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Abstract—Maintaining population diversity is a crucial 
issue for the performance of dynamic multiobjective 
optimization algorithms. However traditional dynamic 
multiobjective evolutionary algorithms usually imitate the 
biological evolution of their own, maintain population diversity 
through different strategies and make the population be able to 
track the Pareto optimal solution set after the change 
efficiently. Nevertheless, these algorithms neglect the role of 
dynamic environment in evolution, lead to the lacking of active 
and instructional search. In this paper, a population diversity 
maintaining strategy based on dynamic environment 
evolutionary model is proposed (DEE-PDMS). This strategy 
builds a dynamic environment evolutionary model when a 
change is detected, which makes use of the dynamic 
environment to record the different knowledge and 
information generated by population before and after 
environmental change, and in turn the knowledge and 
information guide the search in new environment. The model 
enhances population diversity by guided fashion, makes the 
simultaneous evolution of the environment and population. A 
comparison study with other two state-of-the-art strategies on 
five test problems with linear or nonlinear correlation between 
design variables has shown the effectiveness of the DEE-PDMS 
for dealing with dynamic environments. 

I. INTRODUCTION 
Many real-world problems are dynamic multiobjective 

optimization problems (DMOPs), with not only the conflict 
among multiple objectives but also the objective, constraint 
and related parameters may change over time [1]. How to 
track the Pareto optimal solution set after the change is an 
important and challenging issue. On these issues, the 
researched objective is changing intricately. The goal of 
traditional evolutionary algorithm is to make the population 
gradually converge to get a satisfactory solution set 
ultimately, but this would make the population lose 
diversity, especially in the later stages of the evolution, 
population will gradually lose ability to adapt to 
environmental changes, which are the challenges of 
traditional evolutionary algorithm in a dynamic environment 
[2]. In order to track the optimal solution in a timely manner 

after changes, researchers need to make some adjustments 
on the traditional static multiobjective algorithm [3], [4], so 
that it can quickly respond to environmental changes. 

In recent years, researchers have designed many new 
ways on the basis of static algorithms to solve DMOPs [5]-
[18], such as random initialization, hyper mutation, dynamic 
migration, memory and prediction et al. Those strategies 
have been proved by several researchers to be some 
effective methods to solve DMOPs. However, there are 
many defects in these methods along with the development 
of DMOPs, which mainly reflected in the following 
respects. Firstly, random initialization, hyper mutation, 
dynamic migration et al. strategies are all a blind way to 
enhance population diversity without a right guidance, the 
performance of convergence are unsatisfactory when 
dealing with more complex DMOPs. Secondly memory 
strategy reuses the optimal solutions which are previously 
searched by the memory to rapidly response to changes in 
the new environment. This strategy can achieve good results 
for periodic problems, but for non-periodic problems or in 
the first cycle of changing environment, population is still in 
the process of blind evolution, and algorithm is difficult to 
obtain a good convergence. Lastly, methods that based on 
prediction generate a new optimal solution set by the 
prediction model for the evolution of population, and help 
algorithm to respond quickly to new changes. So far, the 
accuracy of prediction is the main difficulty, how to design 
a more accurate prediction model is still the focus of the 
present research. 

To solve these problems, on the premise of less history 
information and utilizing the characteristics of the 
evolutionary environment itself, this paper proposes a novel 
population diversity maintaining strategy based on dynamic 
environment evolutionary model, referred to DEE-PDMS, 
which enhances population diversity by guided fashion, 
makes the population can respond quickly to the different 
degrees of environmental changes. Current dynamic 
multiobjective optimization algorithms did not consider the 
role of dynamic environment for the evolutionary 
population. Actually, the affect of environment on the 
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evolutionary individuals is very important and individuals 
must survive and evolve in a specific environment. It is 
because of the wonderful interaction between the nature 
environment and the biology that makes biomass have such 
a present perfect structure. Therefore, how to research from 
the perspective of the dynamic environment, use the 
dynamic environmental knowledge to guide the evolution of 
population in the new environment and accelerate 
convergence of population is the research focus in this 
paper. 

