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Abstract—Agent-based optimization algorithms are an ef-
fective means of solving global optimization problems with
design spaces containing multiple local minima, however, mod-
ifications have to be made to such algorithms to be able
to solve constrained optimization problems. The gravitational
search algorithm (GSA) is an efficient and effective agent-
based method, however, the idea of global transfer of data
that is key to the algorithm’s success prohibits coupling of
many state-of-the-art methods for handling constraints. Hence,
a robust method, called separation-sub-swarm (3S) has been
developed specifically for use with GSA by exploiting but also
accommodating the global transfer of data that occurs in GSA,
however it can also act as an entirely black-box module so
is generally applicable. This newly developed 3S method has
been shown to be efficient and effective at optimizing a suite of
constrained analytical test functions using GSA.

I. INTRODUCTION

O
PTIMIZATION is the process of improving on a cur-

rent solution. With continually increasing computer

power available to the designers of engineering systems,

automated algorithms are now a common approach to the

problem of optimization. Aerodynamic shape optimization

(ASO) is a rapidly expanding field which has historically

been restricted by the expensive cost of objective function

evaluations, which are often flow field solutions by com-

putational fluid dynamics (CFD). Furthermore, the design

space that describes many ASO problems often contains

local optima and has constraints on solutions such as lift

and volume, so presents a difficult problem for optimization

algorithms to solve. State-of-the-art automated optimization

algorithms have recently produced notable results for high

fidelity two-dimensional [1], [2] and three-dimensional [3],

[4], [5] ASO problems.

A common approach to solving an optimization problem,

which is common within the field of ASO, is by the use of

a gradient-based method where the local gradient is used as

a basis about which to construct a search process. The most

basic forms of this are the steepest descent and conjugate

gradient methods, however these are designed for uncon-

strained optimization so require modification to allow the

effective handling of constraints. More efficient approaches,

which are typical in aerodynamic shape optimization, in-

volve solving the Karush-Kuhn-Tucker (KKT) conditions.

The most widely adopted approach is sequential-quadratic-

programming [6], [7], which allows the strict enforcement

of constraints without either approximating them or altering

the underlying search space of the problem. Work performed

at the University of Bristol has shown that a feasible-SQP

(FSQP) algorithm is effective for the optimization of two-

dimensional [8] and three-dimensional [9], [5] aerodynamic

optimization problems.

Solving an ASO problem requires an algorithm that can

enforce constraints in a strict manner, and minimizes the

total number of objective function evaluations, which effi-

cient gradient methods do. All gradient-based optimization

algorithms, however, do have the same issues which are

that a smooth and continuous design space is required,

and the termination of the algorithm in local optima. The

local optimization is a major issue, and can mean that for

multimodal functions (functions with multiple local optima)

the problem of termination in local optima may not allow the

global optimum solution to be found so other approaches are

required.

Global search algorithms avoid the issues associated with

gradient-based approaches by avoiding the computation and

use of the gradient, instead employing the position of the

search in the search space as a method to build an algorithm.

These meta-heuristic approaches often mimic natural pro-

cesses or behaviour such as evolution in genetic algorithms

(GA) [10], cooling in simulated annealing (SA) [11], ant

colony food searching in the ant colony optimization (ACO)

[12], swarm behaviour in particle swarm (PSO) [13], bee

colony food searching in the artificial bee colony system

(ABS) [14], Newtonian gravitational laws in gravitational

search algorithm (GSA) [15] and hearding of krill in the

krill heard framework (KH) [16]. The GA, SA and ACO

algorithms are primarily designed for discrete optimization

problems, whereas ABS, PSO, GSA and KH are agent-

based search algorithms designed specifically for continuous

optimization problems.

