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Abstract—The gravitational search algorithm (GSA) is a
recent addition to the family of global optimization algorithms
based on phenomena found in nature, specifically the gravita-
tional attractive force between two bodies of mass. However,
like almost all global search algorithms of this type, GSA
has no direct method of handling a constrained optimization
problem. There has been much attention to constraint handling
using other agent based systems, though the mechanics of
GSA make the application of many of these difficult. This
paper has therefore analysed constraint handling methods for
use with GSA and compared the performance of simple to
implement methods (penalties and feasible directions) with a
novel separation-sub-swarm (3S) approach, and found that
feasible direction methods ideally need at least one initially
feasible particle, and that the novel 3S approach is highly
effective for solving constrained optimization problems using
GSA outperforming the other approaches tested.

I. INTRODUCTION

O
PTIMIZATION is the process of improving on a

current solution. In real world problems, historically

optimization has often been performed manually where de-

signers use intuition to produce solutions to problems so that

the solution performs better than the initial starting point.

However, it has now become commonplace to use auto-

mated optimization algorithms to allow a more streamlined

and strict approach to this process and with the advent of

increased computer power available to engineers, expensive

optimization problems are being solved within an entirely

automated process, such as the drag minimization of aircraft

wings using computational fluid dynamics [1].

The solution to many real world optimization problems

require a solution that is feasible; constraints appear on

the total cost or other physical barriers to the solution.

Mathematically, a single objective constrained optimization

problem can be described as:

minimise
x∈ℜn

f(x)

subject to g(x) ≤ 0

h(x) = 0

(1)

where x is the solution vector [x1, x2, . . . , xn]
T where each

element of the vector is a design variable, f(x) is the

value of the objective function for the given solution vector,

g(x) represents inequality constraints, and h(x) represents

equality constraints. The solution vector is bounded by an

upper, Uk, and lower, Lk, bound such that for each xk where

k = 1, 2, . . . , n, the solution must be Lk ≤ xk ≤ Uk.

In certain classes of optimization algorithms, it is typical

to transform equality constraints into inequality constraints

within some small tolerance: |h(x)| − ǫ ≤ 0.

Solving optimization problems commonly uses one of

two approaches: gradient-based or global search algorithms.

Gradient-based algorithms use the local gradient as a basis

along which to search. The most basic forms of this are the

steepest descent and conjugate gradient approaches, however

these are designed for unconstrained optimization so require

modification to allow the effective handling of constraints;

feasible directions and barriers allow constraint handling

to be implemented within an unconstrained gradient-based

framework. More efficient approaches, which are typical in

gradient-based optimization algorithms, involve solving the

Karush-Kuhn-Tucker (KKT) conditions. The most widely

adopted approach is sequential-quadratic-programming [2],

which allows the strict enforcement of constraints without

either approximating them or altering the underlying search

space of the problem. Work performed at the University of

Bristol has shown that a feasible-SQP (FSQP) algorithm is

effective for the optimization of 2D [3] and 3D [4], [5]

aerodynamic optimization problems.

All gradient-based optimization algorithms do have the

same issues which are the computation of the gradient, and

the termination in local minima. Computing the gradient

can be an expensive process, especially if done using finite

difference where the number of objectiveevaluations is pro-

portional to the number of design variables. Furthermore,

the gradient evaluation requires a smooth and continuous

design space which may not be the case for all problems,

or when the solution is close the the upper and lower limits

of the design space. All purely gradient-based algorithms

will also terminate where the gradient becomes zero i.e. an

optimum. For highly multimodal functions (functions with

large numbers of local optima) the problem of termination

in local optima may not allow the global optimum solution

to be found so other approaches are required.

Global search algorithms avoid the issues associated with
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gradient-based approaches by avoiding the computation and

use of the gradient, instead employing the position of the

search in the space as a method to build an algorithm. These

meta-heuristic approaches often mimic natural processes or

behaviour such as evolution in genetic algorithms (GA)

[6], cooling in simulated annealing (SA) [7], ant colony

food searching in the ant colony optimization (ACO) [8],

swarm behaviour in particle swarm (PSO) [9], bee colony

food searching in the artificial bee colony system (ABS)

[10], Newtonian gravitational laws in gravitational search

algorithm (GSA) [11] and hearding of krill in the krill heard

framework (KH) [12]. The GA, SA and ACO algorithms

are primarily designed for discrete optimization, whereas

ABS, PSO, GSA and KH are agent based search algorithms

designed specifically for continuous optimization problems.