The rest of the paper is organized as follows. Section II 
provides definitions that are required for the rest of the 
paper. Section III describes the dynamic environment 
evolutionary model. Section IV describes the 
implementation of the evolutionary model. Section V gives 
the detailed description of DEE-PDMS. Section VI 
introduces the test problems and evaluation metric. Section 
VII gives experimental results and analysis. Section VIII 
outlines the conclusions and future work. 

II. BACKGROUND 
A minimization problem is considered here without loss 

of generality. The dynamic multiobjective optimization 
problem [1] can be described as: 

( ) ( ) ( ) ( )( )
( ) ( )

1 2min , , , , ,..., ,

. . , 0 1, 2,..., ; , 0 1,2,...

T
mx

i j

F x t f x t f x t f x t

s t g x t i p h x t j q
∈Ω

⎧ =⎪
⎨

≤ = = =⎪⎩
 

where t is the time variable, ( )1 2, ,..., nx x x x= is the n-
dimensional decision variables bounded by the decision 
space  Ω , ( )1 2, ,..., mF f f f= presents the set of m 
objectives to be minimized, the functions of 

0ig ≤ 1,2,...,i p=  and 0jh =  1, 2,...,j q= present the set 
of inequality and equality constraints. 

Definition 1: Pareto Dominance: p and q are any two 
individuals in the population, p is said to dominate q, 
denoted by ( ) ( )f p f q≺  iff ( ) ( )i if p f q≤  { }1,2,...,i m∀ =  
and ( ) ( )j jf p f q< { }1,2,...,j m∃ ∈ . 

Definition 2: Pareto Optimal Set (PS). x is the decision 
variable, Ω  is the decision space, F is the objective 
function, thus the PS [3] is the set of all nondominated 
solutions and is defined mathematically as: 

{ }PS : | * , ( *) ( )x x F x F x= ∈ Ω ∈ Ω ≺  
Definition 3: Pareto Optimal Front (PF). x is the 

decision variable, F is the objective function, thus the PF [3] 
is the set of nondominated solutions with respect to the 
objective space and is defined mathematically as: 

{ }PF : ( ) | PSy F x x= = ∈  

III. DYNAMIC ENVIRONMENT EVOLUTIONARY MODEL 
Environment is relative to the case of something, refers to 

the all external matters which have an affect on a certain 
matter. In ecology, environment refers to external matters 
such as the surrounding ecosystem which have affect on 
biological communities. In our dynamic environment 
evolutionary model, the environment refers to a group of 

entities which can guide and promote the evolution of 
population. Especially after environmental changes, it can 
guide the evolution and convergence of population in the 
new environment. 

Evolutionary population must survive and evolve in a 
specific environment. Environment plays constraint, 
facilitating and guiding roles for the evolution of population, 
and these three environmental roles are completely 
different. Constraint is mainly used to ensure the legitimacy 
of individuals, facilitating is mainly used to enhance the 
efficiency of the evolution, guiding is mainly used to 
improve the distribution of evolutionary population. At the 
same time, the evolutionary population is counteractive to 
the evolutionary environment, which is mainly shown in the 
impact on the attributes of evolutionary environment, such 
as the changes of the current evolutionary state, the update 
of environmental knowledge, etc. 

In dynamic environment, how to maintain the population 
diversity after environmental changes is the key to solve the 
DMOPs, and when a change is detected, environmental 
information and environmental knowledge will also make a 
difference. How to make full use of the information to help 
population adapt to the new environment and enhance 
population diversity by guided fashion plays an important 
role for solving DMOPs. 

Figure 1 shows a general framework of dynamic 
environment evolutionary model. The evolutionary model 
consists of two different kinds of environment before and 
after environmental changes and the evolutionary 
population in dynamic environment. Environmental 
elements include environmental knowledge, environmental 
evaluation and environmental regulation in new 
environment. Among them, the environmental knowledge 
can be divided into static knowledge and dynamic 
knowledge. Static knowledge is the preset environmental 
attributes which maintain constant values in the process of 
environmental change, such as environmental capacity, 
dimensions, etc. Dynamic knowledge is the environmental 
attributes which affected by population in the process of 
environmental change, such as the size of environment 
domain, direction of environmental change, new generated 
individuals for guiding evolution. 