Agent-based search algorithms are effective at solving

general unconstrained optimization problems that are large

and small scale, unimodal and multimodal. However, the

framework around which all agent-based optimization sys-

tems are built does not directly take into account the solution
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to a constrained problem, and this is an ongoing research

area. This, and the higher cost associated with using global

search algorithms, are the primary reasons for the slow

uptake in fields with expensive objective function evaluations

and the necessity for strict constraint enforcement, such as

aerodynamic shape optimization. The objective of this paper

is to introduce a new constrained optimization algorithm

solution approach that is an entirely black-box method so

applicable to any agent-based search algorithm, though was

designed to exploit and handle the the gravitational search

algorithm framework. The paper will outline approaches

currently used to modify the search algorithms to allow fea-

sible solutions to be found, followed by the novel approach

developed here, and applications to analytical optimization

algorithms.

II. AGENT-BASED SEARCH ALGORITHMS

The solution to many real world optimization problems

require a solution that is feasible; constraints appear on

the total cost or other physical barriers to the solution.

Mathematically, a single objective constrained optimization

problem can be described as:

minimise
x∈ℜn

f(x)

subject to g(x) ≤ 0

h(x) = 0

(1)

where x is the solution vector [x1, x2, . . . , xn]
T where each

element of the vector is a design variable, f(x) is the

value of the objective function for the given solution vector,

g(x) represents inequality constraints, and h(x) represents

equality constraints. The solution vector is bounded by an

upper, Uk, and lower, Lk, bound such that for each xk where

k = 1, 2, . . . , n, the solution must be Lk ≤ xk ≤ Uk.

In certain classes of optimization algorithms, it is typical

to transform equality constraints into inequality constraints

within some small tolerance: |h(x)| − ǫ ≤ 0.

There are several methods that exploit that use of a set

of agents to search a design space. The original agent-based

search system is particle swarm optimization, presented by

Kennedy and Eberhart[13]. They pioneered the idea of using

a set of particles to search a design space in pursuit of

the global optimum. In its most basic form, a particle in

a population of particles moves to a new position in time

defined by some function of the objective function:

xi(t+ 1) = xi(t) + vi(t)∆t (2)

Where the perturbation of a particle’s position (which comes

from its velocity, vi) is some function of the past and current

state of the search.

A. Particle Swarm Optimization (PSO)

PSO uses knowledge of the cognitive (individual) and

social (swarm) history of the search to construct a search

procedure:

vdi (t+1) = w(t)vdi (t)+ c1r1i
pdi − xd

i (t)

∆t
+ c2r2i

sd − xd
i (t)

∆t
(3)

Where the superscript, d, is the design variable in the d-th

dimension, and the subscript, i, is the variable for the i-th

particle in a swarm of N particles. The random numbers,

r1i and r2i add a stochastic nature to the algorithm and are

randomly distributed between 0 and 1. The constants, c1 and

c2, are the cognitive and social parameters respectively which

give the local and global search extent of the scheme. To

obtain a good balance between exploration and exploitation,

the two factors required for an effective optimization, both

values are often taken to be 2.0 such that the average of c1r1i
and c2r2i is unity. An inertia weight, w, was added later by

Shi and Eberhart [17] to improve the performance of PSO.

The simplicity of the basic PSO algorithm meant that

researchers had to find innovative methods to improve its

performance, however, this has resulted in many approaches

where each is considered superior to the others (a review

is presented by Poli et al. [18]). In fact, each approach

for an improved particle swarm algorithm produces a new

algorithm that is suited to certain classes of problems (and

also individual problems) so it is difficult for a suitable

algorithm to be selected for a specific real-world optimization

problem without investing significant time into testing many

flavours of PSO. The following section introduces a relatively

new addition to the global search algorithm family called

the gravitational search algorithm (GSA). Due to its infancy

there are few extra additions to the basic algorithm so

this avoids costly development and implementation time of

the algorithm for a given optimization problem. The basic

algorithm is also highly efficient and effective for many

optimization problems, producing superior results to particle

swarm algorithms.

B. Gravitational Search Algorithm (GSA)

The gravitational search algorithm (GSA) is an agent-

based global search algorithm presented by Rashedi et al.

