
 

 

  

Abstract—For the presence of speckle noise in SAR images, 
many change detection methods have been developed to 
suppress the effect of noise. However, all these methods will 

result in the loss of image details, and the trade-off between 

detail preserving and noise removing capability has become an 

urgent problem remaining to be settled. In this paper, we put 

forward an innovation for change detection in synthetic 
aperture radar images. It integrates evolutionary computation 

into fuzzy clustering process, and considers detail preserving 

capability and noise removing capability as two separate 

objectives for multiobjective optimization, and thus 

transforming the change detection problem into a 
multiobjective optimization problem (MOP). Experiments 

conducted on real SAR images confirm that the new approach is 

efficient. 

Keywords—Change detection； fuzzy clusterin； multiobjective 

optimization problem (MOP)；  Pareto optimal solution；  

I. INTRODUCTION 

In recent years, synthetic aperture radar technology has  

been developed rapidly, the spaceborne synthetic aperture 

radar systems have observed the surface of the earth for years, 

and have acquired a p lenty of multi-temporal ground 

observation data. Many remote sensing studies have 

attempted to develop the techniques which can make good 

use of the information obtained by the synthetic aperture 

radar systems, includ ing target extract ion, object  

classification, edge detection, interferometry, change 

detection, etc. In particular, among these studies, the research 

on change detection technology is the most extensive one. 

Image change detection [1], [2] is based on the 

comparative analysis of two images acquired from the same 

area at different t imes, with the purpose of detecting the 

change region between them. It has been widely used in  

various fields, such as medical d iagnosis  [3], [4], remote 

sensing [5]-[13], and video surveillance [14], [15]. For 

synthetic aperture radar (SAR) has the characteristics of high 

resolution, all-weather and all-time, it is a good change 

detection information source, so the SAR image change 
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detection techniques have a very comprehensive application 

prospect. In the past decades, SAR image change detection 

has found a wide range of applications, such as environmental 

monitoring, crop survey, urban studies, forest monitoring and 

other fields. Basically, SAR image change detection methods 

can be divided into two types: image threshold methods and 

image classification methods. When people identify changed 

and unchanged areas by virtue of the comparative analysis of 

two SAR images, the change detection problems usually can  

be converted to binary classificat ion problems. That is to say, 

once the difference image  of the two images remaining to be 

detected is obtained, the following step of change detection in 

SAR images can be considered as a process of image 

clustering. 

However, change detection in synthetic aperture radar 

(SAR) images encounters more difficu lties than optical ones 

for the presence of coherent speckle noise in SAR images. 

Most of trad itional change detection methods are exquisitely  

sensitive to the noise, as a consequence, they result in a low 

detection accuracy. For instance, the widely used fuzzy  

c-means (FCM) clustering approach, it  can preserve the 

image details informat ion well, but has no robustness to 

coherent speckle noise since it does not take any spatial 

information into account.  

With the purpose of ameliorating the sensibility of FCM 

to speckle noise, some other algorithms that think about 

spatial context informat ion have been proposed. Ahmed, 

Yamany and Mohamed [16] proposed the FCM_S with  

modifying the objective function of FCM by introducing an 

additional term including the local spatial domain  

informat ion of each p ixel. And then Szilagyi, Benyo, 

Szilagyii and Adam [17] put forward  an enhanced fuzzy  

C-means (EnFCM) algorithm while Cai, Chen and Zhang [18]  

proposed the fast generalized  fuzzy  C-means algorithm 

(FGFCM). 

All the three algorithms above have taken the spatial 

context informat ion into consideration and suppress the effect 

of speckle noise to a certain degree. However, all these 

methods have the same shortcoming that they all require an  

artificial selection of a crucial parameter which indicates a 

trade-off between the capabilities of detail preserving and 

noise removing. It is considerably difficult without a priori 

knowledge about the existing noise in images.   