Environmental evaluation mechanism evaluates the living 
conditions of population or individuals according to 
environmental knowledge, such as individual location in the 
environment, the entire population distribution. 

Dynamic environment
The environment before change The environment after change

Environmental knowledge

Environmental 
evaluation

Static  knowledge

Dynamic  knowledge

Environmental knowledge

Environmental 
evaluation

Static  knowledge

Dynamic  knowledge

Environmental 
regulation

Population

Feedback Facilitate and Guidance

Exchange information

 
Fig. 1. A general framework of dynamic environment evolutionary model 
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Environmental evaluation is to prepare for guiding 
evolution. Environmental regulation in new environment 
means that individuals need to make the corresponding 
change in order to adapt to the new environment. Dynamic 
environment exchanges information between two different 
kinds of environment before and after change to facilitate 
and guide the evolution of population. In turn, population 
will send the feedback information which generated in 
process of evolution to environment, update the 
environmental knowledge and achieve co-evolution. 

IV. IMPLEMENTATION OF THE EVOLUTIONARY MODEL 
Each individual in dynamic environment has a living 

space. Here we use a mechanism which is similar to the 
grid—environment domain to store the individuals in 
dynamic environment. Environment domain consists of 
many same grids which called the unit domain. The 
dimension of environment domain and unit domain is the 
same as objective dimension. The position of individual in 
the environment domain will also be changed accordingly 
when the environment changed. Therefore, in dynamic 
environment, the range of environment domain and the size 
of unit domain are codetermined by the different 
distribution of the population before and after environmental 
change. Bottom and top boundaries of each dimension in 
environment domain are calculated as follows: 

        
min( ) (max( ) min( )) / (2 )
max( ) (max( ) min( )) / (2 )

i i i i

i i i i

lb P P P num
ub P P P num

= − − ×
= + − ×

        (1) 

where num is the number of unit domain on each dimension 
in the objective space, the higher the objective dimension, 
the smaller the value of num. For example, num can be set 
40 for two objectives and can be set 10 for three objectives. 
min(Pi) and max(Pi) denote the i-dimensional objective 
minimum and maximum of population P in the two different 
kinds of environments before and after change, namely 
min(P.oldFi, P.newFi) and max(P.oldFi, P.newFi). As 
shown in figure 2, the size of unit domain on the i-
dimensional objective is _ ( ) /i i iarea size ub lb num= − . 

In dynamic environment, each individual maybe belongs 
to two different unit domains before and after environmental 
change. Therefore, we denote indiv.old_area as the unit 
domain which individual indiv belongs to before 
environmental change, indiv.new_area as the unit domain 
which individual indiv belongs to after environmental 
change. According to the boundary of environment domain 
and the size of unit domain, the two different unit domain 
positions (domain coordinates) of each individual can be 
determined. The domain coordinates of indiv.old_area and 
indiv.new_area on the i-dimensional objective can be 
calculated as formula (2). 

. _ ( . ) / _

. _ ( . ) / _
i i i i

i i i i

indiv old area indiv oldF lb area size

indiv new area indiv newF lb area size

= −⎢ ⎥⎣ ⎦
= −⎢ ⎥⎣ ⎦

   (2) 

 
Fig. 2. The environment domain set on i-dimensional objective 

where indiv.oldFi and indiv.newFi are respectively the i-
dimensional objective values before and after environmental 
change. 

The environment domain and unit domain have been set, 
and then the various elements of composing dynamic 
environment and its implementation are introduced. 