[15] for unconstrained global optimization where the princi-

ples of basic Newtonian mechanics act as the basis on which

the algorithm is constructed. The algorithm was shown to

perform well in many analytical test function due to its use

of an agent’s position, and therefore fitness, in the search

algorithm, where GSA uses this directly to act as a measure

for all other particles to see. This notion is manifested in

the algorithm by the mass of an agent, where a high mass

is equal to a good fitness and vice versa for an agent that

has a poor fitness. This is further propagated through the

population by a gravitational force where every particle is

attracted to every other particle by a force that is proportional

to the product of masses between particles. Overall, these two

effects provide a global transfer of data through the entire

swarm, and this is the mechanism that is often attributed to

the high performance of GSA. The acceleration of a particle,

from Newton’s second law of motion, is dependent on its

mass and force, so the velocity is therefore:
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vdi (t+ 1) = randiv
d
i (t) + adi (t)∆t (4)

A small increase in memory is required for GSA compared

to PSO, however this is a small trade off to allow superior

optimization ability: Rashedi et al. [15] reported that GSA

outperformed PSO in over 80% of the analytical cases

tested in their paper, and also for a real world optimization

problem[19]; Chatterjee et al. [20] and Mallick et al.[21]

demonstrated the superior efficiency and performance of

GSA against PSO for multi-modal engineering optimization

problems.

Overall, the simplicity of the gravitational search algo-

rithm, and the efficiency and effectiveness of its perfor-

mance makes it a suitable candidate to act as the basis for

the development of a global optimizer for solving multi-

modal constrained cases. The following section will survey

approaches developed for solving constrained optimization

cases using agent-based systems.

III. CONSTRAINT HANDLING IN

AGENT-BASED SEARCH ALGORITHMS

Agent-based global search algorithms are devoid of direct

constraint handling in their formulation and therefore require

modification. A short review is presented here, and a com-

prehensive review of constraint handling of nature inspired

numerical optimization algorithms has been performed by

Mezura-Montes and Coello Coello [22], which the reader is

guided towards for a deeper review than is covered here.

A. Penalty Functions

The principle of penalty functions is that a constrained op-

timization problem can be transformed into an unconstrained

one by incorporating the constraints into the objective func-

tion. The most simple type of penalty is called a ‘death-

penalty’ [23] which eliminates the position of a particle

violating a constraint from the search. This usually occurs

by either reinitialising the particle at a new position if it

violates a constraint, or assigns it a large penalty constant.

This blinds the overall swarm from any knowledge of the

search space outside the feasible region and is therefore

inefficient. Other common approaches use a static penalty

function approach which adds the constraint violations to the

objective function with some static scaling [24], though more

efficient penalties are dynamic [25], so change depending on

the current objective function [26].

B. Mutation Operators

Mutation operators work on the principle that a feasible

solution is better than an infeasible one, and as such ma-

nipulate the search algorithm to either force or tend the

solution to the feasible space. The first methods of this

nature were based on the idea of feasible directions (from

Vanderplaats [27]), which is a direction that reduces the value

of the objective function while pointing towards the feasible

space, and shown to produce feasible results when applied

to real-world optimization problems[24]. Other approaches

modify the velocity of a particle to point back towards the

feasible space [28], though both of these approaches require

initialisation of particles to all be feasible. This prerequisite is

often expensive, especially for highly constrained problems

where multiple initialisations would be required to obtain

feasibility. Moreover, mutation operators mutate the swarm

so tend to alter the natural self-organising swarm dynamics

that cause the algorithm to be effective at optimizing search

spaces.

C. Separation of Objective Function and Constraints

The idea of a penalty function is to combine the value of

the true objective function and the constraint violation values

into a single augmented objective function, however, there

exists a school of thought which is the antithesis to this, i.e.

keeping the objective and constraint values separate. These

methods use various techniques for optimizing the value of

the objective and constraint values, or use various techniques

for the treatment of swarm characteristics for separate groups

of particles, though in general they seek to optimize either

the true objective function or the constraint violation.