Agent based search algorithms are effective at solving

general unconstrained optimization problems that are large

and small scale, unimodal and multimodal. However the

framework around which all agent based optimization sys-

tems are built does not directly take into account the solution

to a constrained problem, and this is an ongoing research

area. Furthermore, constraint handling methods for agent

based search systems are often designed for use with particle

swarm and as such suitable methods for handling constraints

using the highly efficient gravitational search algorithm have

had little attention. The objective of this paper, therefore, is to

review the various approaches used for constraint handling in

agent based search algorithms and analyse suitable methods

for use with GSA.

II. GRAVITATIONAL SEARCH ALGORITHM

The original agent based search system is particle swarm

optimization, presented by Kennedy and Eberhart[9]. They

introduced the idea of using a set of particles to search a

design space in pursuit of the global optimum. The Grav-

itational Search Algorithm (GSA) is a further addition to

this field, presented by Rashedi et al. [11] for unconstrained

global optimization where the principles of basic Newtonian

mechanics act as the basis on which the algorithm is con-

structed. The algorithm was shown to perform well in many

analytical test function due to its use of an agent’s position,

and therefore fitness, in the search algorithm, where GSA

uses this directly to act as a measure for all other particles

to see. This notion is manifested in the algorithm by the mass

of an agent, where a high mass is equal to a good fitness and

vice versa for an agent that has a poor fitness. This is further

propagated through the population by a gravitational force

where every particle is attracted to every other particle by a

force that is proportional to the product of masses between

particles. Overall, these two effects provide a global transfer

of data through the entire swarm, and this is the mechanism

that is often attributed to the high performance of GSA.

The algorithm requires a system of N agents to initialised

within the bounds of the design variables, where the position

of the i-th agent is denoted by:

xi = {x1
i , x

2
i , . . . , x

d
i }

T (2)

The fictitious mass is calculated based on a particle’s

fitness:

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(3)

Mi(t) =
mi(t)

∑N

j=1 mj(y)
(4)

The force acting on particle i from particle j is:

F d
i,j(t) = G(t)

(

Mi(t)Mj(t)

Ri,j(t) + ǫ

)

(xd
j (t)− xd

i (t)) (5)

G(t) = G0 exp(−αt/T ) (6)

The total force acting on the i-th particle is:

F d
i (t) =

Kbest
∑

j=1,j 6=i

randjF
d
i,j(t) (7)

where Kbest reduces linearly through the optimization from

N at the start to 1 at the final iteration, which allows a bal-

ance between exploration and exploitation. The acceleration

is then:

adi (t) = F d
i (t)/Mi(t) (8)

Here, a modified GSA (MGSA) is used as the base swarm

which is a hybrid of the GSA and particle swarm systems,

and has been shown to be an effective approach [13], [14],

[15]. The updating procedure for the particles is:

vdi (t+ 1) = randiv
d
i (t) +

1

2
adi (t) (9)

+
1

2

(

c1r1i(p
d
i − xd

i (t)) + c2r2i(s
d − xd

i (t))
)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (10)

where pi is the best position found by the i-th particle

so far and s is the best position found by the swarm; r1
and r2 are random vectors; c1 and c2 are the cognitive and

social parameters respectively. Rashedi et al. [11] reported

that GSA outperformed PSO in over 80% of the analytical

cases tested in their paper, and also for a real optimization

problems[16]; Chatterjee et al. [17] and Mallick et al.[18]

demonstrated the superior efficiency and performance of

GSA against PSO for multi-modal engineering optimization

problems.

Overall, the simplicity of the gravitational search algo-

rithm, and the efficiency and effectiveness of its perfor-

mance makes it a suitable candidate to act as the basis for

the development of a global optimizer for solving multi-

modal constrained cases. The following section will survey

approaches developed for solving constrained optimization

cases using agent-based systems.
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III. CONSTRAINT HANDLING IN

AGENT-BASED SEARCH ALGORITHMS

Agent-based global search algorithms are void of direct

constraint handling in their formulation and therefore require

modification. A short review is presented here, and a com-

prehensive review of constraint handling of nature inspired

numerical optimization algorithms has been performed by

Mezura-Montes and Coello Coello [19], which the reader is

guided towards for a deeper review than is covered here.