A.  Environmental Knowledge 
Environmental knowledge is an important part of the 

environment, which records the information in the current 
dynamic environment. In our approach, environmental 
knowledge is divided into two types: the environment 
domain knowledge and unit domain knowledge. Among 
them, the environment domain knowledge is divided into 
static and dynamic environment domain knowledge. Static 
environment domain knowledge includes environmental 
capacity, the number of unit domains on each dimension 
and other preset environmental attributes. Dynamic 
environment domain knowledge includes the bottom 
boundary and top boundary of environment domain on each 
dimension, the size of unit domain, the direction of 
environmental change, the new generated individuals for 
guiding the evolution, and other environmental attributes 
which are affected by population. Here, the new individuals 
are a series of reinitialized individuals to help population 
adapt to the new environment after environmental change 
and accelerate the convergence of population and 
individuals, which will be described in detail in Section B. 

Unit domain knowledge is dynamic knowledge, which 
includes the number of individuals in each unit domain, 
representative individual and so on. The representative 
individual is the optimal individual in a unit domain. Here 
we set the individual with nearest Euclidean distance to the 
origin of unit domain as representative individual. The 
origin of unit domain is the minimum on each dimension. 

B. Environmental Evaluation 
In dynamic environment evolution model, the evaluation 

mechanism not only needs to evaluate the fitness of the 
population, but also needs to evaluate the living conditions 
of population and individuals according to environmental 
knowledge, and to prepare for guiding evolution. Evaluation 
mechanism is divided into two types: evaluation for 
individual and evaluation for population. 

Evaluation for individual refers to calculate two different 
unit domain coordinates for each individual after 
environmental change according to the formula (2), and give 
the environment feedback to construct a new dynamic 
environment. 

Evaluation for population refers to evaluate the 
distribution of population in the new environment according 
to the environmental knowledge, and then generate a new 
series of guide-individuals to prepare for guiding evolution. 
The new guide-individuals are defined as: 

1 1

1 1

( )Gaussian , 0

( )Gaussian , 0

t t t t t t
k k k k k k

t t t t t t
k k k k k k

init x C C if C C

init x C C if C C

− −

− −

= + − − >

= − − − <
   (3) 

where t
kx is the individual at time t, k = 1,2,…,n, n is the 

dimensions of the decision space. Gaussian is a random 

276



number generated from a standard normal distribution 
(mean = 0, variance = 1)，which has been testified in [19] 
to be a good strategy to enhance the ability of elaborate 
search. t

kC is the center of nondominated solutions obtained 
at time t, which can be defined as formula (4): 

dominancedominance

1
t t
k N

t t
k kt

x PN

C x
P

−∈−

= ∑                 (4) 

where dominance
t

NP − is the size of nondominated solutions. 
Similarly, the domain coordinates of new guide-

individuals are also calculated. 
In this way, we use the possible correlation between 

environmental changes to produce a series of guide-
individuals. These individuals will be served as the 
alternative individuals in the process of environmental 
facilitating and guiding, try to help the population to adapt to 
the new environment, accelerate convergence of population 
to the new PF. 

C. Environmental Regulation 
In dynamic environment, different problems have 

different regulations. The location and distribution of 
population in the new environment domain may not be 
suitable for its evolution and convergence. Therefore, 
population needs to make the corresponding change in order 
to adapt to the new environment. 

As shown in Figure 3, like people's psychological 
reactions in real life, some individuals want to return to the 
past environment and continue to survive and evolve, 
consider that the environment before change is more 
conducive for evolution. While some individuals do not 
want to return to the past environment, at the same time they 
are also confused about where they should go. There is also 
a part of individuals did not want to make any change, they 
consider that the current environment is an ideal 
evolutionary environment. 

Therefore, we need to divide the current population into 
three subpopulations according to the different behavioral 
characteristics of each individual when the environment 
changed. Meanwhile, in order to maintain the distribution of 
subpopulations and avoid crowding of the solution set, the 
three subpopulations need to be more evenly divided. The 
division strategies of subpopulations are as follows 
(illustrated by the example of two objectives): 

Current population

Subpopulation1 Subpopulation2 Subpopulation3

Want to go back Without change Don't want to go 
back

 
Fig. 3. The division of population 

The sizes of three subpopulations are respectively set to 
30, 40 and 30 (three objectives: 60, 80 and 60). 

For the subpopulation2 which is without any change: we 
gather directly 40 nondominated individuals whose 

crowding-distance [24] is the largest from the original 
population to subpopulation2. 