Liang and Suganthan [29] employed a sub-swarm ap-

proach where sub swarms optimized either a constraint or the

objective function, where transfer of data about the feasible

space is provided by random reinitialisations of the swarms.

A more popular approach is by the use of hard feasibility

rules which selects leader particles based on feasibility or

constraint violation [30], [31] though it was recognised that

random operators had to be added to the hard feasibility rules

to facilitate good convergence properties. This effectively

represents a diffusion of the hard feasibility rules, which

leads to a similar approach called soft feasibility rules where

the difference represents a relaxation of the rules. The α-

constrained [32] and ǫ-constrained [33] feasibility rules are

just an effective relaxation of the hard feasibility rules, where

a satisfaction or tolerance represents the relaxation allowed,

which also represents the handicap of such methods being

the fine tuning of the α or ǫ parameters. Furthermore, the bi-

objective problem can also be treated using multi-objective

techniques, which find the pareto front of non-dominated

solutions [34].

In conclusion, hard feasibility rules are popular for solv-

ing constrained optimization algorithms using agent-based

systems, though on their own result in premature conver-

gence and therefore require a mutation operator to alleviate

this. Soft feasibility rules can allow a greater flexibility

by relaxing the binary operator, therefore not requiring a

mutation, though at the expense of adding another user

defined parameter which requires fine-tuning.

IV. PROPOSED CONSTRAINED OPTIMIZATION

FRAMEWORK

The previous section introduced the methods developed

for handling constraints using agent-based global search

algorithms, however, these were all developed for a particle

swarm system – or modified to suit particle swarm. It

has been shown from the review of the literature that the
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recently developed gravitational search algorithm (GSA) is

a more efficient and effective global search algorithm than

PSO, outperforming PSO on many analytical and real world

optimization cases. There has been little contribution to

the discussion of constrained optimization using GSA. A

simple implementation is by the use of a penalty function,

as Amoozegar and Nezamabadi-Pour [35] did. In general,

however, penalty functions are not ideal as they distort the

underlying search space and also introduce the problem of

selecting an appropriate penalty term, which is highly case

dependent. The other approach seen in the literature is by

reinitialising infeasible particles either randomly [36], or by

the repair method which initialises an infeasible particle

near to the closest feasible particle [37]. Reinitialisation

encounters problems when the feasible space is small, or

disconnected, so overall these approaches are not ideal. It

is obvious that an effective constraint handling approach is

required for GSA as there is little dealing with it in the

literature – researchers instead dealing with PSO – but the

underlying search mechanism has been shown to be effective

for unconstrained problems.

A. Development of Constraint Handling Framework for GSA

From the consideration of the main approaches that have

been presented by researchers to handle constraints using

agent-based search systems, five requirements have been

identified that need to be fulfilled to obtain an effective con-

straint handling technique for agent-based search algorithms:

1) Infeasible initialisation of particles permitted;

2) Optimization of true objective function in feasible

region;

3) Global transfer of data in feasible space;

4) Unidirectional transfer of data from feasible to infea-

sible space;

5) Facilitation of particles ‘pushed’ back to feasible re-

gion.

The lack of contribution to the area of a constrained GSA

algorithm maybe partly due to the characteristics that the

algorithm has that lead to high efficiency, namely the global

transfer of data throughout the swarm, though this addresses

the third requirement immediately. To simultaneously satisfy

requirements two, three, four and five a sub-swarm approach

has been developed, where the primary swarm is split into

two independent secondary sub-swarms; an infeasible swarm

and a feasible swarm. The feasible swarm optimizes the

objective function and moves by the GSA mechanism. The

infeasible swarm minimises the constraint violation, which

has a known minimum at the feasible region, such that there

is some mechanism to drive the particles back to the feasible

space. Using this separation of objective and constraints

approach with the independent sub-swarms perfectly satisfies

requirement two and also provides a mechanism to aid in the

satisfaction of requirement five. An independent sub-swarm

approach allows feasible transfer of data (requirement three),

though at this point there is no mechanism for the handling of

requirement four. Furthermore the infeasible swarm cannot

move by the GSA mechanism as this would require a mass in

the feasible region to propagate information from the feasible

region outwards and that would violate requirement one.

