly. The CPSO-EM outperforms the other
algorithms on the six functions except 𝑓1 and 𝑓2 where CLPSO
works well. Moreover, it is obvious from Fig.4 that CPSO-EM
can obtain the best values among the whole searching process.

D. Results for the 100 Dimensional Problems

The experiments implemented in 30 dimensional problems
are repeated in 100 dimensional problems. The experimental
results and the convergence characteristics are shown in Table
IV and Fig.5, respectively. From Table IV we can see that
FIPS may not be suitable for large dimensional problems.
the performance is deteriorated a lot compared with that of
30 dimensional problems for reference. The performance of
CPSO-H𝑘 and CLPSO in 100 dimensional problems are very
similar to that in 30 dimensional problems and CPSO-EM
still surpasses the others on functions 𝑓3 to 𝑓6. Moreover,
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TABLE I
TEST FUNCTIONS, WHERE 𝑓𝑚𝑖𝑛 IS THE MINIMUM VALUE

Name Test Function Search Range 𝑓𝑚𝑖𝑛

Rosenbrock 𝑓1(𝑥) =
∑𝐷−1

𝑖=1
100(𝑥𝑖+1 − 𝑥2

𝑖 )
2 + (𝑥𝑖 − 1)2 [−2.048, 2.048]𝐷 0

Rotated Ackley 𝑓2(𝑥) = −20𝑒𝑥𝑝

(
−0.2

√
1

𝐷

∑𝐷
𝑖=1

𝑦2𝑖

)
− 𝑒𝑥𝑝

(
1

𝐷

∑𝐷
𝑖=1

𝑐𝑜𝑠(2𝜋𝑦𝑖)
)
+ 20 + 𝑒 [−32.768, 32.768]𝐷 0

Where: 𝑌 = 𝑀 ∗𝑋 , 𝑀 is an orthogonal matrix
Rotated Rastrigin 𝑓3(𝑥) =

∑𝐷
𝑖=1

𝑦2𝑖 − 10𝑐𝑜𝑠(2𝜋𝑦𝑖) + 10 [−5.12, 5.12]𝐷 0
Where: 𝑌 = 𝑀 ∗𝑋 , 𝑀 is an orthogonal matrix

Rotated 𝑓4(𝑥) =
∑𝐷

𝑖=1
(𝑧2𝑖 − 10𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10) [−5.12, 5.12]𝐷 0

Noncontinuous Rastrigin Where: 𝑧𝑖 is expressed as:

𝑧𝑖 =

⎧⎨
⎩

𝑦𝑖 ∣𝑦𝑖∣ <
1

2
𝑟𝑜𝑢𝑛𝑑(2𝑦𝑖)

2
∣𝑦𝑖∣ >=

1

2

𝑓𝑜𝑟 𝑖 = 1, 2, ..., 𝐷.

𝑌 = 𝑀 ∗𝑋 , 𝑀 is an orthogonal matrix

Rotated Weierstrass 𝑓5(𝑥) =
∑𝐷

𝑖=1

(∑𝑘𝑚𝑎𝑥
𝑘=0

[𝑎𝑘𝑐𝑜𝑠(2𝜋𝑏𝑘(𝑦𝑖 + 0.5))]
)
−𝐷

∑𝑘𝑚𝑎𝑥
𝑘=0

[𝑎𝑘𝑐𝑜𝑠(𝜋𝑏𝑘)] [−0.5, 0.5]𝐷 0

Where: 𝑌 = 𝑀 ∗𝑋, 𝑎 = 0.5, 𝑏 = 3, 𝑘𝑚𝑎𝑥 = 20, 𝑀 is an orthogonal matrix
Rotated Schwefel 𝑓6(𝑥) = 418.9829×𝐷 −

∑𝐷
𝑖=1

𝑧𝑖 [−500, 500]𝐷 0
Where: 𝑧𝑖 is expressed as:

𝑧𝑖 =

{
𝑦𝑖𝑠𝑖𝑛

(
∣𝑦𝑖∣

1

2

)
𝑖𝑓 ∣𝑦𝑖∣ <= 500

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑓𝑜𝑟 𝑖 = 1, 2, ..., 𝐷.