For the subpulation1 which want to go back and the 
subpopulation3 which do not want to go back: Algorithm 1 
gives a detailed procedure of this strategy. 

Algorithm 1 SubpopulationDivision 
Require: ND (population without division), q (picked individual) 
1:   for all q ∈ ND do 
2:          p := q->next 
3:          for p != null do 
4:                flag := false 

  5:                if p is domain-adjacent with q then 
  6:                      for all k ∈ ND\p do 
  7:                             if k.new_area = p.new_area then 
  8:                                 swap (p, q->next) 
  9:                                 flag := true 
10:                                 break 
11:                             end if 
12:                      end for 
13:                      if flag = false then 
14:                          p := p->next 
15:                      end if 
16:                else 
17:                      swap (p, q->next) 
18:                      break 
19:                end if 
20:          end for 
21:   end for 
Select the top 30 individuals in ND as subpopulation1, the rest of 30 
individuals as subpopulation3. 

where the domain-adjacent is defined as follows: 
Definition 4. U and V are any two individuals in the 

environment domain, U is domain-adjacent with V, iff 
. _ . _ _ ( )i iU new area V new area min diff i− <= . min_diff(i) is 

the minimum difference on each dimension between any 
two unit domain coordinates. The unit domain here refers to 
the unit domain where there is individual existence. 

Figure 4 is an example about division of the 
subpopulations. Select the first individual A, and then select 
the second individual to compare with A, the second 
individual is assumed to be B. Since B is domain-adjacent 
with A, and its unit domain does not include multiple 
individuals, therefore, B is discarded. Next select the 
individual C, C is not domain-adjacent with A, so the C will 
be divided into the same subpopulation with A and serves as 
the next compared individual. Similarly, E is not domain-
adjacent with C and is divided into the same subpopulation. 
Despite F is domain-adjacent with E, its unit domain 
includes another individual G, so F will be divided into the 
same subpopulation with A, C and E. Thus division end, A, 
C, E, F are divided into the same subpopulation, B, D, G, H 
are divided into another subpopulation. 

A

B

C D

E

F G

H
 

Fig. 4. An example about division of the subpopulations 
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It is worth noting that the environmental regulation in this 
paper is clearly different with the random division of 
subpopulations such as charged PSO [20]. The 
environmental regulation considers the use of different 
subpopulations to adapt to different environmental changes, 
at the same time, takes into account the distribution of the 
solution set, digs and utilizes the environmental knowledge 
to guide the evolution. 

D. Environmental Facilitating and Guiding 
Dynamic environmental facilitating and guiding refer to 

guide the different subpopulations to evolve toward their 
desired environments according to the new environmental 
knowledge and regulation, so that to enhance population 
diversity by guided fashion. In environmental facilitating 
and guiding, we design the recombination operator as 
follows: 

Let 1 2( , ,..., )nU u u u= and 1 2( , ,..., )nV v v v=  represent the 
parent individuals for recombination, n is the dimension of 
decision space, then the offspring is defined 
as 1 2( , ,..., )nW w w w= , ( )i i i iw a u v v= − + . Where a is a 
random number between 0.8 and 1. It is not hard to find 
that, wi located between ui and vi, and closer to ui. Because 
most of the multiobjective optimization problems meet the 
connectivity [21], that is to say, the solutions that are 
distributed like neighborhood in the decision will be also 
distributed like neighborhood when mapped to the objective 
space. Therefore, the new generated individual is more 
likely located in the area that between U and V and more 
close to U. 

In addition, for the different subpopulations, the strategy 
to select the parent individuals to be recombined would be 
different: 

For the individual sub1_indiv that want to go back in 
subpopulation1, firstly, we need to calculate which unit 
domain coordinates of guide-individuals are located 
between sub1_indiv.old_areai and sub1_indiv.new_areai, 
and then select the individual that leaves closest to 
sub1_indiv.old_areai. If multiple individuals are in the same 
unit domain, select the representative individual in the unit 
domain. 