The approach developed here is to move the infeasible

swarm by a particle swarm mechanism, which is independent

of the GSA mechanism of the feasible particles. The particle

swarm approach requires storage of a particle’s best position

found so far and the swarm’s best position found so far.

To allow transfer of data from the feasible region to the

infeasible particles (fourth requirement), a feasibility rules

approach has been adopted such that the local and global

best positions are always feasible if possible. If the swarm

has never been feasible then these positions are the minimum

constraint violation positions found so far. The implication

of having feasibility rules is that if the feasible region has

been found then information is always propagated into the

infeasible region for the infeasible particles to work on, there-

fore satisfying requirement four. The transfer of information

between sub-swarms and within the feasible swarm allows

dispersion of information about the nature of the constraints,

and the value of the objective function near to and far away

from constraints facilitating fast convergence and competitive

optimization behaviour. Finally, the only requirement not

to have been considered so far is that initialization does

not necessarily need to result in a single feasible particle,

which is satisfied due to the use of feasibility rules. All

five requirements for an effective constraint handling method

have been addressed and met using this approach.

A final note regarding the search mechanism of the feasible

swarm is worth making. The use of a particle swarm-

based approach for solving the infeasible problem requires

extra storage of the best position of every particle and the

swarm’s best position, as well as the objective function values

associated with that. To ensure that the best ever positions

are feasible, a feasibility rules-based approach is adopted and

this ensures that if the swarm has ever been feasible that the

best position is also feasible. As this additional storage is

required anyway it is more efficient to introduce the particle

swarm mechanism into the feasible search as well to produce

a hybrid GSA-PSO mechanism for the feasible search which

is termed modified-GSA (MGSA), which has shown to be

an efficient search mechanism [38], [39], [40].

B. Separation-Sub-Swarm Mechanism

The algorithm developed for solving constrained global

optimization algorithms using an independent sub-swarm

approach, where the secondary sub-swarms solve a separated

objective and constraints function, is hereby called the sepa-

ration sub-swarm algorithm (3S). It is a black-box approach

so any swarm can be used to search the feasible space, so

the algorithm is presented here independent of the swarming

method for the feasible region.

For each agent, the objective function and the values of

the constraints need to be calculated to determine feasibility;

a particle is termed infeasible if any of the constraints are

violated. The objective function associated with the i-th agent

is then:
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fp(xi) =











f(xi) if xi is feasible
∑G

j=1 max{0, gj(xi)}+ else
∑H

j=1 |hj(xi)|
(5)

The particle’s best ever position, pi, and the swarm’s

best ever position, s, need to be updated, which is done by

comparing the current position with the best positions by the

following rules:

1) If current and best positions are feasible, the one with

best fitness wins;

2) If either the current or best positions are feasible and

the other infeasible, the feasible position wins;

3) If current and best positions are infeasible, the one with

the minimum constraint violation wins.

The acceleration of the infeasible particles is done by

particle swarm:

adi (t) = c1r1i(p
d
i − xd

i (t)) + c2r2i(s
d − xd

i (t)) (6)

where pi and s are the particle’s and swarm’s best positions

ever, which are always feasible if historically a feasible point

has been found either cognitively or socially.

C. Coupling 3S with a GSA-based approach

The 3S approach for handling constraints treats the infeasi-

ble and feasible swarms independently so is applicable to any

agent-based search algorithm. The approach is designed to

specifically handle global transfer of data that occurs within

the gravitational search algorithm, which is handled by the

use of independent swarms. Here, a modified GSA (MGSA)

algorithm is described which incorporates the particle swarm

movement into the process, and this is used for testing with

the 3S framework.