A. Penalty Functions

The principle of penalty functions is that a constrained op-

timization problem can be transformed into an unconstrained

one by incorporating the constraints into the objective func-

tion. The most simple type of penalty is called a ‘death-

penalty’ [20] which eliminates the position of a particle

violating a constraint from the search. This usually occurs

by either reinitialising the particle at a new position if it

violates a constraint, or assigns it a large penalty constant.

This blinds the overall swarm from any knowledge of the

search space outside the feasible region and is therefore

inefficient. Other common approaches use a static penalty

function approach which adds the constraint violations to the

objective function with some static scaling [21], though more

efficient penalties are dynamic [22], so change depending on

the current objective function [23].

B. Mutation Operators

Mutation operators work on the principle that a feasible

solution is better than an infeasible one, and as such ma-

nipulate the search algorithm to either force or tend the

solution to the feasible space. The first methods of this

nature were based on the idea of feasible directions (from

Vanderplaats [24]), which is a direction that reduces the value

of the objective function while pointing towards the feasible

space, and shown to produce feasible results when applied

to real-world optimization problems[21]. Other approaches

modify the velocity of a particle to point back towards the

feasible space [25], though both of these approaches require

initialisation of particles to all be feasible. This prerequisite is

often expensive, especially for highly constrained problems

where multiple initialisations would be required to obtain

feasibility. Moreover, mutation operators mutate the swarm

so tend to alter the natural self-organising swarm dynamics

that cause the algorithm to be effective at optimizing search

spaces.

C. Separation of Objective Function and Constraints

The idea of a penalty function is to combine the value of

the true objective function and the constraint violation values

into a single augmented objective function, however, there

exists a school of thought which is the antithesis to this, i.e.

keeping the objective and constraint values separate. These

methods use various techniques for optimizing the value of

the objective and constraint values, or use various techniques

for the treatment of swarm characteristics for separate groups

of particles, though in general they seek to optimize either

the true objective function or the constraint violation.

Liang and Suganthan [26] employed a sub-swarm ap-

proach where sub swarms optimized either a constraint or the

objective function, where transfer of data about the feasible

space is provided by random reinitialisations of the swarms.

A more popular approach is by the use of hard feasibility

rules which selects leader particles based on feasibility or

constraint violation [27], [28] though it was recognised that

random operators had to be added to the hard feasibility rules

to facilitate good convergence properties. This effectively

represents a diffusion of the hard feasibility rules, which

leads to a similar approach called soft feasibility rules where

the difference represents a relaxation of the rules. The α-

constrained [29] and ǫ-constrained [30] feasibility rules are

just an effective relaxation of the hard feasibility rules, where

a satisfaction or tolerance represents the relaxation allowed,

which also represents the handicap of such methods being

the fine tuning of the α or ǫ parameters. Furthermore, the bi-

objective problem can also be treated using multi-objective

techniques, which find the pareto front of non-dominated

solutions [31].

In conclusion, hard feasibility rules are popular for solv-

ing constrained optimization algorithms using agent-based

systems, though on their own result in premature conver-

gence and therefore require a mutation operator to alleviate

this. Soft feasibility rules can allow a greater flexibility

by relaxing the binary operator, therefore not requiring a

mutation, though at the expense of adding another user

defined parameter which requires fine-tuning.