For the sake of improving the methods above, Krindis and 

Chatzis [19] put forward a robust fuzzy local in formation  

C-means clustering algorithm (FLICM) for image clustering. 
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It introduces a fuzzy factor into the objective function of the 

FCM, and the fuzzy factor is free of using any parameter to  

balance the detail preserving capability and the noise 

removing capability. Although the FLICM performed a good 

effect, it has been demonstrated by László Szilágyi in [20] 

that the iterative algorithm proposed for the minimization of 

the FLICM objective function is not suitable for the given 

problem and it does not minimize the objective function. 

In order to avoid all the above mentioned problems, this  

paper applies a completely novel approach to the change 

detection in SAR images. That is a mult iobjective  

optimization method based on MOEA/D [21] and fuzzy  

clustering for change detection. It integrates evolutionary 

computation into the clustering process, and considers detail 

preserving capability and noise removing capability as two 

separate objectives for mult iobjective optimizat ion, and thus 

transforming the change detection problem into a 

multiobjective optimizat ion problem (MOP). While other 

traditional methods can get only a compromise solution, the 

proposed approach obtains a set of Pareto optimal solutions, 

and users can choose a more suitable solution from the set 

according to their different requirements for detail p reserving 

capability and noise removing capability under different  

circumstances. 

The remaining part of this paper is organized as follows. 

Section II presents the proposed multiobject ive optimization  

method based on MOEA/D and fuzzy clustering for change 

detection in SAR images. The datasets used in the 

experiments and experimental results are described in Section 

III. Finally, a conclusion is summarized in Section IV. 

II. PROPOSED METHOD 

A. Generation of Difference Images 

Here, we let 1I  and 2I  are separately two  original images  

acquired by a synthetic aperture radar over the same 

geographical area but at two d ifferent times  1t  and 2t . And 

they have the same size of BA . Then, we apply the 

frequently-used log-ratio operator to the two  orig inal images 

to create a difference image lI
 which  preserves the image 

details well. It can be obtained as follows: 
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where log represents the natural logarithm operator.  

Further on, a filtering p rocessing is required to apply to  

the difference image lI
 in order to remove noise, and then we 

get a filtered image which  has been removed most of the 

image noise. In our method, we employ the neighbour 

average filtering to implement this procedure and obtain the 

image nI
  as follows: 
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where 
ix  and ix  are the gray values of the 

thi  pixel of image 

nI  and 
lI , respectively,  

rN  represents a set of neighbors 

falling into a window of fixed size around 
ix ,  S  stands for 

the total number of  set 
rN . Actually, the neighbour average 

filtering can be substituted by an arbitrary filter with good 

effects at this step. 

B. Two Objective Functions Selected for Multiobjective 

Optimization 

As is described in Section I, in the proposed method, we 

consider detail preserving capability and noise removing  

capability as two separate objectives for mult iobjective  

optimization, and thus transforming  a change detection 

problem into a multiobjective optimization problem (MOP). 

Firstly, from the perspective of image detail preserving, 

FCM clustering is applied d irectly  to the difference image lI
 

generated from two original images, and then we consider the 

cost function of the fuzzy C-means as our first objective 

function 1f  for the MOP since the image lI
 contains all the 

image details. According to the FCM clustering, the function 

is defined as: 
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where N  is the total number of pixels, c  stands for the 

number of clusters, m  is a  fuzzy  exponent and usually  

selected as 2, 
kiu  is the fuzzy membership degree of the thi  

pixel with respect to cluster k  with 0 1kiu   and  

1
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c
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   , and 
kv  is the average gray value of the 

center of cluster k . For our change detection problem, we 

divide the image into unchanged and changed classes, so c  is 

equal to 2. Moreover, the clustering center 
kv  is obtained by  

init ializing randomly and the fuzzy membership degree 
kiu  is  

calculated as follows: 
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On the other hand, from the perspective of noise removing, 

the same cluster analysis is exerted on the filtered image nI
 

with most of the image noise removed, and the corresponding 

cost function is selected as the other objective function 2f  for 

the MOP. It is defined as: 
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where the symbols represent the same meaning as those in (3) 

other than 
ix  which has been declared in the previous part A. 