The algorithm requires a system of N agents to be

initialised within the bounds of the design variables, where

the position of the i-th agent is denoted by:

xi = {x1
i , x

2
i , . . . , x

d
i }

T (7)

For the Nf feasible particles only, the mass is calculated

based on a particle’s feasible fitness:

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(8)

Mi(t) =
mi(t)

∑Nf

j=1 mj(y)
(9)

where the best and worst fitnesses are from the feasible

particles only. The force acting on particle i from particle

j, where both particles are feasible is:

F d
i,j(t) = G(t)

(

Mi(t)Mj(t)

Ri,j(t) + ǫ

)

(xd
j (t)− xd

i (t)) (10)

G(t) = G0 exp(−αt/T ) (11)

The total force acting on the i-th feasible particle is:

F d
i (t) =

min{Nf ,Kbest}
∑

j=1,j 6=i

randjF
d
i,j(t) (12)

where Kbest is a constant that linearly decreases from N at

the start of the optimization to 1 at the end, and controls the

effect that poorer acting particles have on good particles. The

acceleration of the feasible particles is by MGSA (equation

15), though this could also be just an individual GSA or PSO

acceleration as well. If only one particle is feasible then the

acceleration due to GSA to that particle becomes zero.

adi (t)gsa = F d
i (t)/Mi(t) (13)

adi (t)pso = c1r1i(p
d
i − xd

i (t)) + c2r2i(s
d − xd

i (t)) (14)

adi (t) = (adi (t)gsa + adi (t)pso)/2 (15)

where pi and s are the particle’s and swarm’s best positions

ever, which are always feasible in this part of the optimiza-

tion process. The cognitive, c1, and social, c2, parameters do

add additional parameters to the problem but it is expected

that these have the same value as the cognitive and social

parameters is the infeasible search (equation 6).

The updating procedure for all of the particles is:

vdi (t+ 1) = randiv
d
i (t) + adi (t) (16)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (17)

If a particle exceeds the boundary of the search space then

this is not an infeasible particle but is a particle without a

solution so is reinitialised in its last position with a zero

velocity.

V. CONSTRAINED ANALYTICAL OPTIMIZATION

The performance and efficiency of the 3S algorithm is

analysed here. An analytical function suite, as outlined by

Michalewicz and Schoenauer [41], is commonly used to

test constrained global optimization algorithms. The suite

contains 11 test cases that are all minimisation problems and

contain various numbers of linear and non-linear inequality

and equality constraints, various sizes of feasible search

space, and various types of objective function. The nature of

the cases is outlined in table I and as can be seen by consider-

ing the size of the feasible search space, represent a difficult

optimization problem. Furthermore, the presence of equality

constraints poses a difficult problem for the optimizer, so

for the purpose of this work, as is typical when dealing

with equality constraints, they are transformed into inequality

constraints to within a small tolerance: |hj(x)| − ǫ ≤ 0.

25 independent runs of each of the test functions were

performed. 200 particles were used; maximum number of

timesteps at 1500; G0 = 30; α = 10; c1 = c2 = 2. The de-

gree of violation for the equality constraints was ǫ = 0.0001,

so as a result optimum solutions better than the theoretical

optimum were possible. The objective function evaluations
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TABLE I
SUMMARY OF ELEVEN ANALYTICAL TEST CASES, WHERE d IS THE

NUMBER OF DESIGN VARIABLES, ρ IS THE RATIO OF THE FEASIBLE

SEARCH SPACE TO THE WHOLE SEARCH SPACE, AND LI , NE , NI
REPRESENT THE NUMBER OF LINEAR INEQUALITIES, NON-LINEAR

EQUALITIES AND NON-LINEAR INEQUALITIES RESPECTIVELY.

Function d Type of f ρ LI NE NI

G1 13 quadratic 0.0111% 9 0 0
G2 20 non-linear 99.8474% 0 0 2
G3 10 polynomial 0.0000% 0 1 0
G4 5 quadratic 52.1230% 0 0 6
G5 4 cubic 0.0000% 9 3 0
G6 2 cubic 0.0066% 9 0 2
G7 10 quadratic 0.0003% 3 0 5
G8 2 non-linear 0.8560% 0 0 2
G9 7 polynomial 0.5121% 0 0 4
G10 8 linear 0.0010% 3 0 3
G11 2 quadratic 0.0000% 0 1 0

have been parallelised using the message passing interface

(MPI) to allow more efficient algorithm performance.