IV. SUITABLE CONSTRAINT HANDLING METHODS

FOR USE WITH GSA

The previous section introduced the methods developed

for handling constraints using agent-based global search

algorithms, however, these were all developed for a particle

swarm system – or modified to suit particle swarm. It

has been shown from the review of the literature that the

recently developed gravitational search algorithm (GSA) is

a more efficient and effective global search algorithm than

PSO, outperforming PSO on many analytical and real world

optimization cases. There has been little contribution to

the discussion of constrained optimization using GSA. A

simple implementation is by the use of a penalty function,

as Amoozegar and Nezamabadi-Pour [32] did. In general,

however, penalty functions are not ideal as they distort the

underlying search space and also introduce the problem of

selecting an appropriate penalty term, which is highly case

dependent. The other approach seen in the literature is by

reinitialising infeasible particles either randomly [33], or by

the repair method which initialises an infeasible particle

near to the closest feasible particle [34]. Reinitialisation

encounters problems when the feasible space is small, or

disconnected, so overall these approaches are not ideal. It

is obvious that an effective constraint handling approach is

required for GSA as there is little dealing with it in the

literature – researchers instead dealing with PSO – but the
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underlying search mechanism has been shown to be effective

for unconstrained problems.

The exact mechanisms that allow GSA to be an effective

optimization algorithm also act somewhat as a hindrance

for coupling with general constraint handling methods that

have been developed with particle swarm in mind. Separation

approaches, where particles either optimize the constraints or

the objective function are difficult in GSA as the global trans-

fer of data among all particles swamps the true optimization

with unwanted data about the feasible region. Complications

also arise with the evaluation of a particle’s mass such that

an infeasible particle could have a very large mass compared

to a feasible particle owing to the infeasible one being very

close to the feasible region so having a high fitness value.

The direct use of feasibility rules also has little to no use

in GSA as there is no selection of leader particles, unlike in

PSO; in GSA the particles are ranked based on their fitness.

Penalty functions can be used in the GSA environment as

these just manipulate the objective function so are simple to

directly insert into the algorithm. The slight implication in the

use of penalties is that an infeasible particle must be forced to

have a much worse fitness than a feasible particle, but this can

be handled by setting a large penalty weighting. The feasible

direction approach can also be used as this manipulates a

particle’s velocity to point in towards the feasible space.

Finally, the authors have developed an effective constraint

handling mechanism specifically designed for use with GSA

called separation-sub-swarm (3S), which uses a separation

approach that is handled by using two independent swarms

which are constructed based on their feasibility. The infea-

sible swarm minimises the constraint violation, whereas the

feasible swarm optimizes the true objective function, where

the independence of the two swarms is important. Infeasible

particles are transferred information about the feasible space

by use of feasibility rules where the local and global best

positions are decided based on the feasibility history of a

particle and the swarm.

A. Penalties

Penalty functions are analysed as they allow direct inser-

tion into any agent-based algorithm and are therefore simple

to implement in GSA. Different fidelity penalty functions

have been considered. The first is a death penalty which

randomly reinitialises an infeasible particle. The second is

a static penalty where the augmented objective function is:

fp(xi) = f(x) + 10

G
∑

j=1

q(xi)j (11)

where qj is the j-th constraint violation of G constraints.

Finally a more complicated dynamic penalty [23] has been

implemented, where the augmented objective function in this

cases is:

fp(xi) = f(x) + κ

G
∑

j=1

θq(xi)
γ
j (12)

where κ is the dynamic penalty which is given by t
√
t at

the t-th evolution; θ = 10 if qj < 0.001, else θ = 20 if

qj < 0.1, else θ = 100 if qj < 1.0, otherwise θ = 300;

γ = 1.0 if qj < 1, otherwise γ = 2.

B. Feasible Directions

The feasible direction approach used here is based on

an approach developed for particle swarm by Venter and

Sobieszczanski-Sobieski [21] where a manipulation of the

velocity vector is made if a particle is infeasible to attempt

to force it towards the feasible region:

vdi (t+ 1) = randi(s
d(t)− xd

i (t)) (13)

The difference between the feasible direction and the pure

GSA velocity is the setting of the previous velocity to be zero

and the introduction of the vector that points in the direction

of the best position the swarm has found so far, which will

be feasible if it is possible. Selecting the best particle to be

feasible if it is possible will make sure the velocity points

in the direction of feasibility, and also avoid any issues with

requiring points to be initialised as being feasible. A further

change required is that the mass of any feasible particle must

be set as being extremely small to avoid it interfering with

the feasible search too much.

C. Separation Sub-Swarm (3S)

An efficient constraint handling method for use with GSA

has been developed by the authors that allows independent

optimization of the constraints or objective function by a

separation-sub-swarm (3S) approach which employs two in-

dependent swarms decided based on a candidate’s feasibility.