At this moment, the two objective functions can be combined 

into a mult iobjective optimization problem. It has the 

following form: 
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where 
1 2( , )Tv v  is a decision vector consisting of the two 

cluster centers 
1v  and 

2v ,   is the decision space of the 

MOP. As we all know, the fundamental princip le of FCM 

clustering is to acquire a good classification result by 

minimizing its cost function. Hence, the MOP will be solved 

as a minimizat ion problem. From all the above, it is 

reasonable to conclude that a smaller 
1f  indicates a better 

detail preserving capability while a s maller 
2f  means a better 

noise removing capability. 

III. EXPERIMENTAL STUDY 

In order to illustrate the effectiveness of our proposed 

method, in this section, we will perform the proposed 

approach on three datasets of real world images with different  

characteristics in the experiments.  

Based on our previous work in [22], we select the Bern,  

Ottawa and Yellow River Estuary datasets as our change 

detection images. It's worth noting that, the Yellow River 

dataset is different from the Bern and Ottawa datasets, for it is 

very large. Therefore, we cut out a representative part in the 

experiments. The images remaining to be detected and 

ground truth of the Bern dataset are shown in  Fig. 1, and the 

two images and corresponding available ground truth  of the 

Ottawa dataset are shown in Fig. 2. Then, the two images cut 

from the Yellow River dataset and its ground truth image are 

presented in Fig. 3. 

 

                   (a)                                              (b)              

                                                            (c) 

                                                        
Fig. 1.  Images for Bern dataset: (a) Image acquired before flooding in April 
1999. (b) Image acquired after flooding in May 1999. (c) Image of the ground 
truth. 

 

Generally speaking, there are two manners to account for 

the effects of SAR image change detection problems. One is 

in a very visual way, that is, to show the final change 

detection binary maps, and one other way is to calculate the 

values of some common indexes for evaluation. In  our 

experiments, percentage of correct classificat ion (Pcc) and  

Kappa coefficient are considered as the primary evaluation  

indexes. The Kappa coefficient is a measurement of 

consistency and accuracy on the basis of error matrix, and its 

value falls usually into the interval [0,1], it is  equal to 1 when  

the final binary  map  is coincided completely with the image 

of ground truth. 

 

                       (a)                                                         (b)  

                                                            (c) 
 

Fig. 2.  Images for Ottawa dataset: (a) Image acquired before flooding in July 
1997. (b) Image acquired after flooding in August 1997. (c) Image of the 
ground truth. 
 

                              (a)                                                         (b) 

                                                              (c) 
                                                             
Fig. 3.  Images for Yellow River dataset: (a) Image acquired in June 2008. (b) 
Image acquired in June 2009. (c) Image of the ground truth. 
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For the three datasets, we select a 3×3 window to  

implement the neighbour average filtering and get the filtered  

difference images. Meanwhile, the number of subproblems 

decomposed by MOEA/D is set to 100. 

After applying our approach to the Bern dataset, we get a  

uniformly-distributed Pareto front including one hundred 

Pareto optimal solutions with different effects of detail 

preserving and noise removing. The Pareto front for Bern  

dataset is shown in Fig. 4, and six different change detection 

maps selected randomly  from all the results are present in  Fig. 

5.  

By comparing the six images in Fig. 5, we can find a fact  

that Fig. 5 (a) and (b) contain less speckle noise than the other 

four but fail to detect some crucial changed regions since the 

loss of image details. However, on the contrary, Fig. 5 (e) and 

(f) have detected more changed regions but include more 

noise. And the Fig. 5 (c) and (d) ind icate that the effects of 

detail preserving and noise removing fall in  between the two  

cases above. All these phenomena show that all the solutions 

have different detail preserving and noise removing 

capabilities. 