From the 25 independent runs using the 3S algorithm

developed in this paper combined with the MGSA swarm,

the best, median and worst results are presented in table

II, as well as the mean of all the feasible results and the

standard deviation. If an infeasible solution results from any

of the runs then the worst value is presented as INF, meaning

infeasible, though the remaining statistical values are all from

feasible solutions if possible. The convergence of the best

results are shown in figure 1.
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Fig. 1. Convergence plots of function error for 11 test cases using 3S-
MGSA. FES represents number of objective function evaluations.

The results from table II show that the 3S-MGSA algo-

rithm has successfully located the global optimum in all the

eleven test cases. In cases G1, G2, G4, G6, G8, G9 and

G11 the algorithm has located the global optimum exactly,

emphasising the efficiency that the algorithm has in terms

of optimum exploration and exploitation. In the remaining

cases, the global optimum position has been located though

the exact exploitation of the absolute optima would require

more specific tuning of the parameters, or use of a gradient-

based optimization system to accurately exploit the global

optimum. The efficiency of the algorithm is reflected by the

small spread of results, with the average standard deviation

normalised by the mean being 3%. These problems are char-

acterised by highly multimodal search spaces with multiple

non-linear and linear constraints, so the small spread of data

for all the cases is encouraging. Further tuning of parameters

for each problem would result in a lower spread of data but it

was decided to have parameters that were constant for all the

test cases as this more realistically depicts the difficulty that

maybe presented for optimization of an expensive objective

function, where parameter tuning would be a time consuming

process. This has, however, increased the difficulty of the

problem though the 3S-GSA algorithm has been extremely

successful.

In terms of finding a feasible solution, the 3S-MGSA

algorithm is also highly dependable. In all but one of the

test cases all of the 25 independent runs resulted in a

feasible solution. The only case where a feasible solution

was not found 100% of the time is G5, which is a difficult

function to optimize due to having three equality constraints.

The feasibility rate of G5 was 88% so the algorithm still

performed well, even in this difficult problem, though further

tuning of the parameters may result in improved results. This

just demonstrates the problem that all agent-based search

algorithms have which is that the performance and optimum

parameter settings are highly case dependent. The overall

feasibility rate was 99% showing that a feasible solution is

almost always found.

VI. PARAMETER SENSITIVITY

The separation-sub-swarm constraint handling method has

been shown to be an effective method for solving constrained

optimization problems using a GSA type mechanism. The

3S approach was designed specifically for GSA, though the

method can also be considered a black-box approach and

as such can be wrapped around any agent-based search

algorithm. In the results presented above, a hybrid GSA/PSO

swarm was used as the global transfer of data that is present

in GSA and the memory qualities present in PSO are both

exploited, though pure GSA can also be used with the 3S

algorithm, and this is explored here. Furthermore, the popu-

lation size and total number of iterations are often considered

important parameters as they have a direct correlation on the

total cost of running the algorithm and can often influence

greatly its performance. The 3S algorithm applied to the

two search methods has been run on the analytical test suite

25 times each for various numbers of particles and various

timesteps. Figure 2 shows the effect of varying particle

number for constant number of iterations using the three

feasible search mechanisms. The vertical axis is the measure
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TABLE II
RESULTS OF 11 ANALYTICAL FUNCTION TEST SUITE OPTIMIZED USING THE 3S-MGSA ALGORITHM.