The independence of the swarms is important such that

global data transfer among all particles does not occur, but

between necessary particles. Furthermore, the optimization

of the constraint violation, which has a solution at the

feasible space, occurs by particle swarm to avoid the issues

of setting the correct mass values in GSA. This approach

allows transfer of data between feasible particles, and from

the feasible region to the infeasible particles by employing

feasibility rules and moving infeasible particles by a particle

swarm approach. The algorithm is a general framework for

use with any agent-based algorithm, though it is designed

with GSA in mind. The objective function, fp associated

with the i-th agent is transformed depending on a particle’s

feasibility:

fp(xi) =











f(xi) if xi is feasible
∑G

j=1 max{0, gj(xi)}+ else
∑H

j=1 |hj(xi)|
(14)

The particle’s best ever position, p, and the swarm’s best

ever position, g, are needed for use by the infeasible particles,

which is done by comparing the current position with the best

positions by the following rules:

1) If current and best positions are feasible, the one with

best fitness wins;

2008



2) If either the current or best positions are feasible and

the other infeasible, the feasible position wins;

3) If current and best positions are infeasible, the one with

the minimum constraint violation wins.

For the Nf feasible particles only, the acceleration is as

per gravitational search. The acceleration of the infeasible

particles is done by particle swarm:

adi (t) = c1r1i(p
d
i − xd

i (t)) + c2r2i(g
d − xd

i (t)) (15)

The velocity of the particles is:

vdi (t+ 1) = randiv
d
i (t) + adi (t) (16)

which represents a ‘fuzzy inertia’ particle swarm system for

the infeasible particles, and is the standard GSA model for

the feasible particles. The update procedure is therefore:

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (17)

If a particle exceeds the boundary of the search space then

it is not infeasible but is a particle without a solution so is

reinitialised in its last position with a zero velocity.

V. CONSTRAINED ANALYTICAL OPTIMIZATION

The performance of the GSA based swarm with the

various constraint handling methods introduced above is

analysed here. An analytical function suite, as outlined

by Michalewicz and Schoenauer [35], which is commonly

used to test constrained global optimization algorithms, is

employed for the testing in this work. The suite contains

11 test cases that are all minimisation problems and contain

various numbers of linear and non-linear inequality and

equality constraints, various sizes of feasible search space,

and various types of objective function. The nature of the

cases is outlined in table I and as can be seen by considering

the size of the feasible search space, represent a difficult

optimization problem. Furthermore, the presence of equality

constraints poses a difficult problem for the optimizer, so

for the purpose of this work, as is typical when dealing

with equality constraints, they are transformed into inequality

constraints to within a small tolerance: |hj(x)| − ǫ ≤ 0.

25 independent runs of each of the test functions were

performed. The exact swarm mechanism used is the MGSA

as this outperforms the individual mechanisms for many

optimization cases [13], [14], [15]. 200 particles were used;

maximum number of timesteps at 1500; G0 = 30; α = 10;

c1 = c2 = 2. The degree of violation for the equality

constraints was ǫ = 0.0001, so as a result optimum solu-

tions better than the theoretical optimum were possible. The

objective function evaluations have been parallelised using

the message passing interface (MPI) to allow more efficient

algorithm performance. The best solutions found from the

25 independent runs for each function using each constraint

handling method and the median results are given in table II,

and the feasibility rate is given in table III. The convergence

TABLE I
SUMMARY OF ELEVEN ANALYTICAL TEST CASES, WHERE d IS THE

NUMBER OF DESIGN VARIABLES, ρ IS THE RATIO OF THE FEASIBLE

SEARCH SPACE TO THE WHOLE SEARCH SPACE, AND LI , NE , NI
REPRESENT THE NUMBER OF LINEAR INEQUALITIES, NON-LINEAR

EQUALITIES AND NON-LINEAR INEQUALITIES RESPECTIVELY.