Similarly, we employ our approach to deal with the 

Ottawa dataset and reach its evenly-d istributed Pareto front 

which is present in Fig. 6. The set of Pareto front is also 

composed of one hundred Pareto optimal solutions with  

different effects of detail p reserving and noise removing. Six 

different change detection maps selected randomly from the 

set are shown in Fig. 7.  It is obvious that there are less 

speckle noise than the other four in Fig. 7 (a) and (b), but 

some real changed regions are not detected. On  the other hand, 

more changed regions are detected successfully while more 

noises are left in Fig. 7 (e) and (f), which manifests a weaker 

noise removing capability but a better detail preserving 

capability in this case. The effects in Fig. 7 (c) and (d) have 

indicate different capabilities of detail p reserving and noise 

removing which fall in between the two cases above.  
                                          

 
Fig. 4.  Pareto front for Bern dataset 
 

Finally, we conduct an experiment on the Yellow River  

dataset by using our approach. As a consequence, a 

evenly-distributed Pareto front is obtained and it is shown in  

Fig. 8. In the same way, the set of Pareto front is also 

composed of one hundred Pareto optimal solutions with  

different effects of detail preserving and noise removing.  

                    (a)                                                      (b) 

                          (c)                                                      (d) 

                         (e)                                                       (f) 

 
Fig. 5.  Six different change detection maps selected randomly from all the 
results of the Bern dataset. 

 

 
 
Fig. 6.  Pareto front for Ottawa dataset. 
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Six d ifferent change detection maps selected randomly  

from the set are shown in Fig. 9. And from Fig. 9, we can  

draw a conclusion that the six images also have different 

detail preserving and noise removing capabilities. 

In order to demonstrate the availability of the proposed 

approach in depth, after running the program many times, we 

calculate the average ranges of the values of Pcc and Kappa 

corresponding to all the Pareto optimal solutions acquired, 

and the results are recorded in Table I. 

 

                        (a)                                                       (b) 
 

                             (c)                                                    (d) 
 

                              (e)                                                       (f) 

 
Fig. 7.  Six different change detection maps selected randomly from all the 
results of the Ottawa dataset. 

 

 

 
 

 
Fig. 8.  Pareto front for Yellow River dataset. 

 
 
 

                             (a)                                                        (b) 

 

                    (c)                                                        (d) 

 

                   (e)                                                       (f) 
 
Fig. 9.  Six different change detection maps selected randomly from all the 
results of the Yellow River dataset. 
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TABLE I 
T HE RESULTS OF T HE PROPOSED METHODS ON T HE T HREE DATASETS 

 Kappa Pcc 

Bern dataset  0.7257-0.8436 99.20%-99.57% 

Ottawa dataset 0.8861-0.9073 96.94%-97.68% 

Yellow River dataset 0.6728-0.7968 95.58%-97.66% 

 

To sum up, from Fig. 5, 7, and 9, it is apparent that our 

approach has better visual effects on Bern, Ottawa and  

Yellow River datasets. One hundred effective solutions with 

different effects of detail preserving and noise removing for 

each dataset in our experiments are obtained, so that they can 

be selected by users according to different requirements. 

In the meantime, the average values of Pcc and Kappa 

listed in Table I are high enough for explaining good 

classification results acquired by the proposed approach. 

IV. CONCLUSION 

In this paper, a novel approach for SAR images change 

detection is put forward. It converts the change detection 

problem into a mult iobjective optimizat ion problem (MOP) 

by considering the image detail preserving and noise 

removing as two separate objectives that remain to be 

optimized. As a consequence, the proposed approach obtains 

a set of Pareto optimal solutions corresponding to all the 

decomposed subproblems. Experimental results exhibited  

that our approach had obtained good visual effects on datasets 

with distinct features. At the same time, the high average 

values of the Pcc and Kappa indicated good classification  

results for change detection in SAR images. 

In addition, although the new approach has performed  a 

good effect on change detection problems, it has some little  

weaknesses to a certain degree. Therefore, we intend to 

combine the MOEA/D with the update of membership degree 

matrix in order to improve the effects further in the near 

future.  
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