For the individual sub2_indiv that did not want to make 
any change in subpopulation2, need not any recombination 
operation. 

For the individual sub3_indiv that don’t want to go back 
in subpopulation3: if sub3_indiv.old_areai > sub3_ 
indiv.new_areai, we need to calculate which unit domain 
coordinates of guide-individuals are greater than 
sub3_indiv.old_areai, and then select the individual that 
leaves farthest to sub3_indiv.old_areai. if sub3_ 
indiv.old_areai < sub3_indiv.new_areai, we need to calculate 
which unit domain coordinates of guide-individuals are less 
than sub3_indiv.old_areai, and then select the individual that 
leaves farthest to sub3_indiv.old_areai. Similarly, if multiple 
individuals are in the same unit domain, select the 
representative individual in the unit domain. 

Figure 5 is an example about recombination strategy. For 
individual A, the selected another parent individual for 
recombination is A*. 

 
(a)    Subpopulation1 

 
(b)    Subpopulation3 and A.old_areai > A.new_areai 

 
(c)    Subpopulation3 and A.old_areai < A.new_areai 

Fig. 5. Example about different recombination 

V. DETAILED DESCRIPTION OF DEE-PDMS 
DEE-PDMS iterates under the general framework of 

DMOEA, the purpose is to obtain new initial population 
after each environmental change, so that the new population 
can quickly respond to changes in the environment. The 
DEE-PDMS is described in detail as Algorithm 2. 

Algorithm 2 DEE-PDMS 
Input: Pop, current population; gmax, total number of generation; tτ , 

frequency of change; tn , severity of change; DMOPs. 
Output: Pt, updated population. 
Initialization set t := 0; initialize a population p0; set iteration counter gt 

:= 0. 
1:  Detect changes in the environment, if environment has not changed, 

turn to step 6; else construct the dynamic environment according to 
formula (2). 

2:   Environmental evaluation, generate guide-individuals. 
3:   SubpopulationDivision for current population. 
4:   Recombine. 
5:   Set 1 2 3t sub sub subP P P P= ∪ ∪ . 
6:  Optimize population with optimize algorithm, this paper chooses 

RM-MEDA [23] as the MOEA optimizer. 
7:   If gt > gmax, output Pt and stop; else, set gt := gt+1, return to step 1.
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VI. TEST INSTANCES AND PERFORMANCE METRICS 

A. Test Instances 
In this paper, five benchmark functions were selected of 

various DMOOP types [1] to compare the performance. 

These functions include DMOP1-DMOP3 [12] three 
functions with linear correlation between the decision 
variables and F6, F7 [15] two functions with nonlinear 
correlation between the decision variables. Table 1 lists all 
the five benchmark functions and their PF and PS in details. 

TABLE I.  TEST PROBLEMS OF DMOP, F6 AND F7 

Problems Search Space Objectives, PF, PS Remarks 

DMOP1 1[0,1] [ 1,1]n−× −
 

1 1 2
( )

2 1

2

1
( )

1 2 1

( ) , ( )

( ) 1 9 , ( ) 1

( ) 1.25 0.75sin(0.5 ), / /
( ) : 0 1, 0, 2, ,

( ) : 0 1, 1

H tn

i
i

T T

i
H t

f x x f x g h

fg x x h x
g

H t t t n
PS t x x i n

PF t f f f

π τ τ
=

= = ⋅

⎛ ⎞= + = − ⎜ ⎟
⎝ ⎠

= + = ⎢ ⎥⎣ ⎦
≤ ≤ = =

≤ ≤ = −

∑

…
 

two objectives 
PF changes 
PS is fixd 

DMOP2 1[0,1] [ 1,1]n−× −  1 1 2
( )

2 1

2

1
( )

1 2 1

( ) , ( )