Function Optimal Best Median Worst Mean St. Dev. SD/Opt

G1 -15.000 -15.000 -15.000 -12.453 -14.432 1.13 7.55%

G2 -0.80362 -0.80362 -0.77744 -0.68978 -0.77239 2.98×10−2 3.71%

G3 -1.0005 -0.99124 -0.94100 -0.65084 -0.89597 9.61×10−2 9.61%

G4 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 1.09×10−4 3.59×10−9%
G5 5126.50 5126.51 5271.40 INF 5355.2886 214.24 4.18%

G6 -6961.81 -6961.81 -6961.81 -6961.80 -6961.81 4.50×10−3 6.46×10−5%

G7 24.306 24.313 24.396 24.712 24.441 0.11 4.47×10−1%

G8 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 5.07×10−15 5.21×10−12%

G9 680.630 680.630 680.632 680.648 680.633 3.53×10−3 5.19×10−4%
G10 7049.248 7077.759 7489.336 8465.689 7518.675 280.12 3.97%

G11 0.750 0.750 0.750 0.824 0.756 1.61×10−2 2.16%

of the average error of the median run for all functions and

all runs.
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Fig. 2. Effect of varying particle number and evolutions on mean percentage
error of median solutions from 25 independent test suite runs using GSA
and MGSA.

The results indicate, almost exclusively, that larger num-

bers of particles and larger numbers of timesteps lead to

better optimization results. This is generally expected as a

larger population can search the space in considerably more

detail and therefore provide superior exploration abilities.

The exact exploitation of the globally optimal solution is

best provided by the MGSA feasible swarm which makes

use of the global data transfer of GSA and the memory

qualities of PSO to provide a highly efficient feasible search

mechanism. Furthermore, by using the MGSA algorithm,

a blending of the velocity exists between the feasible and

infeasible region such that the PSO component of velocity

exists in both swarm mechanisms to aid in smooth transfer

between the two swarms.

The use of global search algorithms within optimization

frameworks containing expensive objective function evalua-

tions can pose runtime and cost problems particularly if the

total number of evolutions is large. The effect of particle

number on cost can be somewhat mitigated by the spatial

parallelisation where each processor is assigned a specific

particle, hence the major factor affecting wall-time is the

number of evolutions. To minimise the total wall time, the

number of evolutions should be kept to a minimum though

this restricts the amount of exploration and the degree of

exploitation that can occur, as is shown in figure 2, though

in general the use of 1500 evolutions provides much superior

results to using 1000 evolutions. The use of 2000 evolutions

improves the results further but the ratio of improvement

to cost is lower. A compromise can therefore be made

by using 1500 evolutions. Furthermore, the use of more

particles can improve the optimization capability, though

again there exists a point which represents the optimum ratio

of improvement to cost and is around 200. The combination

of 1500 evolutions using 200 particles therefore appears to be

the best compromise between cost and optimization ability.

VII. CONCLUSIONS

This paper has presented a novel constraint handling tech-

nique to allow the effective optimization of constrained prob-

lems by the efficient gravitational search algorithm (GSA).

Much work has been performed on developing constraint

handling systems for use with particle swarm optimization

(PSO) such as penalty, mutation and separation approaches,

though little work has developed constrained based systems

for GSA. GSA has been shown to be more effective at global

optimization than PSO so the work here introduces a novel

approach that is generic for any continuous optimization

problem.

The approach taken here is to separate the infeasible

and feasible particles into separate swarms to allow the

independent optimization of the true objective function, while

still allowing the entire population to search for a feasible

solution. This also means that non-connected feasible regions

can be handled. The sub-swarming approach therefore leads

to the separate swarms solving either the true objective

function or the constraints, though the infeasible sub-swarm

cannot move under the rules of GSA as this produces a

global transfer of data, instead moving by a particle swarm

approach using feasibility rules to ensure the local and global

best positions are feasible if possible. This also means that

if initialisation produces infeasible particles, they can be

handled within the existing framework without having to be

reinitialised.

The separation-sub-swarmed gravitational search algo-

rithm (3S-GSA) was tested on a suite of analytical test cases
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and found to be efficient at finding the global optimum in

all tests. The exact exploitation of the global optimum was

found in many of the cases and overall the performance was

good.
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