Function d Type of f ρ LI NE NI

G1 13 quadratic 0.0111% 9 0 0
G2 20 non-linear 99.8474% 0 0 2
G3 10 polynomial 0.0000% 0 1 0
G4 5 quadratic 52.1230% 0 0 6
G5 4 cubic 0.0000% 9 3 0
G6 2 cubic 0.0066% 9 0 2
G7 10 quadratic 0.0003% 3 0 5
G8 2 non-linear 0.8560% 0 0 2
G9 7 polynomial 0.5121% 0 0 4
G10 8 linear 0.0010% 3 0 3
G11 2 quadratic 0.0000% 0 1 0

TABLE III
FEASIBILITY RATE OF 11 ANALYTICAL FUNCTION TEST SUITE

OPTIMIZED USING VARIOUS CONSTRAINT HANDLING METHODS WITH

MGSA SWARM.

Function 3S Death Static Dyn FD

G1 100% 36% 100% 68% 0%
G2 100% 100% 100% 100% 100%
G3 100% 60% 0% 96% 0%
G4 100% 100% 0% 28% 24%
G5 88% 0% 100% 36% 0%
G6 100% 100% 0% 100% 80%
G7 100% 12% 100% 96% 0%
G8 100% 100% 0% 100% 88%
G9 100% 100% 100% 100% 16%
G10 100% 12% 0% 0% 0%
G11 100% 100% 100% 100% 4%

Overall 99% 65% 55% 73% 28%

of the best result for each function using each method is

shown in figure 1.

The comparison of various penalties of differing fidelity

and complication further demonstrates the effectiveness and

efficiency of the separation-sub-swarm algorithm. The effi-

ciency of finding a feasible solution, whether it is the globally

optimal solution or not, is almost perfect using the 3S algo-

rithm, and is much less good using penalty approaches. The

best performing penalty is the more complicated dynamic

penalty followed by the death and finally the static. The

death penalty is inefficient as it blinds the swarm from any

knowledge of the history of a particle when it becomes

infeasible and just ignores that information instead of trans-

ferring it back to the feasible swarm. The static penalty also

performs poorly compared to the dynamic penalty though its

performance could improve with fine-tuning of the penalty

parameter, though this is an expensive process. The dynamic

penalty performs the best of the three penalty functions,

which is to be expected due to the algorithm being able to

interactively alter the penalty applied based on the constraint

violation. The 3S algorithm outperforms all the penalties on
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TABLE II
RESULTS OF 11 ANALYTICAL FUNCTION TEST SUITE OPTIMIZED USING VARIOUS CONSTRAINT HANDLING METHODS WITH MGSA SWARM. RESULT

CLOSEST TO TRUE OPTIMAL VALUE (BEST) AND MEDIAN OF ALL RUNS FOR EACH FUNCTION ARE PRESENTED FOR EACH FUNCTION FROM 25
INDEPENDENT RUNS

Function Optimal 3S Death Static Dyn FD

Best

G1 -15.000 -15.000 -3.554 -15.000 -15.000 INF
G2 -0.8036 -0.8036 -0.795 -0.8036 -0.8036 -0.7761
G3 -1.0005 -0.9974 -0.1462 INF -0.9996 INF
G4 -30665.54 -30665.54 -30665.54 INF -30665.54 -30248.29
G5 5126.497 5127.780 INF 5131.045 5133.212 INF
G6 -6961.814 -6961.813 -6864.455 INF -6961.814 -6961.808
G7 24.306 24.326 212.368 25.348 24.340 INF
G8 -0.0958 -0.0958 -0.0958 INF -0.0958 -0.0958
G9 680.630 680.631 684.574 680.630 680.6308 684.356
G10 7049.248 7092.875 11418.715 INF INF INF
G11 0.7499 0.7499 0.7500 0.499 0.7499 0.9281

Median

G1 -15.000 -15.000 INF -15.000 -15.000 INF
G2 -0.8036 -0.7774 -0.7670 -0.7525 -0.7862 -0.7072
G3 -1.0005 -0.6410 -0.0007 INF -0.9949 INF
G4 -30665.54 -30665.54 -30665.54 INF INF INF
G5 5126.497 5271.40 INF INF INF INF
G6 -6961.814 -6961.813 -6164.350 INF -6961.813 -6961.096
G7 24.306 24.396 INF 24.635 24.692 INF
G8 -0.0958 -0.0958 -0.0958 INF -0.0958 -0.0958
G9 680.630 680.632 699.053 680.631 680.636 INF
G10 7049.248 7489.336 18590.46 INF INF INF
G11 0.7499 0.7499 0.7502 0.7499 0.7499 INF

feasibility rate and optimization effectiveness, emphasising

that the five requirements used to develop the algorithm have

lead to a high performance optimization capability.