( ) 1 ( ( )) , ( ) 1

( ) sin(0.5 ), ( ) 1.25 0.75sin(0.5 ), / /
( ) : 0 1, ( ), 2, ,

( ) : 0 1, 1

H tn

i
i

T T

i
H t

f x x f x g h

fg x x G t h x
g

G t t H t t t n
PS t x x G t i n

PF t f f f

π π τ τ
=

= = ⋅

⎛ ⎞= + − = − ⎜ ⎟
⎝ ⎠

= = + = ⎢ ⎥⎣ ⎦
≤ ≤ = =

≤ ≤ = −

∑

…
 

two objectives 
PF changes 
PS changes 

DMOP3 1[0,1] [ 1,1]n−× −  1 2

\
2 1

1

1

1 2 1

( ) , ( \ )

( ) 1 ( ( )) , ( ) 1

( ) sin(0.5 ), (1, 2, , ), / /
( ) : 0 1, ( ), 2, ,

( ) : 0 1, 1

r

r r r

x x

i
i

T T

i

f x x f x x g h

fg x x G t h x
g

G t t r n t n
PS t x x G t i n

PF t f f f

π τ τ
=

= = ⋅

= + − = −

= = = ⎢ ⎥⎣ ⎦
≤ ≤ = =

≤ ≤ = −

∑
∪ …

…
 

two objectives 
PF is fixed 
PS changes 

F6 [0,5]n  

{ } { }

1

2

( ) 2
1 1

( ) 2
2 1

( )
1

1 2

( )

( ) 1

1 , ( ) 1.25 0.75sin( )
2cos(1.5 )sin(0.5 ) 2, 2cos(1.5 )cos(0.5 ) 2

/ /

|1 , , |1 ,

( ) :

H t
ii I

H t
ii I

iH t
n

i i

T T

f x x a y

f x x a y

y x b x a H t t
a t t b t t
t n

I i i n i is odd I i i n i is even

PS t a x

π
π π π π

τ τ

∈

∈

+

= − +

= − − +

= − − + − = +
= + = +
= ⎢ ⎥⎣ ⎦
= ≤ ≤ = ≤ ≤

≤

∑
∑

( )

( )
1 1

( )( )
1 2

1, 1 , 2, ,

( ) : , 1 ,0 1

iH t
n

i

H tH t

a x b x a i n

PF t f s f s s

+≤ + = + − − =

= = − ≤ ≤

…

 

two objectives 
PF changes 
PS changes 

F7 [0,5]n  

{ } { }

1

2

( ) 2
1 1

( ) 2
2 1

( )
1

1 2

( )

( ) 1

1 , ( ) 1.25 0.75sin( )
1.7(1 sin( )) sin( ) 3.4, 1.4(1 sin( ))cos( ) 2.1

/ /

|1 , , |1 ,

( )

H t
ii I

H t
ii I

iH t
n

i i

T T

f x x a y

f x x a y

y x b x a H t t
a t t b t t
t n

I i i n i is odd I i i n i is even

PS t

π
π π π π

τ τ

∈

∈

+

= − +

= − − +

= − − + − = +
= − + = − +
= ⎢ ⎥⎣ ⎦
= ≤ ≤ = ≤ ≤

∑
∑

( )

( )
1 1

( )( )
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B. Performance Metrics 
Some metrics have been designed for dynamic 

optimization [22]. In this paper, we firstly introduce the 
inverted generational distance (DIGD) [15] metric for 
DMOPs. The DIGD metric is defined as follow: 

*
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where ( , ) min ( ) ( )t
t

u P
d v P F v F u

∈
= − is the distance 

between v and tP , *tP is a set of uniformly distributed 
Pareto optimal points in the PF at time t ， tP is the 
solutions obtained at time t. DIGD is a comprehensive 
metric to evaluate the convergence and distribution, lower 
DIGD value means that solution set obtained has a better 
convergence and distribution. 

VII. EXPERIMENTS 

In this section, DEE-PDMS will be compared to other 
two strategies: forward-looking prediction strategy (FPS) 
proposed in [13], population prediction strategy (PPS) 
proposed in [15]. We choose RM-MEDA [23] as the 
MOEA optimizer. In DEE-PDMS, the number of unit 
domain on each dimension is 40, the number of guide-
individual is 100. Population size N = 100, frequency of 
change Tτ  =25, severity of change Tn =10. Other parameter 
settings of two strategies use the given setting in [15]. 