𝑦 = 𝑦′ + 420.96, 𝑌 ′ = 𝑀 ∗ (𝑋 − 420.96). 𝑀 is an orthogonal matrix

TABLE III
RESULTS FOR THE 30 DIMENSIONAL PROBLEMS

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 FIPS CPSO-H𝑘 CLPSO CPSO-EM
𝑓1 2.43𝑒+001± 7.16+000 2.17𝑒+001± 8.13𝑒+000 1.71𝒆+001 ± 1.69𝒆+001 1.83𝑒+001± 1.06𝑒+001
𝑓2 2.98𝑒−004± 2.56𝑒−004 1.62𝑒+000± 1.76+000 2.42𝒆−005 ± 3.19−005 1.73𝑒−002± 1.03−002
𝑓3 1.12𝑒+002± 3.02𝑒+001 8.35𝑒+001± 6.71𝑒+001 3.42𝑒+001± 6.19𝑒+000 2.81𝒆+001 ± 1.11𝒆+001
𝑓4 1.26𝑒+002± 4.25𝑒+001 7.36𝑒+001± 3.56𝑒+001 3.82𝑒+001± 1.05𝑒+001 2.64𝒆+001 ± 9.21𝒆+000
𝑓5 2.03𝑒+001± 5.49+000 1.12𝑒+001± 5.81+000 4.26𝑒+000± 1.46+000 3.25𝒆+000 ± 2.25𝒆+000
𝑓6 2.89𝑒+003± 1.39+003 3.73𝑒+003± 1.73+003 2.24𝑒+003± 7.93+002 1.45𝒆+003 ± 8.23+002

TABLE IV
RESULTS FOR THE 100 DIMENSIONAL PROBLEMS

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 FIPS CPSO-H𝑘 CLPSO CPSO-EM
𝑓1 9.78𝑒+001± 2.31𝑒+001 1.22𝑒+002± 3.81𝑒+001 9.15𝒆+001 ± 4.72𝒆+000 9.32𝑒+001± 1.17𝑒+001
𝑓2 5.58𝑒−002± 2.12𝑒−002 2.14𝑒+000± 1.86+000 4.43𝒆−005 ± 2.16−005 2.15𝑒−002± 1.77−002
𝑓3 8.77𝑒+002± 1.82𝑒+002 3.26𝑒+002± 1.32𝑒+002 2.13𝑒+002± 7.26𝑒+001 1.62𝒆+002 ± 4.21𝒆+001
𝑓4 8.12𝑒+002± 1.57𝑒+002 2.63𝑒+002± 6.53𝑒+001 2.26𝑒+002± 3.35𝑒+001 1.39𝒆+002 ± 2.19𝒆+001
𝑓5 1.32𝑒+002± 2.13+001 3.83𝑒+001± 7.22+000 3.36𝑒+001± 4.10+000 1.02𝒆+001 ± 3.16𝒆+000
𝑓6 2.62𝑒+004± 7.18+003 1.26𝑒+004± 5.03+003 1.06𝑒+004± 3.16+003 5.86𝒆+003 ± 3.17+003

with increased dimensions, the CPSO-EM has more prominent
advantages in terms of convergence speed and the best fitness
value.

V. CONCLUSION

This paper presents a novel algorithm CPSO-EM where
the CPSO-H algorithm and EM memory are incorporated
together. In order to fully utilize the two advantages of CPSO-
H: fast convergence and obtaining global elements of solution
vector, EM memory is introduced from which the useful
elements are extracted. The CPSO-EM reduces the search
space by adopting the CPSO-H algorithm, this advantage is
more prominent with higher dimensions. Meanwhile, since
EM memory increases the diversity of particles, CPSO-EM

can break out of local optimum and therefore it is very suitable
for solving nonseparable problems. From comparisons of the
four algorithms on six nonseparable test functions, CPSO-
EM has shown the strong ability in solving nonseparable
multimodal problems especially with higher dimensions.
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