The method of feasible directions performed poorly, pos-

sible indicating that this method requires initialisation to

result in at least one feasible solution such that the algorithm

can point towards the feasible space. If this is not the

case then the feasible particles will just point to where

the least infeasible particle is found, which may not point

it back towards the space. Problems which had equality

constraints posed a particularly problem for the feasible

direction approach, and problems that have small design

spaces (which includes those with equality constraints) were

not handled well as the algorithm had no knowledge of

the feasible direction. The results could be improved by

forcing the algorithm to reinitialise particles until at least

one particle is feasible, though in problems with expensive

objective function evaluations this is not a feasible approach.

In terms of finding a feasible solution, the 3S-MGSA

algorithm is also highly dependable. In all but one of the test

cases all of the 25 independent runs resulted in a feasible

solution. The only case where a feasible solution was not

found 100% of the time is G5, which is a difficult function

to optimize due to having three equality constraints. The

feasibility rate was 88% so the algorithm still performed

well, even in this difficult problem, though further tuning

of the parameters may result in improved results. This

just demonstrates the problem that all agent-based search

algorithms have which is that the performance and optimum

parameter settings are highly case dependent.

The variability associated with using a penalty functions

is reflected in the overall spread of data. The success rate of

using the penalty function is also not as high as the 3S-

MGSA algorithm with more infeasible solutions resulting

from the 25 independent runs. The problem with the penalty

approach is that the swarm has no knowledge of the quality

of the infeasible search space compared to the feasible search

space, instead the underlying search space is fundamentally

altered by the use of the penalty. As a result, infeasible

solutions are allowed under the penalty approach as the

overall objective function can be considerable smaller in the

infeasible region. This is, however, not possible in the 3S-

MGSA approach as the infeasible and feasible regions are

searched by swarms that have independent characteristics,

though the infeasible swarm has knowledge of the feasible

space by the use of the global and local best positions, which

must be feasible if possible.

VI. CONCLUSIONS

This paper has considered various constraint handling

techniques to allow the effective optimization of constrained

problems by an efficient gravitational search algorithm

(GSA). Much work has been performed on developing

constraint handling systems for use with particle swarm

optimization (PSO) such as penalty, mutation and separa-

tion approaches, though little work has developed constraint

based systems for GSA, perhaps because the global data

transfer that occurs within GSA poses some issues with

coupling to traditional particle swarm constraint handling

methods. GSA has been shown to be more effective at global
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(k) G11

Fig. 1. Convergence of various constraint handling techniques applied to MGSA feasible swarm. Best solution from 25 independent runs is shown. If not
feasible solution has been found then line is not shown.

optimization than PSO so the work here has compared stan-

dard constraint handling approaches with a novel separation-

sub-swarm method.

The approach taken in the novel method here is to separate

the infeasible and feasible particles into separate swarms

to allow the independent optimization of the true objective

function, while still allowing the population to search for a

feasible solution. This also means that non-connected feasi-

ble regions can be handled too. The sub-swarming approach

therefore leads to the separate swarms solving either the true

2011



objective function or the constraints, though the infeasible

sub-swarm cannot move under the rules of GSA as this

produces a global transfer of data from the feasible to the

infeasible region, instead moving by a PSO approach using

feasibility rules to ensure the local and global best positions

are feasible if possible. This also means that if initialisation

produces infeasible particles, they can be handled within the

existing framework without having to be reinitialised.

The separation-sub-swarmed (3S) constraint handling

method for gravitational search algorithm was compared to

different fidelity penalty functions and a feasible direction

approach. Other separation, binary tournament and soft fea-

sibility rule approaches cannot be implemented in GSA as

GSA does not select leader particles so there is no need for

feasibility rules, or would need manual manipulation of the

masses of particles such as in a pure separation approach. The

3S method was shown to be highly efficient and effective

at analytical constrained optimization compared to all the

penalty approaches. A dynamic penalty outperforms other

penalty approaches as the higher fidelity provides a more

accurate penalty function to apply.
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