Since the DEE-PDMS in this paper need to consume 
evaluations in the generating guide-individuals, to be fair, 
the algorithm iterations require removing the number of 
evaluations consumed at every environmental change, and 
reduce the corresponding number of iterations. Therefore, 
the frequency of change is set to be Tτ  = 24 in DEE-PDMS. 
We run each algorithm 20 times for each test instance 
independently. Each simulation runs for 2500 generations 
(DEE-PDMS: 2400 generations) and each strategy tracks to 
100 times of environmental changes. The statistical results 
of DIGD over 20 runs can be found in Table 2. 

TABLE II.  STATISTICAL RESULT OF DIGD FOR THREE STRATEGIES 

Problems Statistic FPS PPS DEE- 
PDMS 

 
DMOP1 

Mean 
Variance 

5.24E-3 
8.24E-8 

7.72E-3 
6.74E-7 

5.01E-3 
4.65E-8 

 
DMOP2 

Mean 
Variance 

5.23E-2 
8.47E-6 

5.68E-2 
5.72E-5 

3.13E-2 
6.32E-6 

 
DMOP3 

Mean 
Variance 

3.17E-2 
7.36E-6 

3.40E-2 
6.59E-5 

1.70E-2 
4.15E-6 

 
F6 

Mean 
Variance 

3.79E-2 
2.82E-5 

3.95E-2 
7.91E-5 

3.48E-2 
3.82E-5 

 
F7 

Mean 
Variance 

4.08E-2 
5.24E-5 

5.42E-2 
1.83E-4 

2.73E-2 
3.54E-5 

To show the run time performance, Figure 6 plots the 
average DIGD versus the time. It is not hard to come with 
the conclusion that the mean DIGD and variance of DEE-
PDMS are less than the other two strategies, especially 
when 0<t<20, the metric values of DEE-PDMS are greatly 
better than the other two strategies which indicates DEE-
PDMS is able to respond to environmental changes more 
quickly and accurately. Despite since the environmental 
cycle changes and the accumulation of experience, the 
convergence and diversity of PPS will stabilize in the latter 
stages due to the introduction of memory strategy and will 
be slightly better than DEE-PDMS, overall, the difference 
is small, and DEE-PDMS is better than FPS. For problem 
whose PS is fixed, the diversity of the population will 
hinder the rapid convergence of population. So on DMOP1 
whose PS is fixed, the stored portion of the current 

population in DEE-PDMS will improve the convergence of 
the algorithm. As to the ability to solve nonlinear problem 
F7, the advantage of DEE-PDMS is more obvious. It 
indicates that DEE-PDMS is suitable for solving 
complicated nonlinear problems. 

There might be some reasons to explain the results, 
mainly because the environmental regulation of DEE-
PDMS partitions the current population into three 
subpopulations according to the different behavioral 
characteristics of each individual when a change is detected. 
The three subpopulations will be used to deal with possible 
different degrees of environmental changes. Meanwhile, 
with the environmental facilitating and guiding, the three 
subpopulations will be guided to evolve toward their 
desired environments according to the new environmental 
knowledge and regulation. Therefore, DEE-PDMS is able 
to respond more quickly to environmental changes. 

VIII. CONCLUSIONS AND FUTURE WORK 
In this paper, we have proposed a population diversity 

maintaining strategy based on dynamic environment 
evolutionary model (DEE-PDMS) to enhance the 
performance of multiobjective optimization evolutionary 
algorithms in dealing with dynamic environments. In the 
proposed strategy, we build a dynamic environment 
evolutionary model, which enhances population diversity 
by guided fashion, thus the optimal solution set can be 
obtained with good convergence and diversity at the initial 
stages. Compared with other two strategies, DEE-PDMS 
has shown faster response to the environmental changes 
than peer strategies in solving whether linear or nonlinear 
problems, with its solution set having better convergence 
and diversity. Our future work will be the adaptive 
adjustment of subpopulation size. Furthermore, our focus in 
the future will also be designing a more accurate dynamic 
environment evolutionary model. 
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